JP3693417B2 - Corrosion resistant wire - Google Patents

Corrosion resistant wire Download PDF

Info

Publication number
JP3693417B2
JP3693417B2 JP13383696A JP13383696A JP3693417B2 JP 3693417 B2 JP3693417 B2 JP 3693417B2 JP 13383696 A JP13383696 A JP 13383696A JP 13383696 A JP13383696 A JP 13383696A JP 3693417 B2 JP3693417 B2 JP 3693417B2
Authority
JP
Japan
Prior art keywords
ammonia
coating layer
thermoplastic resin
corrosion
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13383696A
Other languages
Japanese (ja)
Other versions
JPH09320357A (en
Inventor
裕人 野崎
保夫 高橋
顯 田中
中 小野田
健三 武内
洋 橋本
Original Assignee
昭和電線電纜株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電線電纜株式会社 filed Critical 昭和電線電纜株式会社
Priority to JP13383696A priority Critical patent/JP3693417B2/en
Publication of JPH09320357A publication Critical patent/JPH09320357A/en
Application granted granted Critical
Publication of JP3693417B2 publication Critical patent/JP3693417B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Insulated Conductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は耐腐食性、特に耐アンモニア性に優れた耐腐食性電線に関する。
【0002】
【従来の技術】
電線に用いられる電気導体は、その使用環境によっては、雰囲気の腐食性ガスによって比較的短期間の間に腐食し、断線して停電事故を引起こしたり、電気機器の使用を不能にすることがあり、また時にはそれが原因となって大きな事故を誘発する恐れがある。そこで腐食性ガス雰囲気で使用される電線には、耐腐食性に優れた電気導体が用いられる。この腐食性ガス雰囲気としては、亜硫酸ガスやオゾンを含む大気、あるいはアンモニアガス雰囲気などがある。また、アンモニア冷媒のもとで使用される電気機器用の電線としては特に耐アンモニア性が必要とされる。アンモニアは乾ガスの状態でも多くの金属材料に対して腐食性を示すが、これに水分の加わった湿ガスの状態では、より激しい腐食性を示し、金属材料、特に銅および銅合金を急激に劣化させる。
【0003】
【発明が解決しようとする課題】
耐腐食性、特に耐アンモニア性の電気導体としては、優れた耐腐食性と高い導電性および経済性を兼ね備えた金属素材があれば最適であるが、現実にはそのような素材の入手は困難であるところから、一般には複合金属素材の使用が検討されている。例えば、芯材として銅を使用し、その外周にアルミニウムや鉄、あるいはニッケルなどの耐アンモニア性金属を蒸着やダイス引抜きなどによって被覆する技術が知られている(例えば、特開平5−252680号公報)。
このような複合金属素材は、外面に絶縁被覆を施して使用されるが、従来からコイル巻線に使用されてきた絶縁材料は耐アンモニア性に乏しく、アンモニアに接触すると膨潤して絶縁耐力が低下するため、長期間に亘って使用することができないという難点がある。
【0004】
上記複合金属素材は、必要な導電率を維持するためには、金属被覆層の厚さをあまり大きくとることは許されない。しかしながら、金属被覆層の厚さを薄くすると、クラックやピンホールなどを生じ、耐腐食性が著しく低下してしまう恐れがあり、製造上の自由度が少ない。また、芯材と金属被覆層の線膨脹係数に大きな違いがあると、応力腐食によって、劣化が急速に進展し、断線に至る恐れがある。
本発明は、このような点に着目してなされたもので、アンモニアに対する耐腐食性に優れ、しかも製造が容易な耐腐食性電線を提供することを課題とするものである。
【0005】
【課題を解決するための手段】
本発明の耐腐食性電線は、芯材が銅からなり、金属被覆層が線膨張係数17.1〜17.4×10-6/KのNi含有SUSからなる複合金属線であって、前記複合金属線の外周に密着して、SP値(溶解度パラメータ)8以下の熱可塑性樹脂からなる耐アンモニア性熱可塑性樹脂の押出被覆層を形成したことを特徴とするものである。
【0006】
【発明の実施の形態】
本発明において、金属被覆層の厚さは3μm以上とすることが望ましい。これは、これ未満の厚さでは傷などにより孔が生成するため、クラックやピンホール等の発生が急増し、所期の耐アンモニア性が得られないからである。また、複合金属線の導電率は55%以上とすることが望ましい。これは、導体径が細い場合でも、所期の電気伝導度を確保するためである。
押出被覆層の形成は、耐アンモニア性の熱可塑性樹脂を押出機内に導入して加熱混練し、半溶融状態にしてダイス・ニップルの間から複合金属線の上に押出し被覆することによって形成される。この場合、引落し形の押出機を使用すれば、複合金属線と押出被覆層を密着させることができる。
【0007】
本発明においては、耐アンモニア性熱可塑性樹脂として、SP値が8以下の熱可塑性樹脂として、例えばポリエチレン(PE)やポリプロピレン、あるいは四フッ化エチレン樹脂、フッ化ビニリデン樹脂、三フッ化エチレン樹脂等のフッ素樹脂、もしくはこれらのフッ素樹脂を含む共重合体を使用することが望ましい。共重合体としては、FEP(テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体)、ETFE(エチレン/テトラフルオロエチレン共重合体)などが使用される。なお、SP値とは、液体のモル蒸発エネルギーをモル体積で割った値の平方根を意味し、プラスチック(高分子材料)の場合には、そのプラスチックを、所定のSP値を示す溶剤に溶解させる場合の溶解しやすさを、熱力学的な方法で数値として示したものであり、この値が8以下の熱可塑性樹脂被覆層はアンモニアガスに接触しても膨潤せず、絶縁耐力を保持するので、長期間に亘って使用することができる。
【0008】
本発明において、芯材としては、銅、銅合金などを使用することができ、また金属被覆層としては、SUS(ステンレス・スチール)を使用することができる。
【0009】
芯材が銅からなる場合、金属被覆層として線膨張係数17.1〜17.4×10-6/KのNi含有SUS、例えばSUS304を使用すると、両者の線膨張係数が近く、熱伸縮に伴う応力が緩和されるので、応力腐食の危険を低減させることができる。これらのSUSを用いる場合、クラッド法を採用すれば、ピンホール等は発生しないので好都合である。
【0010】
【実施例】
以下、本発明の実施例を説明する。表1は、芯材として銅を使用し、金属被覆層としてSUS(SUS304)、絶縁層(耐アンモニア性熱可塑性樹脂被覆層)としてPEまたはETFEを押出し被覆した本発明の実施例を示す。なお、試験方法と評価項目は次の通りである。
試験方法・・・気圧5〜7kgf/cmのアンモニアガス雰囲気に各電線を14日間静置した。
外観・・・・・アンモニアガス試験前後で導体、絶縁体それぞれに変色、収縮、割れ等の変化がないかどうか観察して評価した。
絶縁性・・・・アンモニアガス試験後、絶縁性能を保っているかどうか、絶縁耐圧を測定して評価した。絶縁耐圧が10kV/cm以上のものを合格とした。
【表1】

Figure 0003693417
【0011】
表2は、上記実施例と同一条件で行った比較例を示す。
【表2】
Figure 0003693417
【0012】
表1と表2を対比すれば明らかなように、本発明の実施例である例1および例2はいずれも外観および試験後絶縁性が良好であったが、金属被覆層のないもの(比較例1)と、金属被覆層としてニッケルを使用したもの(比較例2)は芯材の外観が不良であり、また絶縁層としてPI(ポリイミド樹脂)を使用したもの(比較例3)は外観(芯材と絶縁層)および試験後絶縁性が共に不良であった。
【0015】
上述した実施例と比較例から明らかなように、本発明においては、金属被覆層としてSUSを、好ましくは厚さ3μm以上に被覆しており、またその外周に耐アンモニア性に優れ、SP値が8以下の熱可塑性樹脂を、金属被覆層に密着するようにして押出し被覆しているので、高い耐アンモニア性を持つ耐腐食性電線を得ることができる。
【0016】
本発明においては、芯材を銅で構成する場合、金属被覆層として線膨張係数17.1〜17.4×10-6/KのNi含有SUSを使用すると、両者の線膨張係数が近く(銅の線膨張係数は17.3×10-6/K)、熱伸縮に伴う応力が緩和されるので、応力腐食の危険を低減させることができる。また、特に本発明において、SP値が8以下の耐アンモニア性熱可塑性樹脂として、例えばポリエチレンやポリプロピレン、あるいは四フッ化エチレン樹脂、フッ化ビニリデン樹脂、三フッ化エチレン樹脂などのフッ素樹脂、またはこれらのフッ素樹脂を含む共重合体を使用する場合には、これらの熱可塑性樹脂被覆層はアンモニアガスに接触しても膨潤しないので、長期間に亘って所期の絶縁耐圧を保持することができる。
【0017】
【発明の効果】
本発明によれば、アンモニアに対する耐腐食性に優れ、しかも製造が容易な耐腐食性電線を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a corrosion-resistant electric wire excellent in corrosion resistance, particularly ammonia resistance.
[0002]
[Prior art]
Depending on the usage environment, the electrical conductors used in the wires may corrode in a relatively short period of time due to the corrosive gas in the atmosphere, and may cause a power outage accident due to disconnection or disable the use of electrical equipment. Yes, and sometimes it can cause major accidents. Therefore, electric conductors having excellent corrosion resistance are used for electric wires used in corrosive gas atmospheres. Examples of the corrosive gas atmosphere include an atmosphere containing sulfurous acid gas and ozone, or an ammonia gas atmosphere. In addition, ammonia resistance is particularly required for electric wires for electrical equipment used under ammonia refrigerant. Ammonia is corrosive to many metal materials even in the state of dry gas, but in the state of wet gas with added moisture, it exhibits more severe corrosiveness, and the metal materials, especially copper and copper alloys, are rapidly affected. Deteriorate.
[0003]
[Problems to be solved by the invention]
A metal material that has excellent corrosion resistance, high electrical conductivity, and economy is optimal as an electrical conductor with corrosion resistance, especially ammonia resistance, but in reality it is difficult to obtain such a material. Therefore, the use of composite metal materials is generally being studied. For example, a technique is known in which copper is used as a core material and an ammonia-resistant metal such as aluminum, iron, or nickel is coated on the outer periphery thereof by vapor deposition or die drawing (for example, Japanese Patent Laid-Open No. 5-252680). ).
Such a composite metal material is used with an insulation coating on the outer surface, but the insulation material conventionally used for coil winding is poor in ammonia resistance, and when it comes into contact with ammonia, it swells and the dielectric strength decreases. Therefore, there is a problem that it cannot be used for a long time.
[0004]
In the composite metal material, the thickness of the metal coating layer is not allowed to be too large in order to maintain the necessary conductivity. However, if the thickness of the metal coating layer is reduced, cracks, pinholes, and the like are generated, and the corrosion resistance may be significantly reduced, and the degree of freedom in manufacturing is low. In addition, if there is a large difference in the linear expansion coefficient between the core material and the metal coating layer, the deterioration rapidly proceeds due to stress corrosion, which may lead to disconnection.
The present invention has been made paying attention to such points, and an object of the present invention is to provide a corrosion-resistant electric wire that is excellent in corrosion resistance to ammonia and that can be easily manufactured.
[0005]
[Means for Solving the Problems]
The corrosion-resistant electric wire of the present invention is a composite metal wire in which the core material is made of copper and the metal coating layer is made of Ni-containing SUS having a linear expansion coefficient of 17.1 to 17.4 × 10 −6 / K. It is characterized in that an extrusion coating layer of an ammonia-resistant thermoplastic resin made of a thermoplastic resin having an SP value (solubility parameter) of 8 or less is formed in close contact with the outer periphery of the composite metal wire.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the thickness of the metal coating layer is desirably 3 μm or more. This is because if the thickness is less than this, holes are generated due to scratches and the like, and the occurrence of cracks, pinholes, etc. increases rapidly, and the desired ammonia resistance cannot be obtained. The electrical conductivity of the composite metal wire is desirably 55% or more. This is to ensure the desired electrical conductivity even when the conductor diameter is small.
The extrusion coating layer is formed by introducing an ammonia-resistant thermoplastic resin into the extruder, heating and kneading it, and making it into a semi-molten state and extrusion-coating it from between the die and nipple onto the composite metal wire. . In this case, if a pull-down type extruder is used, the composite metal wire and the extrusion coating layer can be brought into close contact with each other.
[0007]
In the present invention, as an ammonia-resistant thermoplastic resin, as a thermoplastic resin having an SP value of 8 or less, for example, polyethylene (PE), polypropylene, ethylene tetrafluoride resin, vinylidene fluoride resin, ethylene trifluoride resin, etc. It is desirable to use a fluororesin or a copolymer containing these fluororesins. As the copolymer, FEP (tetrafluoroethylene / hexafluoropropylene copolymer), ETFE (ethylene / tetrafluoroethylene copolymer), or the like is used. The SP value means the square root of the value obtained by dividing the molar evaporation energy of the liquid by the molar volume. In the case of a plastic (polymer material), the plastic is dissolved in a solvent having a predetermined SP value. The ease of dissolution in this case is shown as a numerical value by a thermodynamic method. A thermoplastic resin coating layer having a value of 8 or less does not swell even when it comes into contact with ammonia gas, and maintains the dielectric strength. Therefore, it can be used for a long time.
[0008]
In the present invention, copper, copper alloy, or the like can be used as the core material, and SUS (stainless steel) can be used as the metal coating layer.
[0009]
When the core material is made of copper, if a Ni-containing SUS having a linear expansion coefficient of 17.1 to 17.4 × 10 −6 / K, such as SUS304, is used as the metal coating layer, the linear expansion coefficient of both is close, and thermal expansion and contraction are possible. Since the accompanying stress is relaxed, the risk of stress corrosion can be reduced. When these SUSs are used, if the cladding method is employed, pinholes and the like are not generated, which is convenient.
[0010]
【Example】
Examples of the present invention will be described below. Table 1 shows examples of the present invention in which copper is used as a core material, SUS (SUS304) is extruded as a metal coating layer, and PE or ETFE is extrusion coated as an insulating layer (ammonia-resistant thermoplastic resin coating layer). The test methods and evaluation items are as follows.
Test method: Each electric wire was allowed to stand in an ammonia gas atmosphere at a pressure of 5 to 7 kgf / cm for 14 days.
Appearance: Evaluation was made by observing whether there was any change in color, shrinkage, cracking, etc. in the conductor and insulator before and after the ammonia gas test.
Insulation property ... After the ammonia gas test, whether or not the insulation performance was maintained was measured and evaluated. Those with a dielectric breakdown voltage of 10 kV / cm or more were regarded as acceptable.
[Table 1]
Figure 0003693417
[0011]
Table 2 shows a comparative example performed under the same conditions as in the above example.
[Table 2]
Figure 0003693417
[0012]
As is clear from comparison between Table 1 and Table 2, Examples 1 and 2, which are examples of the present invention, both had good appearance and insulation after the test, but had no metal coating layer (Comparison Example 1) and the one using nickel as the metal coating layer (Comparative Example 2) have a poor appearance of the core material, and the one using PI (polyimide resin) as the insulating layer (Comparative Example 3) has the appearance ( Both the core material and the insulating layer) and the insulation after the test were poor.
[0015]
As is clear from the above-described Examples and Comparative Examples, in the present invention, SUS is coated as a metal coating layer, preferably with a thickness of 3 μm or more, and the outer periphery thereof is excellent in ammonia resistance and has an SP value. Since a thermoplastic resin of 8 or less is extruded and coated so as to be in close contact with the metal coating layer, a corrosion-resistant electric wire having high ammonia resistance can be obtained.
[0016]
In the present invention, when the core material is made of copper, when a Ni-containing SUS having a linear expansion coefficient of 17.1 to 17.4 × 10 −6 / K is used as the metal coating layer, the linear expansion coefficient of both is close ( The coefficient of linear expansion of copper is 17.3 × 10 −6 / K), and stress associated with thermal expansion and contraction is relieved, so the risk of stress corrosion can be reduced. Further, particularly in the present invention, as the ammonia-resistant thermoplastic resin having an SP value of 8 or less, for example, polyethylene, polypropylene, fluororesin such as ethylene tetrafluoride resin, vinylidene fluoride resin, ethylene trifluoride resin, or these When the copolymer containing the fluororesin is used, these thermoplastic resin coating layers do not swell even when they come into contact with ammonia gas, so that the desired withstand voltage can be maintained over a long period of time. .
[0017]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the corrosion-resistant electric wire which is excellent in the corrosion resistance with respect to ammonia, and is easy to manufacture can be obtained.

Claims (2)

芯材が銅からなり、金属被覆層が線膨張係数17.1〜17.4×10 -6 /KのNi含有SUSからなる複合金属線であって、前記複合金属線の外周に密着して、SP値(溶解度パラメータ)8以下の熱可塑性樹脂からなる耐アンモニア性熱可塑性樹脂の押出被覆層を形成したことを特徴とする耐腐食性電線。 The core material is made of copper, and the metal coating layer is a composite metal wire made of Ni-containing SUS having a linear expansion coefficient of 17.1 to 17.4 × 10 −6 / K, and is in close contact with the outer periphery of the composite metal wire A corrosion-resistant electric wire characterized by forming an extrusion coating layer of an ammonia-resistant thermoplastic resin made of a thermoplastic resin having an SP value (solubility parameter) of 8 or less. SP値8以下の熱可塑性樹脂がポリエチレン、ポリプロピレン、フッ素樹脂、またはフッ素樹脂を含む共重合体からなることを特徴とする請求項1に記載の耐腐食性電線。The corrosion-resistant electric wire according to claim 1, wherein the thermoplastic resin having an SP value of 8 or less is made of polyethylene, polypropylene, fluororesin, or a copolymer containing fluororesin.
JP13383696A 1996-05-28 1996-05-28 Corrosion resistant wire Expired - Fee Related JP3693417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13383696A JP3693417B2 (en) 1996-05-28 1996-05-28 Corrosion resistant wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13383696A JP3693417B2 (en) 1996-05-28 1996-05-28 Corrosion resistant wire

Publications (2)

Publication Number Publication Date
JPH09320357A JPH09320357A (en) 1997-12-12
JP3693417B2 true JP3693417B2 (en) 2005-09-07

Family

ID=15114186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13383696A Expired - Fee Related JP3693417B2 (en) 1996-05-28 1996-05-28 Corrosion resistant wire

Country Status (1)

Country Link
JP (1) JP3693417B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11195328A (en) * 1997-12-27 1999-07-21 Sumitomo Electric Ind Ltd Silane cross-linked watertight insulated wire and manufacture therefor
JP3357607B2 (en) * 1998-09-04 2002-12-16 株式会社前川製作所 Rotary electric machine combined with ammonia rotary machine
DE102013017147A1 (en) * 2013-10-16 2015-04-16 Gea Refrigeration Germany Gmbh compressor
JP2019096492A (en) * 2017-11-23 2019-06-20 株式会社オートネットワーク技術研究所 Aluminum-based single wire, twisted wire conductor, braided wire and wire harness

Also Published As

Publication number Publication date
JPH09320357A (en) 1997-12-12

Similar Documents

Publication Publication Date Title
IE54432B1 (en) Winding or insulating tape made of a high temperature-resistant synthetic resin
JP2004533092A (en) Multi-layer insulation system for electrical conductors
WO2015130681A1 (en) Insulated winding wire
JPH06502274A (en) Composite wire structure
US4354992A (en) Electrochemical tree resistant power cable
JP3693417B2 (en) Corrosion resistant wire
CN113053573A (en) High-temperature and high-pressure resistant submersible motor winding wire and manufacturing process thereof
JP2003147134A (en) Semiconductor watertight composition
CN116313309A (en) Production process of multi-core cable
CN216311429U (en) Water-blocking buffer layer structure capable of preventing electrochemical corrosion
US4457975A (en) Tree resistant power cable
CA1136817A (en) Method for producing insulated winding wire by extruding thermoplasts
JPS6031124Y2 (en) Rubber/plastic insulated power cable
CN213424629U (en) Insulated wire, and coil and motor provided with same
CN217418572U (en) High-performance polyimide/fluoropolymer insulation composite film for aerospace
CN210349353U (en) Three-layer or multi-layer Teflon wire
JPH0626119U (en) Insulated wire and coaxial cable
JPH02270210A (en) Insulated wire
JP2825823B2 (en) Termite-proof wires and cables
JPH0621118U (en) Insulated wire and coaxial cable
JPH0320977Y2 (en)
JPH0278111A (en) Ant-proofing wire/cable
JPH06290650A (en) Thin insulated wire
JP2528934Y2 (en) Three layer extruded power cable
CA1196162A (en) Tree resistant power cable

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050526

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees