JPH0931607A - High performance rare earth-iron-boron-carbon magnet material excellent in corrosion resistance - Google Patents

High performance rare earth-iron-boron-carbon magnet material excellent in corrosion resistance

Info

Publication number
JPH0931607A
JPH0931607A JP7206678A JP20667895A JPH0931607A JP H0931607 A JPH0931607 A JP H0931607A JP 7206678 A JP7206678 A JP 7206678A JP 20667895 A JP20667895 A JP 20667895A JP H0931607 A JPH0931607 A JP H0931607A
Authority
JP
Japan
Prior art keywords
phase
corrosion resistance
magnet
powder
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7206678A
Other languages
Japanese (ja)
Other versions
JP3474683B2 (en
Inventor
Hiroki Tokuhara
宏樹 徳原
Yuji Kaneko
裕治 金子
Naoyuki Ishigaki
尚幸 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP20667895A priority Critical patent/JP3474683B2/en
Publication of JPH0931607A publication Critical patent/JPH0931607A/en
Application granted granted Critical
Publication of JP3474683B2 publication Critical patent/JP3474683B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve corrosion resistance, orienting property, magnetic characteristics and the squarencess of a demagnetization curve by specifying a compsn. and regulating the grain diameter distribution and average grain diameter of tertragonal R2 TM14 (B1- XCX) as a principal phase. SOLUTION: This magnet material has a compsn. consisting of, by atom, 12-18% R, 2-6% B, <=4% C (4%<=B+C<=8%), 3% O2 , and the balance Fe, and Co and/or Ni may be substd. for part of the Fe. It has a structure consisting of >=85% tetragonal R2 TM14 (B1- XCX) as a principal phase, 0.5-10% grain boundary phase and <=5% R-C compd. phase, the grain diameter distribution of the principal phase is 0.05-30μm and the average grain diameter is 2.0-10μm. This magnet material is obtd. as follows; a molten alloy is cast into a strip, this strip is pulverized and the resultant powder is filled into a mold, oriented in a moment with a pulsating magnetic field, compacted, sintered and aged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、耐食性のすぐれ、且
つすぐれた磁気特性を有するR−Fe−B−C系磁石材
料に係り、特定組成のR、Fe、B、Cを主成分とする
合金溶湯を単ロール法あるいは双ロール法等のストリッ
プキャスティング法により、特定板厚でRリッチ相が微
細に分離した均質組織を有する鋳片を得、これをH2
蔵崩壊法により粗粉砕し、潤滑剤を添加配合後、微粉末
化することにより、効率のよい微粉砕を可能にし、微粉
末に磁場中で成形して焼結、時効処理することにより、
すぐれた耐食性及び配向性を有し、すぐれた磁気特性と
減磁曲線の角型性を有する耐食性のすぐれた高性能R−
Fe−B−C系磁石材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an R-Fe-B-C magnet material having excellent corrosion resistance and excellent magnetic properties, which contains R, Fe, B and C having a specific composition as main components. By a strip casting method such as a single-roll method or a twin-roll method, a molten alloy is obtained to obtain a slab having a homogeneous structure in which the R-rich phase is finely separated at a specific plate thickness, and the slab is coarsely crushed by the H 2 storage collapse method, After adding and blending a lubricant, it becomes fine powder, which enables efficient fine pulverization, and the fine powder is molded in a magnetic field, sintered, and aged.
High performance R- with excellent corrosion resistance and orientation, excellent magnetic properties and squareness of demagnetization curve, and excellent corrosion resistance
It relates to an Fe-B-C based magnet material.

【0002】[0002]

【従来の技術】今日、高性能永久磁石として代表的なR
−Fe−B系永久磁石(特開昭59−46008号)
は、三元系正方晶化合物の主相とRリッチ相を有する組
織にて高い磁石特性が得られ、一般家庭の各種電器製品
から大型コンピュータの周辺機器まで幅広い分野で使用
され、用途に応じた種々の磁石特性を発揮するよう種々
の組成のR−Fe−B系永久磁石が提案されている。
2. Description of the Related Art Today, a typical high performance permanent magnet R
-Fe-B based permanent magnet (JP-A-59-46008)
Has high magnet characteristics due to the structure of the ternary tetragonal compound having the main phase and the R-rich phase, and is used in a wide range of fields from various household electrical appliances to large computer peripherals, depending on the application. R-Fe-B based permanent magnets of various compositions have been proposed so as to exhibit various magnet characteristics.

【0003】前記R−Fe−B系永久磁石は極めてすぐ
れた磁気特性を有するが、耐食性、温度特性の点で問題
があり、従来よりR−Fe−B系永久磁石の耐食性の改
善のため、磁石表面に耐食性金属膜や樹脂膜を被覆する
方法が提案され(特開昭60−54406号公報、特開
昭60−63901号公報)、また磁石の磁気特性の温
度特性の改善のため、磁石組成のFeの1部をCoにて
置換することが提案(特開昭59−64733号公報)
されているが、未だ十分でなく、且つ、磁石のコスト上
昇を招来する問題があった。
The R-Fe-B system permanent magnets have extremely excellent magnetic properties, but have problems in corrosion resistance and temperature characteristics. A method of coating the surface of the magnet with a corrosion resistant metal film or a resin film has been proposed (JP-A-60-54406 and JP-A-60-63901), and in order to improve the temperature characteristics of the magnetic characteristics of the magnet, the magnet has been proposed. Proposed to replace a part of Fe in the composition with Co (Japanese Patent Laid-Open No. 59-64733).
However, there is a problem that the cost is still insufficient and the cost of the magnet increases.

【0004】最近、R−Fe−B系磁石のBの一部をC
で置換して耐食性のすぐれた境界相を生成させて、耐食
性の改善向上、温度特性の向上を図ったR−Fe−B−
C系磁石が提案(特開平3−82744号公報)されて
いる。前記R−Fe−B−C系磁石は、B量は2at%
以下であることと多量のCを含有することを特徴として
いる。すなわち、Bの一部をCにて置換すると、主相の
2Fe14B正方晶はBの一部がCにて置換されたR2
14(B1-xx)正方晶になるが、結晶構造は同じであ
り、また粒界相はRリッチ相から耐食性の良好なるRリ
ッチ相(R−Fe−C相)に変化し、Feの一部をCo
で置換したR−Fe−Co−B−C系磁石では、主相は
2Fe14B正方晶と同一結晶構造のR2(Fe1-x
x14(B1-yy)正方晶になり、また粒界相はRリ
ッチ相から耐食性の良好なるRリッチ相(R−Fe−C
o−C相)に変化するが、磁石中に多量のCを含有する
とCはR(希土類元素)と反応して、R−C(希土類炭
化物)が形成しやすく、原料合金中や焼結磁石中にR−
Cが生成される。
Recently, a part of B of the R-Fe-B system magnet is replaced with C
R-Fe-B- for improving the corrosion resistance and temperature characteristics by generating a boundary phase having excellent corrosion resistance by substitution with
A C-based magnet has been proposed (JP-A-3-82744). The R-Fe-BC system magnet has a B content of 2 at%.
It is characterized in that it is below and contains a large amount of C. That is, when a part of B is replaced by C, the main phase R 2 Fe 14 B tetragonal crystal is R 2 F in which a part of B is replaced by C.
e 14 (B 1-x C x ) Tetragonal system, but the crystal structure is the same, and the grain boundary phase changes from R-rich phase to R-rich phase (R-Fe-C phase) with good corrosion resistance. , Part of Fe is Co
In substituted in the R-Fe-Co-B- C system magnets, main phase R 2 in R 2 Fe 14 B tetragonal same crystal structure (Fe 1-x C
o x) 14 (B 1- y C y) becomes tetragonal, also the grain boundary phase yet a good corrosion resistance of the R-rich phase R-rich phase (R-Fe-C
However, when a large amount of C is contained in the magnet, C reacts with R (rare earth element) to easily form R—C (rare earth carbide), which may cause a change in the raw alloy or a sintered magnet. R- in
C is generated.

【0005】要するに、前記R−Fe−B−C系磁石
は、RがCと反応してR−Cとなり、Rが消費されるた
め所要の磁気特性を得るためにはR−Fe−B系磁石よ
りも多量のRを必要とする。そのため、磁気特性に寄与
しないR−Cが多いため主相の存在量が低下して、R−
Fe−B系磁石よりもBrが低下し、また高価なRを多
量に必要とするため、コストアップを招来すると共に、
含有酸素量の増加にともなって磁気特性の劣化、バラツ
キを招来する問題があった。また、前記R−Fe−B−
C系磁石は、合金溶湯を鋳型に鋳込んで鋳塊を作製後、
該鋳塊を粉砕、粉末化、成型、焼結、時効処理する粉末
冶金法により磁石化したり、あるいは前記鋳塊または鋳
塊の粉砕後の粗粉を溶体化処理後、粉砕して、前記の粉
末冶金法により磁石化して、耐食性及び温度特性の改善
向上を図ったが、R−Fe−B−C系磁石の磁気特性は
(BH)maxがたかだか38MGOe程度であった。
さらに、前記R−Fe−B−C系磁石は、減磁曲線の角
型性が極めて悪く、同一寸法形状のR−Fe−B系磁石
に比べて、温度や逆磁界に対して減磁しやすい問題があ
った。
In short, in the R-Fe-B-C type magnet, R reacts with C to become R-C, and R is consumed, so that R-Fe-B type magnet is required to obtain required magnetic characteristics. It requires a larger amount of R than a magnet. Therefore, since there are many R-Cs that do not contribute to the magnetic characteristics, the amount of the main phase present is reduced, and R-
Br is lower than that of the Fe-B system magnet, and a large amount of expensive R is required, which causes an increase in cost and
There has been a problem that the magnetic characteristics are deteriorated and vary with the increase of the oxygen content. Further, the R-Fe-B-
C-based magnets are made by casting molten alloy into a mold to produce an ingot,
The ingot is pulverized, powdered, molded, sintered, magnetized by a powder metallurgical method of aging treatment, or the ingot or the coarse powder after crushing the ingot is subjected to solution treatment and then pulverized, Although it was magnetized by the powder metallurgy method to improve the corrosion resistance and temperature characteristics, the magnetic characteristics of the R—Fe—B—C magnet were (BH) max of about 38 MGOe at most.
Further, the R-Fe-B-C type magnet has extremely poor squareness of the demagnetization curve, and is demagnetized with respect to temperature and reverse magnetic field as compared with the R-Fe-B type magnet having the same size and shape. There was an easy problem.

【0006】また、鋳塊粉砕法によるR−Fe−B系合
金粉末の欠点たる結晶粒の粗大化、α−Feの残留、偏
析を防止するために、R−Fe−B系合金溶湯を双ロー
ル法により、0.03mm〜10mm板厚の鋳片とな
し、前記鋳片を通常の粉末冶金法に従って、鋳片をスタ
ンプミル・ジョークラッシャーなどで粗粉砕後、さらに
ディスクミル、ボールミル、アトライター、ジェットミ
ルなどの粉砕法により平均粒径が3〜5μmの粉末に微
粉砕後、磁場中プレス、焼結、時効処理して、高性能化
を図ったR−Fe−B系磁石材料が提案(特開昭63−
317643号公報)されている。
In order to prevent coarsening of crystal grains, residual α-Fe, and segregation, which are defects of the R-Fe-B alloy powder by the ingot crushing method, a molten R-Fe-B alloy is added. A slab with a plate thickness of 0.03 mm to 10 mm is formed by a roll method, and the slab is roughly crushed by a stamp mill / jaw crusher according to a usual powder metallurgical method, and then further disc mill, ball mill, attritor. Proposal of R-Fe-B based magnet materials with high performance by finely pulverizing the powder with an average particle size of 3 to 5 μm by a pulverizing method such as a jet mill and then pressing, sintering and aging in a magnetic field. (JP-A-63-
No. 317643).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、R−F
e−B−C系永久磁石材料に対するコストダウンの要求
が強く、効率よく耐食性のすぐれた高性能永久磁石を製
造することが極めて重要になっている。このため、極限
に近い特性を引き出すための金属組織の改良が必要とな
っている。また、今日の電気、電子機器の小型・軽量化
ならびに(BH)max40MGOe以上の高機能化の
要求は強く、減磁曲線の角型性に優れ、かつ表面処理等
が不要な耐食性の改善向上も要求され、R−Fe−B系
永久磁石のより一層の高性能化とコストダウンが要求さ
れている。
However, the R-F
There is a strong demand for cost reduction for e-B-C based permanent magnet materials, and it has become extremely important to efficiently manufacture high-performance permanent magnets having excellent corrosion resistance. For this reason, it is necessary to improve the metal structure in order to bring out characteristics close to the limit. In addition, today's electric and electronic devices are required to be smaller and lighter and to have higher functionality of (BH) max40MGOe or more, and the squareness of the demagnetization curve is excellent, and the improvement of corrosion resistance that does not require surface treatment is also improved. There is a demand for higher performance and cost reduction of R-Fe-B based permanent magnets.

【0008】そこで、出願人は先に、効率よい微粉砕を
可能にし、かつ耐酸化性に優れ、しかも磁石の結晶粒の
微細化により高いiHcを発現し、さらに各結晶粒の磁
化容易方向の配向度を高めて、高性能R−Fe−B系永
久磁石材料の製造方法の提供を目的に、ストリップキャ
スティング法により得られた特定板厚のR−Fe−B系
合金鋳片をH2吸蔵崩壊法により得られた粗粉砕粉を不
活性ガス気流中でジェットミル粉砕して得られた微粉末
を成型型内に特定の充填密度に充填後、瞬間的に特定方
向のパルス磁界を付加して、配向後、成型、焼結、時効
処理に高性能のR−Fe−B系永久磁石を得る製造方法
を提案(特願平5−192886号)した。
Therefore, the applicant has previously made possible efficient pulverization, is excellent in oxidation resistance, and expresses a high iHc by refining the crystal grains of the magnet. For the purpose of providing a method for producing a high-performance R-Fe-B-based permanent magnet material by increasing the degree of orientation, an R-Fe-B-based alloy slab having a specific plate thickness obtained by the strip casting method is occluded with H 2 The coarse powder obtained by the disintegration method was jet-milled in an inert gas stream and the fine powder obtained was filled into the mold at a specific packing density, and then a pulse magnetic field in a specific direction was momentarily applied. Then, a manufacturing method for obtaining a high-performance R-Fe-B based permanent magnet for molding, sintering and aging treatment after orientation was proposed (Japanese Patent Application No. 5-192886).

【0009】さらに、R−Fe−B系永久磁石の高性能
化を目的に、モールド内への充填性の向上、配向性の向
上等を考慮すると、例えば、前記方法で得られた微粉末
にプレス成型前に潤滑剤を添加配合しても、微粉末表面
に均一に潤滑剤を被覆することは極めて困難であり、ま
た、プレス成型時の単位当たりの重量バラツキや割れな
どの不良を発生する恐れがあった。
Further, in order to improve the performance of the R-Fe-B system permanent magnet, taking into consideration the improvement of the filling property into the mold, the improvement of the orientation, etc., for example, the fine powder obtained by the above method is used. Even if a lubricant is added and compounded before press molding, it is extremely difficult to uniformly coat the surface of the fine powder with lubricant, and defects such as weight variation and cracks per unit during press molding occur. I was afraid.

【0010】この発明は、耐食性にすぐれ、磁気特性の
改善向上を図った従来のR−Fe−B−C系永久磁石に
おける問題点を解消し、前述のストリップキャスティン
グ法で得られた微粉砕粉を用いて、プレス充填性にすぐ
れ、さらに各結晶粒の磁化容易方向の配向度を高めて、
(BH)maxが40MGOe以上の耐食性ならびに減
磁曲線の角型性にすぐれた高性能R−Fe−B−C系磁
石材料の提供を目的としている。
The present invention solves the problems of the conventional R-Fe-B-C based permanent magnet having excellent corrosion resistance and improved magnetic characteristics, and finely pulverized powder obtained by the above-mentioned strip casting method. With excellent press-filling property, by further increasing the degree of orientation of each crystal grain in the easy magnetization direction,
It is intended to provide a high-performance R-Fe-B-C based magnet material having a (BH) max of 40 MGOe or more and excellent in corrosion resistance and squareness of demagnetization curve.

【0011】[0011]

【課題を解決するための手段】発明者らは、R−Fe−
B−C系磁石組織と焼結磁石の磁気特性の関係を種々検
討した結果、組成を特定範囲に調整し、かつ主相、粒界
相、R−C相の量を特定量に抑制し、更に平均結晶粒径
を微細にかつ結晶粒径分布幅を狭くすることにより、耐
食性にすぐれ、磁気特性、特に(BH)maxが40M
GOe以上で減磁曲線の角型性にすぐれた高性能R−F
e−B−C系磁石材料が得られることを知見した。すな
わち、R、Fe、B、Cを特定範囲に調整した合金溶湯
をストリップキャスト法により特定板厚の鋳片を鋳造
後、前記鋳片をH2吸蔵崩壊法により粗粉砕後、該粗粉
砕粉に潤滑剤を添加配合後、微粉砕し、その後磁場中成
形、時効処理することにより、(BH)maxが40M
GOe以上で減磁曲線の角型性にすぐれた高性能R−F
e−B−C系磁石材料が得られることを知見した。
The inventors have found that R-Fe-
As a result of various studies on the relationship between the BC magnet structure and the magnetic properties of the sintered magnet, the composition was adjusted to a specific range, and the amounts of the main phase, grain boundary phase, and RC phase were suppressed to specific amounts, Further, by making the average crystal grain size fine and narrowing the crystal grain size distribution width, excellent corrosion resistance and magnetic properties, especially (BH) max of 40M are obtained.
High-performance R-F with superior demagnetization curve squareness above GOe
It was found that an e-B-C based magnet material can be obtained. That is, a molten alloy in which R, Fe, B, and C are adjusted to specific ranges is cast by a strip casting method to cast a slab having a specific plate thickness, and the slab is coarsely crushed by an H 2 occlusion collapse method, and then the coarsely crushed powder is used. Add (BH) max to 40M by adding and blending lubricant to the product, pulverizing, and then forming in magnetic field and aging treatment.
High-performance R-F with superior demagnetization curve squareness above GOe
It was found that an e-B-C based magnet material can be obtained.

【0012】この発明は、R12〜18at%、B+C
=6〜10at%(但し、B:2〜6at%、C:4〜
8at%)、O2 3at%以下、残部Fe(但し、F
eの1部をCo、Niの1種または2種にて置換でき
る)を主成分とし、全組織に占める相の割合は、主相の
2TM14(B1-xx)正方晶(但し、TM:Fe,C
o,Niの1種または2種以上)が85%以上、粒界相
が0.5%〜10%、R−C化合物相が5%以下からな
り、主相の結晶粒径分布が0.05μm〜30μm、平
均結晶粒径が2.0μm〜10μmからなる耐食性並び
に減磁曲線の角型性にすぐれた高性能R−Fe−B−C
系磁石材料である。
This invention is R12-18at%, B + C
= 6 to 10 at% (however, B: 2 to 6 at%, C: 4 to
8 at%), O 2 3 at% or less, balance Fe (however, F
(a part of e can be replaced by one or two of Co and Ni) as a main component, and the proportion of the phase in the whole structure is R 2 TM 14 (B 1-x C x ) tetragonal crystal of the main phase. (However, TM: Fe, C
85% or more, 0.5% to 10% of the grain boundary phase, and 5% or less of the RC compound phase, and the crystal grain size distribution of the main phase is 0. High-performance R-Fe-B-C with excellent corrosion resistance and squareness of demagnetization curve, having an average crystal grain size of 2.0 μm to 10 μm
System magnet material.

【0013】[0013]

【発明の実施の形態】この発明によるR−Fe−B−C
系永久磁石の磁気特性は、組成、製造条件等を適宜選択
することにより所要の磁気特性を得ることができる。以
下に詳述する。この発明の特定組成のRリッチ相が微細
に分離した組織を有する磁石材料の鋳片は、特定組成の
合金溶湯を単ロール法、あるいは双ロール法によるスト
リップキャスティング法にて製造される。得られた鋳片
は板厚が0.03mm〜10mmの薄板材である。
BEST MODE FOR CARRYING OUT THE INVENTION R-Fe-BC according to the present invention
Regarding the magnetic characteristics of the system permanent magnet, required magnetic characteristics can be obtained by appropriately selecting the composition, manufacturing conditions, and the like. Details will be described below. The cast slab of the magnetic material having the structure in which the R-rich phase of the specific composition is finely separated according to the present invention is manufactured by the alloy casting of the specific composition by the strip casting method by the single roll method or the twin roll method. The obtained slab is a thin plate material having a plate thickness of 0.03 mm to 10 mm.

【0014】鋳片の板厚を0.03mm〜10mmに限
定した理由は、0.03mm未満では急冷効果が大とな
り、結晶粒径が3μmより小となり、粉末化した際に酸
化しやすくなるため、磁気特性の劣化を招来するので好
ましくなく、また10mmを超えると、冷却速度が遅く
なり、α−Feが晶出しやすく、結晶粒径が大となり、
Ndリッチ相の偏在も生じるため、磁気特性、特に保磁
力ならびに減磁曲線の角型性が低下するので好ましくな
いことによる。
The reason for limiting the plate thickness of the cast slab to 0.03 mm to 10 mm is that if it is less than 0.03 mm, the quenching effect becomes large, the crystal grain size becomes smaller than 3 μm, and it is easily oxidized when pulverized. It is not preferable because it causes deterioration of magnetic properties, and when it exceeds 10 mm, the cooling rate becomes slow, α-Fe is easily crystallized, and the crystal grain size becomes large.
This is because the Nd-rich phase is unevenly distributed, which deteriorates the magnetic properties, particularly the coercive force and the squareness of the demagnetization curve, which is not preferable.

【0015】この発明のストリップキャスティング法に
より得られた特定組成のR−Fe−B−C系合金の断面
組織は主相のR2Fe14(B1-xx)結晶が従来の鋳型
に鋳造して得られた鋳塊のものに比べて、約1/10以
下も微細であり、例えば、その短軸方向の寸法は0.1
μm〜50μm、長軸方向は5μm〜200μmの微細
結晶であり、かつその主相結晶粒を取り囲むようにRリ
ッチ相が微細に分散されている。
The cross-sectional structure of the R-Fe-B-C type alloy having a specific composition obtained by the strip casting method of the present invention has the main phase R 2 Fe 14 (B 1-x C x ) crystal as a conventional template. Compared to that of the ingot obtained by casting, it is about 1/10 or less finer, for example, the dimension in the minor axis direction is 0.1
The R-rich phase is finely dispersed so as to surround the main phase crystal grains, and the fine crystal has a size of μm to 50 μm and a long axis direction of 5 μm to 200 μm.

【0016】Rリッチ相が10μm以下に微細に分離す
ることによって、H2吸蔵処理時にRリッチ相が水素化
物を生成した際の体積膨張が均一に発生して細分化され
るため、微粉砕にて主相の結晶粒が細分化されて粒度分
布の均一な微粉末が得られる。
By finely separating the R-rich phase to 10 μm or less, volume expansion when the R-rich phase forms a hydride during the H 2 occlusion treatment is uniformly generated and finely divided, and thus finely pulverized. As a result, the crystal grains of the main phase are subdivided to obtain fine powder having a uniform particle size distribution.

【0017】H2吸蔵処理には、例えば、所定大きさに
破断した0.03mm〜10mm厚みの鋳片を原料ケー
ス内に挿入し、上記原料ケースを蓋を締めて密閉できる
容器内に装入して密閉したのち、容器内を十分に真空引
きした後、200Torr〜50kg/cm2の圧力の
2ガスを供給して、該鋳片にH2を吸蔵させる。このH
2吸蔵反応は、発熱反応であるため、容器の外周には冷
却水を供給する冷却配管が周設して容器内の昇温を防止
しながら、所定圧力のH2ガスを一定時間供給すること
により、H2ガスが吸収されて該鋳片は自然崩壊して粉
化する。
[0017] in H 2 occlusion treatment, for example, charged slab of 0.03mm~10mm thickness broke predetermined size is inserted into the raw material case, in a vessel the material case be sealed by tightening the cap Then, the inside of the container is sufficiently evacuated, and then H 2 gas having a pressure of 200 Torr to 50 kg / cm 2 is supplied to occlude H 2 in the slab. This H
(2) Since the occlusion reaction is an exothermic reaction, a cooling pipe for supplying cooling water is provided around the outer periphery of the container to prevent the temperature inside the container from rising and to supply H 2 gas at a predetermined pressure for a certain period of time. As a result, H 2 gas is absorbed, and the slab is spontaneously disintegrated and pulverized.

【0018】H2吸蔵により粉化した合金粉末を、真空
中で1次の脱H2ガス処理する。さらに、真空中または
アルゴンガス中において、粉化合金を100℃〜750
℃に加熱し、0.5時間以上の2次脱H2ガス処理する
と、長期保存に伴う粉末あるいはプレス成形体の酸化を
防止して、得られる永久磁石の磁気特性の低下を防止で
きる。前記処理の合金粉末は粒内に微細亀裂が内在する
ので、ボール・ミル、ジェットミル等で短時間で微粉砕
され、1μm〜10μmの所要粒度の合金粉末を得るこ
とができる。
The alloy powder pulverized by the H 2 occlusion is subjected to the primary H 2 degassing treatment in a vacuum. Further, the powdered alloy is heated to 100 ° C. to 750 ° C. in vacuum or argon gas.
By heating to 0 ° C. and subjecting to secondary de-H 2 gas treatment for 0.5 hour or longer, oxidation of the powder or press-molded product due to long-term storage can be prevented, and deterioration of magnetic properties of the resulting permanent magnet can be prevented. Since the alloy powder of the above treatment has fine cracks in the grains, it can be finely pulverized in a short time by a ball mill, a jet mill or the like to obtain an alloy powder having a required grain size of 1 μm to 10 μm.

【0019】この発明において、H2吸蔵崩壊法により
得られた合金粉末に、液状潤滑剤または固状潤滑剤を
0.02〜5wt%添加混合後、特に不活性気流中にて
ジェットミル粉砕して、平均粒径1〜10μmの微粉末
を得ることにある。この発明における液状潤滑剤として
は、飽和あるいは不飽和脂肪酸エステル、ならびに酸性
塩としてほう酸エステルなどを用いることが可能で、石
油系溶剤やアルコール系の溶剤に分散させたものであ
る。液状油滑剤中の脂肪酸エステル量は5wt%〜50
wt%が好ましい。
In the present invention, 0.02 to 5 wt% of a liquid lubricant or a solid lubricant is added to and mixed with the alloy powder obtained by the H 2 occlusion / disintegration method, and then it is pulverized by a jet mill particularly in an inert gas stream. To obtain a fine powder having an average particle size of 1 to 10 μm. As the liquid lubricant in the present invention, a saturated or unsaturated fatty acid ester and a boric acid ester as an acid salt can be used, and they are dispersed in a petroleum solvent or an alcohol solvent. The amount of fatty acid ester in the liquid oil lubricant is 5 wt% to 50
wt% is preferred.

【0020】飽和脂肪酸エステルとしては、一般式 RCOOR′ R=Cn2n+2 (アルカン) で表されるエステルで、不飽和脂肪酸エステルとして
は、一般式 で示される。
The saturated fatty acid ester is an ester represented by the general formula RCOOR 'R = C n H 2n + 2 (alkane), and the unsaturated fatty acid ester is represented by the general formula Indicated by

【0021】また、固状潤滑剤としては、ステアリン酸
亜鉛、ステアリン酸銅、ステアリン酸アルミニウム、エ
チレンビニアマイドなどの少なくとも1種であり、固状
潤滑剤の平均粒度は1μm未満では工業的に生産するこ
とが困難で、また、50μmを超えると粗粉砕粉と均一
に混合することが難しいので、平均粒度としては1μm
〜50μmが好ましい。
The solid lubricant is at least one kind of zinc stearate, copper stearate, aluminum stearate, ethylene vinylamide and the like, and when the average particle size of the solid lubricant is less than 1 μm, it is industrially produced. If it exceeds 50 μm, it is difficult to uniformly mix it with the coarsely pulverized powder, so that the average particle size is 1 μm.
˜50 μm is preferred.

【0022】この発明において、液状潤滑剤または固状
潤滑剤の添加量は、0.01wt%未満では粉末粒子へ
の均一な被覆が十分でなく、モールド充填性や結晶配向
性の改善向上が認められず、また、5wt%を超えると
潤滑剤中の不揮発残分が焼結体中に残存して、焼結密度
の低下を生じ、磁気特性の劣化を招来するので好ましく
なく、潤滑剤の添加量は0.01wt%〜5wt%とす
る。
In the present invention, if the addition amount of the liquid lubricant or the solid lubricant is less than 0.01 wt%, the powder particles are not uniformly coated, and the mold filling property and the crystal orientation property are improved and improved. If it exceeds 5% by weight, the non-volatile residue in the lubricant remains in the sintered body, resulting in a decrease in the sintered density and deterioration of the magnetic properties, which is not preferable. The amount is 0.01 wt% to 5 wt%.

【0023】この発明において、微粉砕前の合金粉末は
平均粒度10μm〜500μmに粗粉砕した後、液状潤
滑剤または固状潤滑剤を混合添加して微粉砕することが
好ましい。粗粉砕粉の平均粒度を限定した理由は、平均
粒度が10μm未満では原料粉末を大気中で安全に取り
扱うことが困難であり、原料粉末の酸化により磁気特性
が劣化するので好ましくなく、また、500μmを超え
るとジェットミル粉砕機への原料粉末の供給が困難とな
り、粉砕能率を著しく低下するので好ましくないため、
粗粉砕粉の平均粒度は10μm〜500μmとする。
In the present invention, it is preferable that the alloy powder before pulverization is coarsely pulverized to have an average particle size of 10 μm to 500 μm, and then a liquid lubricant or a solid lubricant is mixed and pulverized. The reason for limiting the average particle size of the coarsely pulverized powder is that it is not preferable that the average particle size is less than 10 μm because it is difficult to safely handle the raw material powder in the air, and the magnetic properties are deteriorated by the oxidation of the raw material powder. If it exceeds, it becomes difficult to supply the raw material powder to the jet mill pulverizer, and the pulverization efficiency is significantly reduced, which is not preferable,
The average particle size of the coarsely pulverized powder is 10 μm to 500 μm.

【0024】次に微粉砕には、不活性ガス(例えば、N
2、Ar)によるジェット・ミルにて微粉砕を行う。勿
論、有機溶媒(例えば、ベンゼンやトルエン等)を用い
たボールミルや、アトライター粉砕を用いることも可能
である。また、この発明による微粉砕粉の平均粒度は、
1μm未満では粉末は極めて活性となり、プレス成形な
どの工程において発火する危険性があり、磁気特性の劣
化を生じ好ましくなく、また、10μmを超えると焼結
により得られる永久磁石の結晶粒が大きくなり、容易に
磁化反転が起こり、保磁力の低下を招来し、好ましくな
いため、1μm〜10μmの平均粒度とする。好ましい
平均粒度は2.5μm〜4μmである。
Next, for fine pulverization, an inert gas (for example, N 2
2. Fine pulverize with a jet mill using Ar). Of course, it is also possible to use a ball mill using an organic solvent (for example, benzene, toluene, etc.) or attritor grinding. The average particle size of the finely pulverized powder according to the present invention is
If it is less than 1 μm, the powder becomes extremely active, and there is a risk of ignition in the process such as press molding, which is not preferable because the magnetic properties are deteriorated. If it exceeds 10 μm, the crystal grains of the permanent magnet obtained by sintering become large. Since the magnetization reversal easily occurs and the coercive force is lowered, which is not preferable, the average grain size is set to 1 μm to 10 μm. A preferable average particle size is 2.5 μm to 4 μm.

【0025】この発明において、成形は加圧力0.5t
on/cm2〜2.0ton/cm2の磁場中プレスで良
い。磁場の強さは10kOe〜20kOeが好ましい
が、磁石材料の磁気特性、結晶配向度を上げるために
は、パルス磁界印加後、冷間静水圧プレスすることが望
ましい。
In the present invention, molding is performed under a pressing force of 0.5 t.
on / cm 2 may be the magnetic field in the press of ~2.0ton / cm 2. The strength of the magnetic field is preferably 10 kOe to 20 kOe, but in order to improve the magnetic properties and crystal orientation of the magnet material, it is desirable to perform cold isostatic pressing after applying the pulse magnetic field.

【0026】パルス磁界を用いた成形には、次の方法を
提案する。微粉砕した粉末を不活性ガス雰囲気中でモー
ルドに充填する。モールドは非磁性の金属、酸化物、セ
ラミックスなどから作製したもののほか、プラスチック
やゴムなどの有機化合物でもよい。粉末の充填密度は、
その粉末の静止状態の嵩密度(充填密度1.4g/cm
3)から、タッピング後の嵩密度(充填密度3.5g/
cm3)の範囲が好ましい。従って充填密度1.4〜
3.5g/cm3に限定する。
The following method is proposed for molding using a pulsed magnetic field. The finely pulverized powder is filled in a mold in an inert gas atmosphere. The mold may be made of non-magnetic metal, oxide, ceramics or the like, or may be an organic compound such as plastic or rubber. The packing density of the powder is
Resting bulk density of the powder (packing density 1.4 g / cm
3 ), the bulk density after tapping (filling density 3.5 g /
The range of cm 3 ) is preferred. Therefore, the packing density is 1.4 ~
Limited to 3.5 g / cm 3 .

【0027】モールドに充填した微粉砕粉に、空心コイ
ル、コンデンサー電源によるパルス磁界を加えて該粉末
の配向を行うが、配向の際、上下パンチを用いて圧縮を
行いながら、パルス磁界を加えて実施する。パルス磁界
の強度は大きければ大きいほど良く、最低10kOe以
上は必要とする。好ましいパルス磁界強度は20kOe
〜60kOeである。また、パルス磁界による配向とプ
レスとを連続的に行うためには、ダイス内部にパルス磁
界を発生させるコイルを埋め込み、パルス磁界を用いて
配向させた後、通常の磁界中プレス方法で成形すること
が可能である。
To the finely pulverized powder filled in the mold, a pulsed magnetic field from an air-core coil or a condenser power source is applied to orient the powder. carry out. The higher the strength of the pulse magnetic field, the better, and at least 10 kOe or more is required. Preferred pulse magnetic field strength is 20 kOe
~ 60 kOe. In order to continuously perform the orientation and the pressing by the pulsed magnetic field, a coil for generating the pulsed magnetic field is embedded in the die, the orientation is performed by using the pulsed magnetic field, and then the ordinary magnetic field pressing method is used for molding. Is possible.

【0028】パルス磁界の印加方法には、一回のみ印加
するほか、繰り返し印加することができる。繰り返し印
加する場合、磁界方向が所要方向のみのほか、磁界方向
を交互に反転させて印加することにより配向性を一層向
上させることが可能となり、さらには、同一の磁界強度
で繰り返し印加するほか、磁界強度を漸次減少させて印
加することができ、磁界方向を交互に反転させて印加す
る場合に強度を漸次減少させることにより、成形体を見
掛け上、脱滋することができ、成形体の取扱いが容易に
なる利点がある。パルス磁界の時間は、1μsec〜1
0secが好ましく、さらには5μsec〜100ms
ecが好ましく、パルス磁界の印加回数は1〜10回、
さらに、好ましくは1〜5回である。
The pulsed magnetic field can be applied only once or repeatedly. When repeatedly applied, the magnetic field direction is not only the required direction, but it is possible to further improve the orientation by alternately inverting and applying the magnetic field direction. Furthermore, in addition to repeatedly applying the same magnetic field strength, The magnetic field strength can be gradually reduced and applied, and when the magnetic field direction is alternately inverted and applied, the strength can be gradually reduced to apparently deplete the molded body. Has the advantage of being easier. Pulse magnetic field time is 1 μsec to 1
0 sec is preferable, and further 5 μsec to 100 ms
ec is preferable, and the pulse magnetic field is applied 1 to 10 times,
Furthermore, it is preferably 1 to 5 times.

【0029】また、配向後の粉末の成形は、冷間静水圧
プレスにて圧縮成形で行なうことが最も好ましく、この
際、可塑性のあるモールドの硬度や厚みを適宜選定する
必要があり、種々の形状品をはじめとして大型磁石材料
の製造も可能である。静水圧プレス条件としては、1.
0ton/cm2〜3.0ton/cm2の加圧力が好ま
しく、モールドの硬度はHs=20〜80が好ましい。
その場合の静磁場の磁場強度は、5〜20kOeが好ま
しい。また、静水圧プレスを静磁界中で行うこともで
き、例えば、配向に際して、同一の磁界強度で繰り返し
反転させて印加した後、配向後の粉体に静磁界中で静水
圧プレスを施すことにより、さらに、高性能なR−Fe
−B−C系磁石材料を得ることが可能である。
The molding of the powder after orientation is most preferably carried out by compression molding with a cold isostatic press. At this time, it is necessary to appropriately select the hardness and thickness of the plastic mold, and various types of molding are required. It is possible to manufacture large magnet materials including shaped products. The hydrostatic pressing conditions are as follows.
A pressing force of 0 ton / cm 2 to 3.0 ton / cm 2 is preferable, and the hardness of the mold is preferably Hs = 20 to 80.
In that case, the magnetic field strength of the static magnetic field is preferably 5 to 20 kOe. Further, the hydrostatic pressing can also be performed in a static magnetic field. For example, at the time of orientation, after repeatedly applying the magnetic field with the same magnetic field strength, the powder after orientation is subjected to hydrostatic pressing in a static magnetic field. , High-performance R-Fe
It is possible to obtain a -B-C based magnet material.

【0030】この発明において、成形、焼結、熱処理な
ど条件、方法は公知のいずれの粉末冶金的手段を採用す
ることができる。配向後の成形品の焼結並びに焼結後の
熱処理条件は、選定した合金組成に応じて適宜選定され
るが、焼結並びに焼結後の熱処理条件としては、100
0〜1180℃、1〜6時間保持する焼結工程、450
〜950℃、1〜8時間保持する時効処理工程などが好
ましい。
In the present invention, any known powder metallurgical means can be adopted as conditions and methods such as molding, sintering and heat treatment. The sintering of the molded product after orientation and the heat treatment condition after the sintering are appropriately selected according to the selected alloy composition.
Sintering process of holding 0 to 1180 ° C. and 1 to 6 hours, 450
An aging treatment step of holding at 950C for 1 to 8 hours is preferable.

【0031】以下に、この発明における、R−Fe−B
−C系磁石材料の組成限定理由を説明する。この発明の
磁石材料に含有される希土類元素Rはイットリウム
(Y)を包含し、軽希土類及び重希土類を包含する希土
類元素である。また通常Rのうち1種をもって足りる
が、実用上は2種以上の混合物(ミッシユメタル、ジジ
ム等)を入手上の便宜等の理由により用いることがで
き、Sm,Y,La,Ce,Gd等は他のR、特にN
d,Pr等との混合物として用いることができる。な
お、このRは純希土類元素でなくてもよく、工業上入手
可能な範囲で製造上不可避な不純物を含有するものでも
差し支えない。
The R-Fe-B in the present invention will be described below.
The reasons for limiting the composition of the C-based magnet material will be described. The rare earth element R contained in the magnet material of the present invention is a rare earth element including yttrium (Y) and including light rare earth and heavy rare earth. Usually, one kind of R is sufficient, but in practice, a mixture of two or more kinds (Missille metal, didymium, etc.) can be used for reasons such as convenience in obtaining, and Sm, Y, La, Ce, Gd, etc. Other R, especially N
It can be used as a mixture with d, Pr or the like. Note that R may not be a pure rare earth element, and may contain impurities that are unavoidable in production within the industrially available range.

【0032】Rは、R−Fe−B−C系磁石材料の必須
元素であって、12原子%未満では高磁気特性、特に高
保磁力が得られず、18原子%を越えると残留磁束密度
(Br)が低下して、すぐれた特性の永久磁石が得られ
ない。よって、Rは12原子%〜18原子%の範囲とす
る。好ましくはRは13at%〜17at%である。
R is an essential element of the R-Fe-B-C based magnet material. If it is less than 12 atomic%, high magnetic properties, particularly high coercive force cannot be obtained, and if it exceeds 18 atomic%, the residual magnetic flux density ( Br) decreases, and a permanent magnet with excellent characteristics cannot be obtained. Therefore, R is in the range of 12 atom% to 18 atom%. Preferably, R is 13 at% to 17 at%.

【0033】B及びCは、R−Fe−B−C系磁石材料
の必須元素であって、B+Cが6原子%未満では高い保
磁力(iHc)が得られず、10原子%を超えると残留
磁束密度(Br)が低下するため、すぐれた永久磁石が
得られず、また、Bが2at%未満では残留磁束密度が
低下するとともに減磁曲線の角型性が劣化し、Bが6a
t%を越えると耐食性が低下するので好ましくなく、ま
た、Cが4at%未満では耐食性が低下するので好まし
くなく、Cが8at%を越えるとR−C相の量が増加
し、残留磁束密度Brが低下するとともに減磁曲線の角
型性が劣化するので好ましくない。よって、B+Cは6
原子%〜10原子%(但し、B2〜6at%、C4〜8
at%)の範囲とする。好ましいB+Cの範囲は6〜8
at%である。
B and C are essential elements of the R-Fe-BC system magnet material, and when B + C is less than 6 atomic%, a high coercive force (iHc) cannot be obtained, and when more than 10 atomic%, they remain. Since the magnetic flux density (Br) decreases, an excellent permanent magnet cannot be obtained, and if B is less than 2 at%, the residual magnetic flux density decreases and the squareness of the demagnetization curve deteriorates, and B is 6a.
If it exceeds t%, the corrosion resistance is deteriorated, which is not preferable, and if C is less than 4 at%, the corrosion resistance is deteriorated, which is not preferable, and when C exceeds 8 at%, the amount of the RC phase is increased and the residual magnetic flux density Br is increased. And the squareness of the demagnetization curve deteriorates, which is not preferable. Therefore, B + C is 6
Atomic% -10 atomic% (however, B2-6 at%, C4-8
at%). The preferred range of B + C is 6 to 8
It is at%.

【0034】この発明の磁石材料において、O2は3a
t%を越えると酸化物として消耗される希土類元素が増
加し、焼結性が低下し、焼結温度が低下するとともに残
留密度Brと保磁力が低下するため好ましくなく、O2
は3at%以下とする。
In the magnet material of the present invention, O 2 is 3a
rare earth element is increased to be consumed as an oxide and exceeds t%, sinterability is lowered, not preferable because the residual density Br and the coercive force decreases with the sintering temperature is lowered, O 2
Is 3 at% or less.

【0035】Feは、R−Fe−B−C系磁石材料の必
須元素であって、72原子%未満では残留磁束密度(B
r)が低下し、82原子%を超えると高い保磁力が得ら
れないので、Feは72原子%〜82原子%に限定す
る。また、Feの一部をCo、Niの1種又は2種で置
換する理由は、永久磁石の温度特性を向上させる効果及
び更に耐食性を向上させる効果が得られるためである
が、Co、Niの1種又は2種はFeの50%を越える
と高い保磁力が得られず、すぐれた永久磁石が得られな
い。よって、Co、Niの1種または2種の置換はFe
の50%を上限とする。
Fe is an essential element of the R-Fe-B-C based magnet material, and if it is less than 72 atomic%, the residual magnetic flux density (B
Since r) decreases and a high coercive force cannot be obtained when it exceeds 82 atom%, Fe is limited to 72 atom% to 82 atom%. The reason for substituting a part of Fe with one or two of Co and Ni is that the effect of improving the temperature characteristics of the permanent magnet and the effect of further improving the corrosion resistance can be obtained. When 1% or 2% exceeds 50% of Fe, a high coercive force cannot be obtained and an excellent permanent magnet cannot be obtained. Therefore, one or two substitutions of Co and Ni are Fe
50% of the upper limit.

【0036】この発明の磁石材料において、高い残留磁
束密度と高い保磁力並びにすぐれた減磁曲線の角型性、
高耐食性を共に有する高性能磁石材料を得るためには、
R13原子%〜17原子%、B+C=6〜8at%(但
しB2〜4at%、C4〜6at%)、Fe75原子%
〜81原子%が好ましい。また、この発明による磁石材
料は、C、R、B、Feの他、工業的生産上不可避的不
純物の存在を許容できるが、B+Cの一部を3.5原子
%以下のP、2.5原子%以下のS、3.5原子%以下
のCuのうち少なくとも1種、合計量で4.0原子%以
下で置換することにより、磁石合金の製造性改善、低価
格化が可能である。
In the magnetic material of the present invention, high residual magnetic flux density, high coercive force, and excellent squareness of demagnetization curve,
In order to obtain a high-performance magnet material that also has high corrosion resistance,
R13 atomic% to 17 atomic%, B + C = 6 to 8 atomic% (however, B2 to 4 atomic% and C4 to 6 atomic%), Fe75 atomic%
〜81 atomic% is preferable. Further, the magnetic material according to the present invention can tolerate the presence of impurities unavoidable in industrial production in addition to C, R, B and Fe, but a part of B + C is 3.5 atomic% or less of P, 2.5 or less. By substituting at least one of S in atomic% or less and Cu in 3.5 atomic% or less with a total amount of 4.0 atomic% or less, it is possible to improve the manufacturability and reduce the cost of the magnet alloy.

【0037】さらに、前記R、B、C、Feを含有する
R−Fe−B−C合金に、9.5原子%以下のAl、
4.5原子%以下のTi、9.5原子%以下のV、8.
5原子%以下のCr、8.0原子%以下のMn、5原子
%以下のBi、12.5原子%以下のNb、10.5原
子%以下のTa、9.5原子%以下のMo、9.5原子
%以下のW、2.5原子%以下のSb、7原子%以下の
Ge、7at%以下のGa、3.5原子%以下のSn、
5.5原子%以下のZr、5.5原子%以下のHfのう
ち少なくとも1種添加含有させることにより、磁石材料
の高保磁力が可能になる。
Further, in the R-Fe-B-C alloy containing R, B, C and Fe, 9.5 atomic% or less of Al,
4.5 atomic% or less Ti, 9.5 atomic% or less V, 8.
5 atomic% or less Cr, 8.0 atomic% or less Mn, 5 atomic% or less Bi, 12.5 atomic% or less Nb, 10.5 atomic% or less Ta, 9.5 atomic% or less Mo, W of 9.5 atomic% or less, Sb of 2.5 atomic% or less, Ge of 7 atomic% or less, Ga of 7 at% or less, Sn of 3.5 atomic% or less,
By adding at least one of Zr of 5.5 atomic% or less and Hf of 5.5 atomic% or less, a high coercive force of the magnet material becomes possible.

【0038】全組織に占める主相、粒界相、R−C化合
物相の割合を限定したのは、主相のR2TM14(B1-x
x)正方晶(但し、TM:Fe,Co,Niの1種また
は2種以上)が全組織の85%未満では、高い残留磁束
密度が得られないためであり、好ましい主相量は90%
以上である。粒界相量は、0.5%未満では焼結性が悪
く焼結密度が低下し、保磁力が低下するため好ましくな
く、また、10%を越えると残留磁束密度及び耐食性が
低下するため、0.5%〜10%に限定する。また、R
−C化合物相が5%を越えるとR−C化合物として消費
される磁性に寄与しないR量が多くなり、残留磁束密
度、保磁力が低下し、減磁曲線の角型性が低下するとと
もに所要の磁気特性を得るためにR量を増加させる必要
が有り、磁石コストを上昇させるため好ましくなく、5
%以下に限定する。
The proportion of the main phase, the grain boundary phase and the R—C compound phase in the entire structure is limited by the main phase R 2 TM 14 (B 1-x C
x ) If the tetragonal crystal (however, one or more of TM: Fe, Co, and Ni) is less than 85% of the whole structure, a high residual magnetic flux density cannot be obtained, and the preferable main phase content is 90%.
That is all. If the amount of grain boundary phase is less than 0.5%, the sinterability is poor and the sintered density is lowered, and the coercive force is lowered, which is not preferable, and if it exceeds 10%, the residual magnetic flux density and the corrosion resistance are lowered. It is limited to 0.5% to 10%. Also, R
If the -C compound phase exceeds 5%, the amount of R that does not contribute to magnetism consumed as the R-C compound increases, the residual magnetic flux density and the coercive force decrease, and the squareness of the demagnetization curve decreases and the required amount. It is necessary to increase the amount of R in order to obtain the magnetic characteristics of No. 3, which is not preferable because it increases the magnet cost.
% Or less.

【0039】この発明において、主相の結晶粒径分布を
限定した理由は、結晶粒径が0.05μm未満では微粉
砕することが困難で、また、結晶粒の微細化により含有
酸素量が増加し、保磁力が低下するので好ましくなく、
30μmを越えると保磁力の低下とともに減磁曲線の角
型性が低下するため好ましくなく、結晶粒径分布を0.
05μm〜30μmに限定する。より好ましくは0.1
μm〜20μmである。また、平均結晶粒径が2.0μ
m未満では微粉砕することが困難で、含有酸素量が増加
して保磁力が低下するため好ましくなく、10μmを越
えると保磁力並びに減磁曲線の角型性が低下するため、
2.0μm〜10μmに限定する。
In the present invention, the reason why the crystal grain size distribution of the main phase is limited is that it is difficult to pulverize when the crystal grain size is less than 0.05 μm, and the oxygen content increases due to the refinement of the crystal grains. However, the coercive force decreases, which is not preferable,
When it exceeds 30 μm, the coercive force is lowered and the squareness of the demagnetization curve is lowered, which is not preferable, and the grain size distribution is set to be 0.
It is limited to 05 μm to 30 μm. More preferably 0.1
μm to 20 μm. The average crystal grain size is 2.0μ
If it is less than m, it is difficult to finely pulverize, and the content of oxygen increases and the coercive force decreases, which is not preferable, and if it exceeds 10 μm, the coercive force and the squareness of the demagnetization curve decrease.
It is limited to 2.0 μm to 10 μm.

【0040】この発明は、ストリップキャスティングさ
れた特定板厚の特定組成を有するR−Fe−B−C系合
金をH2吸蔵崩壊法により粗粉砕後、得られた粗粉砕粉
に特定の潤滑剤を添加後、ジェットミル微粉砕すること
により、合金塊を構成している主相の結晶粒を細分化す
ることが可能となり、粒度分布が均一な粉末を作製する
ことができ、この際Rリッチ相が微細に分散され、かつ
2Fe14(B1-xx)相も微細化された合金粉末に潤
滑剤を添加配合後微粉砕した場合、微粉砕能は従来の約
2倍にも向上するため、製造効率が大幅に向上するとと
もに、前記微粉末を型内にてパルス磁界を用いて瞬間的
に配向した後、プレス、焼結することにより、モールド
充填性及び結晶配向性が改善され、耐食性及び磁気特性
ならびに減磁曲線の角型性にすぐれた高性能R−Fe−
B−C系磁石材料が得られる。
According to the present invention, a strip-cast R-Fe-B-C type alloy having a specific composition with a specific plate thickness is coarsely pulverized by the H 2 occluding and disintegrating method, and then a specific lubricant is added to the coarsely pulverized powder obtained. After the addition, by finely pulverizing with a jet mill, it becomes possible to subdivide the crystal grains of the main phase forming the alloy block, and it is possible to produce a powder with a uniform particle size distribution. When the lubricant is added to the alloy powder in which the phases are finely dispersed and the R 2 Fe 14 (B 1-x C x ) phase is also refined and then finely pulverized, the pulverization ability is about twice that of the conventional one. Since the production efficiency is significantly improved, the mold filling property and the crystal orientation property are improved by instantaneously orienting the fine powder in the mold using a pulse magnetic field, followed by pressing and sintering. Improved corrosion resistance and magnetic properties and demagnetization High-performance R-Fe- excellent in the squareness
A BC magnet material is obtained.

【0041】[0041]

【実施例】【Example】

実施例1 高周波真空溶解炉にて溶解して得られた合金溶湯を直径
200mmの銅製ロール2本を併設した双ロール式スト
リップキャスターを用い、板厚約0.3mmの薄板状鋳
片を得た。前記鋳片内の結晶粒径は短軸方向の寸法0.
5μm〜15μm、長軸方向寸法は5μm〜80μmで
あり、Rリッチ相は主相を取り囲むように3μm程度に
微細に分離して存在する。前記鋳片を50mm角以下に
破断後、前記破断片1000gを吸排気可能な密閉容器
内に収容し、前記容器内を真空に排気した後、該容器内
に3kg/cm2のH2ガスを2時間供給してH2吸蔵に
より鋳片を自然崩壊させて、その後真空中で500℃に
6時間保持して脱H2処理した後、室温まで冷却し、さ
らに100メッシュまで粗粉砕した。
Example 1 Using a twin roll type strip caster having two copper rolls with a diameter of 200 mm, the alloy melt obtained by melting in a high frequency vacuum melting furnace was used to obtain a thin plate-shaped slab with a plate thickness of about 0.3 mm. . The crystal grain size in the slab is 0.
The length is 5 μm to 15 μm, the dimension in the major axis direction is 5 μm to 80 μm, and the R-rich phase exists in a finely separated state of about 3 μm so as to surround the main phase. After breaking the slab to 50 mm square or less, 1000 g of the broken piece was housed in a closed container capable of sucking and exhausting air, and after evacuating the inside of the container to vacuum, 3 kg / cm 2 of H 2 gas was introduced into the container. After being supplied for 2 hours, the slab was naturally disintegrated by H 2 occlusion, and then held at 500 ° C. for 6 hours in vacuum to remove H 2 treatment, cooled to room temperature, and further roughly pulverized to 100 mesh.

【0042】次いで、前記粗粉砕粉より採取した800
gに液状潤滑剤として脂肪酸エステル(有効成分50%
シクロヘキサン50%)を1wt%添加後、ジェット
ミルで粉砕して平均粒度3.5μmの合金粉末を得た。
得られた粉末を金型内に充填後、15kOeの磁化中で
配向し、磁界に直角方向に1.0ton/cm2の圧力
で成形後、1040℃に3時間焼結後、900℃に1時
間の時効処理を行い永久磁石(磁石No.1,2)を得
た。得られた永久磁石の組成を表1に示す。得られた永
久磁石の磁気特性と耐食性試験結果を表2に、また、主
相量、粒界相量、R−C化合物相量及び主相の結晶粒径
分布、平均結晶粒径を表3に示す。なお、耐食性試験は
80℃×90%RH×500時間の条件で放置後、単位
面積当たりの酸化増量で表す。また、表2において、H
kは減磁曲線上でIが0.9×Brになるときの逆磁界
の強さである。
Next, 800 collected from the coarsely crushed powder
g fatty acid ester as liquid lubricant (active ingredient 50%
After adding 1 wt% of cyclohexane (50%), the mixture was pulverized by a jet mill to obtain an alloy powder having an average particle size of 3.5 μm.
After filling the obtained powder in a mold, it was oriented in the magnetization of 15 kOe, molded at a pressure of 1.0 ton / cm2 in the direction perpendicular to the magnetic field, sintered at 1040 ° C. for 3 hours, and at 900 ° C. for 1 hour. Then, the permanent magnets (magnet Nos. 1 and 2) were obtained. Table 1 shows the composition of the obtained permanent magnet. The magnetic properties and the corrosion resistance test results of the obtained permanent magnet are shown in Table 2, and the main phase amount, the grain boundary phase amount, the RC compound phase amount, the crystal grain size distribution of the main phase, and the average crystal grain size are shown in Table 3. Shown in. The corrosion resistance test is represented by the increase in oxidation amount per unit area after being left under the condition of 80 ° C. × 90% RH × 500 hours. In Table 2, H
k is the strength of the reverse magnetic field when I becomes 0.9 × Br on the demagnetization curve.

【0043】実施例2 実施例1で得られた平均粒度3.5μmの合金微粉末
を、硬度Hs=40のウレタン製のゴム型(内径φ25
×高さ20mm)に3.3g/cm3の充填密度になる
ように充填後、パルス磁界の強度40kOeで、1回、
8/100秒間で印加して配向させた後、配向後の試料
をプレス圧1.2ton/cm2にて冷間静水圧プレス
して成型体を得た。型から取り出した成形体を1040
℃で3時間の条件にて焼結し、900℃で1時間の時効
処理を行って永久磁石(磁石No.3,4)を得た。得
られた永久磁石の組成を表1に示す。得られた永久磁石
の磁気特性と耐食性試験結果を表2に、また、主相量、
粒界相量、R−C化合物相量及び主相の結晶粒径分布、
平均結晶粒径を表3に示す。
Example 2 The fine alloy powder having an average particle size of 3.5 μm obtained in Example 1 was converted into a urethane rubber mold having an hardness of Hs = 40 (inner diameter φ25).
(Height 20 mm) to a packing density of 3.3 g / cm 3 , and then once with a pulsed magnetic field strength of 40 kOe,
After applying for 8/100 seconds for orientation, the oriented sample was cold isostatically pressed at a pressing pressure of 1.2 ton / cm 2 to obtain a molded body. 1040 the molded body taken out from the mold
Sintering was performed under the conditions of 3 ° C. for 3 hours, and aging treatment was performed at 900 ° C. for 1 hour to obtain permanent magnets (magnet Nos. 3 and 4). Table 1 shows the composition of the obtained permanent magnet. The magnetic properties and corrosion resistance test results of the obtained permanent magnets are shown in Table 2, the main phase amount,
Grain boundary phase amount, R-C compound phase amount and crystal grain size distribution of main phase,
The average crystal grain size is shown in Table 3.

【0044】実施例3 実施例1でH2吸蔵処理して得られた崩壊合金粉末を真
空中で500℃に5時間加熱保持して、脱H2処理した
後、20μmの粗粉砕粉に固状潤滑剤としてステアリン
酸亜鉛を0.1wt%添加配合後、7kg/cm2のA
rガス中にてジェットミル微粉砕して、平均粒度3.2
μmの合金微粉末を得た。実施例2と同様の条件でウレ
タン製のゴム型に充填後、パルス磁界として強度50k
Oe、パルス磁界の反転繰り返し付加回数4回、パルス
磁界の1波形の時間8secの条件にて付加後、プレス
圧1.0ton/cm2にて冷間静水圧プレスした。モ
ールドから取り出した成型体を1040℃に3時間焼結
後、900℃に1時間の時効処理を行い永久磁石(磁石
No.5,6)を得た。得られた永久磁石の組成を表1
に示す。得られた永久磁石の磁気特性と耐食性試験結果
を表2に、また、主相量、粒界相量、R−C化合物相量
及び主相の結晶粒径分布、平均結晶粒径を表3に示す。
Example 3 The disintegrated alloy powder obtained by the H 2 occlusion treatment in Example 1 was heated and held at 500 ° C. for 5 hours in vacuum to remove H 2 and then solidified into 20 μm coarsely pulverized powder. After adding 0.1 wt% of zinc stearate as a lubricant, after adding 7kg / cm 2 of A
Jet mill finely pulverized in r gas to obtain an average particle size of 3.2.
An alloy fine powder of μm was obtained. After being filled in a urethane rubber mold under the same conditions as in Example 2, a pulse magnetic field strength of 50 k was obtained.
After applying Oe and pulse magnetic field inversion repeatedly 4 times under the condition of one waveform of the pulse magnetic field for a time of 8 sec, cold isostatic pressing was performed at a pressing pressure of 1.0 ton / cm 2 . The molded body taken out of the mold was sintered at 1040 ° C. for 3 hours and then subjected to an aging treatment at 900 ° C. for 1 hour to obtain permanent magnets (magnet Nos. 5 and 6). The composition of the obtained permanent magnet is shown in Table 1.
Shown in The magnetic properties and the corrosion resistance test results of the obtained permanent magnet are shown in Table 2, and the main phase amount, the grain boundary phase amount, the RC compound phase amount, the crystal grain size distribution of the main phase, and the average crystal grain size are shown in Table 3. Shown in.

【0045】実施例4 実施例1で得られた微粉砕粉をゴム質モールド内に充填
後、実施例3と同一条件の反転繰り返しパルス磁界を瞬
間的に付加後、強度12kOeの静磁場中にプレス圧
1.0kg/cm2にて、冷間静水圧プレスして成型体
を得た後、実施例3と同一条件の焼結、時効処理を行い
永久磁石(磁石No.7,8)を得た。得られた永久磁
石の組成を表1に示す。得られた永久磁石の磁気特性と
耐食性試験結果を表2に、また、主相量、粒界相量、R
−C化合物相量及び主相の結晶粒径分布、平均結晶粒径
を表3に示す。
Example 4 After the finely pulverized powder obtained in Example 1 was filled in a rubber mold, a repetitive repetitive pulsed magnetic field under the same conditions as in Example 3 was momentarily added, and then a static magnetic field of strength 12 kOe was applied. After cold isostatic pressing at a pressing pressure of 1.0 kg / cm 2 to obtain a molded body, sintering and aging treatment under the same conditions as in Example 3 were performed to obtain permanent magnets (magnet Nos. 7 and 8). Obtained. Table 1 shows the composition of the obtained permanent magnet. The magnetic properties and the corrosion resistance test results of the obtained permanent magnet are shown in Table 2, and the main phase amount, grain boundary phase amount, R
Table 3 shows the amount of -C compound phase, the crystal grain size distribution of the main phase, and the average crystal grain size.

【0046】比較例1 実施例1と同一組成の合金溶湯を寸法30mm×100
mm×200mmの鋳型に鋳込んで得られた鋳塊を50
mm角以下に破断した後、前記破断片を実施例1と同一
条件のH2吸蔵処理、脱H2処理を行った後、潤滑剤を添
加することなく、実施例1と同一条件にて微粉砕、磁界
中プレス、焼結、時効処理を行って、永久磁石(磁石N
o.9,10)を得た。鋳塊の結晶粒径は短軸方向30
μm、長軸方向300μmであり、Rリッチ相は局部的
に60μm程度の大きさで点在した。得られた永久磁石
の組成を表1に示す。得られた永久磁石の磁気特性と耐
食性試験結果を表2に、また、主相量、粒界相量、R−
C化合物相量及び主相の結晶粒径分布、平均結晶粒径を
表3に示す。
Comparative Example 1 A molten alloy having the same composition as in Example 1 was used to measure dimensions of 30 mm × 100.
50 mm of the ingot obtained by casting in a mm × 200 mm mold
After fractured to less than mm mm, the fractured pieces were subjected to H 2 occlusion treatment and de-H 2 treatment under the same conditions as in Example 1 and then subjected to the same conditions as in Example 1 without adding a lubricant. After crushing, pressing in a magnetic field, sintering, and aging treatment, a permanent magnet (magnet N
o. 9 and 10) were obtained. The crystal grain size of the ingot is 30 in the short axis direction.
μm, 300 μm in the major axis direction, and the R-rich phase was locally scattered in a size of about 60 μm. Table 1 shows the composition of the obtained permanent magnet. The magnetic properties and the corrosion resistance test results of the obtained permanent magnet are shown in Table 2, and the main phase amount, grain boundary phase amount, R-
Table 3 shows the amount of C compound phase, the crystal grain size distribution of the main phase, and the average crystal grain size.

【0047】比較例2 実施例1で得られた粗粉砕粉を平均粒度2.2μmに粉
砕する以外は、実施例1と同一条件で焼結体(磁石N
o.11,12)を得た。得られた焼結体の組成を表1
に示す。得られた焼結体は収縮しておらず永久磁石にな
らなかった。
Comparative Example 2 A sintered body (magnet N) was used under the same conditions as in Example 1 except that the coarsely pulverized powder obtained in Example 1 was pulverized to an average particle size of 2.2 μm.
o. 11, 12) was obtained. The composition of the obtained sintered body is shown in Table 1.
Shown in The obtained sintered body did not shrink and did not become a permanent magnet.

【0048】比較例3 実施例1と同一条件で組成が表1のNo.13である永
久磁石を得た。得られた永久磁石の磁気特性と耐食性試
験結果を表2に、また、主相量、粒界相量、R−C化合
物相量及び主相の結晶粒径分布、平均結晶粒径を表3に
示す。
Comparative Example 3 Under the same conditions as in Example 1, the composition of No. 1 in Table 1 was used. A permanent magnet of No. 13 was obtained. The magnetic properties and the corrosion resistance test results of the obtained permanent magnet are shown in Table 2, and the main phase amount, the grain boundary phase amount, the RC compound phase amount, the crystal grain size distribution of the main phase, and the average crystal grain size are shown in Table 3. Shown in.

【0049】比較例4 実施例1と同一条件で組成が表1の14である永久磁石
を得た。得られた永久磁石の磁気特性と耐食性試験結果
を表2に、また、主相量、粒界相量、R−C化合物相量
及び主相の結晶粒径分布、平均結晶粒径を表3に示す。
Comparative Example 4 A permanent magnet having a composition of 14 in Table 1 was obtained under the same conditions as in Example 1. The magnetic properties and the corrosion resistance test results of the obtained permanent magnet are shown in Table 2, and the main phase amount, the grain boundary phase amount, the RC compound phase amount, the crystal grain size distribution of the main phase, and the average crystal grain size are shown in Table 3. Shown in.

【0050】比較例5 実施例1と同一条件で組成が表1の15である永久磁石
を得た。得られた永久磁石の磁気特性と耐食性試験結果
を表2に、また、主相量、粒界相量、R−C化合物相量
及び主相の結晶粒径分布、平均結晶粒径を表3に示す。
Comparative Example 5 A permanent magnet having a composition of 15 in Table 1 was obtained under the same conditions as in Example 1. The magnetic properties and the corrosion resistance test results of the obtained permanent magnet are shown in Table 2, and the main phase amount, the grain boundary phase amount, the RC compound phase amount, the crystal grain size distribution of the main phase, and the average crystal grain size are shown in Table 3. Shown in.

【0051】比較例6 実施例1と同一条件で組成が表1の16である永久磁石
を得た。得られた永久磁石の磁気特性と耐食性試験結果
を表2に、また、主相量、粒界相量、R−C化合物相量
及び主相の結晶粒径分布、平均結晶粒径を表3に示す。
Comparative Example 6 Under the same conditions as in Example 1, a permanent magnet having a composition of 16 in Table 1 was obtained. The magnetic properties and the corrosion resistance test results of the obtained permanent magnet are shown in Table 2, and the main phase amount, the grain boundary phase amount, the RC compound phase amount, the crystal grain size distribution of the main phase, and the average crystal grain size are shown in Table 3. Shown in.

【0052】[0052]

【表1】 [Table 1]

【0053】[0053]

【表2】 [Table 2]

【0054】[0054]

【表3】 [Table 3]

【0055】[0055]

【発明の効果】この発明によるR−Fe−B−C系磁石
材料は、特定組成を有するR−Fe−B−C系合金溶湯
をストリップキャスティングにて特定板厚の鋳片とな
し、この鋳片をH2吸蔵崩壊法により粗粉砕して得られ
た合金粉末に特定量の潤滑剤を添加配合してジェットミ
ル微粉砕することにより、合金塊を構成している主相の
結晶粒を細分化することが可能となり、粒度分布が均一
な粉末を作製することができ、この際Rリッチ相が微細
に分散され、かつR2Fe14(B1-xx)相も微細化さ
れた合金粉末に潤滑剤を添加配合後微粉砕した場合、微
粉砕能は従来の約2倍にも向上するため、製造効率が大
幅に向上するとともに、前記微粉末を型内にてパルス磁
界を用いて瞬間的に配向した後、プレス、焼結すること
により、モールド充填性及び結晶配向性が改善され、耐
食性及び磁気特性、特に減磁曲線の角型性にすぐれた高
性能R−Fe−B−C系磁石材料が得られる。
The R-Fe-B-C type magnet material according to the present invention is formed by casting the molten R-Fe-B-C type alloy having a specific composition into strips having a specific plate thickness by strip casting. A specific amount of a lubricant is added to an alloy powder obtained by coarsely pulverizing the pieces by the H 2 occlusion disintegration method and finely pulverized by a jet mill to subdivide the crystal grains of the main phase constituting the alloy lump. It was possible to produce a powder having a uniform particle size distribution, in which case the R-rich phase was finely dispersed and the R 2 Fe 14 (B 1-x C x ) phase was also finely divided. When finely pulverized after adding a lubricant to alloy powder and pulverizing it, the pulverizing ability is improved about twice as much as the conventional one, so that the production efficiency is significantly improved and the fine powder is used in a mold by using a pulse magnetic field. Momentarily oriented, then pressed and sintered to mold Is Hama property and crystal orientation improving corrosion resistance and magnetic properties, high-performance R-Fe-B-C-based magnet material is obtained, particularly excellent in squareness of the demagnetization curve.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 R12〜18at%、B+C=6〜10
at%(但し、B:2〜6at%、C:4〜8at
%)、O2 3at%以下、残部Fe(但し、Feの1
部をCo、Niの1種または2種にて置換できる)を主
成分とし、全組織に占める相の割合は、主相のR2TM
14(B1-xx)正方晶(但し、TM:Fe,Co,Ni
の1種または2種以上)が85%以上、粒界相が0.5
%〜10%、R−C化合物相が5%以下からなり、主相
の結晶粒径分布が0.05μm〜30μm、平均結晶粒
径が2.0μm〜10μmからなる耐食性のすぐれた高
性能R−Fe−B−C系磁石材料。
1. R12-18 at%, B + C = 6-10
at% (B: 2 to 6 at%, C: 4 to 8 at)
%), O 2 3 at% or less, and the balance Fe (however, Fe of 1
Part can be replaced by one or two of Co and Ni), and the proportion of the phase in the whole structure is R 2 TM of the main phase.
14 (B 1-x C x ) Tetragonal (provided that TM: Fe, Co, Ni
85% or more, and the grain boundary phase is 0.5
% -10%, RC compound phase 5% or less, main phase crystal grain size distribution is 0.05 μm to 30 μm, and average crystal grain size is 2.0 μm to 10 μm. -Fe-BC system magnet material.
JP20667895A 1995-07-19 1995-07-19 High performance R-Fe-BC system magnet material with excellent corrosion resistance Expired - Lifetime JP3474683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20667895A JP3474683B2 (en) 1995-07-19 1995-07-19 High performance R-Fe-BC system magnet material with excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20667895A JP3474683B2 (en) 1995-07-19 1995-07-19 High performance R-Fe-BC system magnet material with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JPH0931607A true JPH0931607A (en) 1997-02-04
JP3474683B2 JP3474683B2 (en) 2003-12-08

Family

ID=16527306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20667895A Expired - Lifetime JP3474683B2 (en) 1995-07-19 1995-07-19 High performance R-Fe-BC system magnet material with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP3474683B2 (en)

Also Published As

Publication number Publication date
JP3474683B2 (en) 2003-12-08

Similar Documents

Publication Publication Date Title
US5666635A (en) Fabrication methods for R-Fe-B permanent magnets
EP0633581B1 (en) R-Fe-B permanent magnet materials and process of producing the same
JPH0340082B2 (en)
WO2007063969A1 (en) Rare earth sintered magnet and method for producing same
JP3777199B2 (en) Method for producing high performance R-Fe-B permanent magnet material
JPH066728B2 (en) Method for producing raw material powder for permanent magnet material
JP3148581B2 (en) Method for producing R-Fe-BC-based permanent magnet material having excellent corrosion resistance
JP3474684B2 (en) High performance R-Fe-BC system magnet material with excellent corrosion resistance
JP4449900B2 (en) Method for producing rare earth alloy powder and method for producing rare earth sintered magnet
JP3415208B2 (en) Method for producing R-Fe-B permanent magnet material
JPH0920953A (en) Production of r-fe-b-c permanent magnet material excellent in corrosion resistance
JP3383448B2 (en) Method for producing R-Fe-B permanent magnet material
JP3611870B2 (en) Method for producing R-Fe-B permanent magnet material
JP3474683B2 (en) High performance R-Fe-BC system magnet material with excellent corrosion resistance
JP3157661B2 (en) Method for producing R-Fe-B permanent magnet material
JP3148573B2 (en) Method for producing R-Fe-BC-based permanent magnet material having excellent corrosion resistance
JPH08111307A (en) Production of material powder for r-fe-b based permanent magnet
JPH0745412A (en) R-fe-b permanent magnet material
JP3300570B2 (en) Method for producing R-Fe-BC-based permanent magnet material having excellent corrosion resistance
JPH0617535B2 (en) Method of manufacturing permanent magnet material
JPH0845718A (en) Magnetic material and its manufacture
JPH06112027A (en) Manufacture of high-quality magnet material
JP2004244702A (en) Method of producing rare earth permanent magnet
JPH0582319A (en) Permanent magnet
JP2006299402A (en) Raw material alloy for r-t-b system sintered magnet and r-t-b system sintered magnet and producing method therefor

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 10

EXPY Cancellation because of completion of term