JPH09316070A - Reactor for synthesizing lactide - Google Patents

Reactor for synthesizing lactide

Info

Publication number
JPH09316070A
JPH09316070A JP13203496A JP13203496A JPH09316070A JP H09316070 A JPH09316070 A JP H09316070A JP 13203496 A JP13203496 A JP 13203496A JP 13203496 A JP13203496 A JP 13203496A JP H09316070 A JPH09316070 A JP H09316070A
Authority
JP
Japan
Prior art keywords
lactide
reaction tank
reaction
heat exchanger
liquid level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13203496A
Other languages
Japanese (ja)
Other versions
JP3572141B2 (en
Inventor
Hiroshi Maeda
弘 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13203496A priority Critical patent/JP3572141B2/en
Publication of JPH09316070A publication Critical patent/JPH09316070A/en
Application granted granted Critical
Publication of JP3572141B2 publication Critical patent/JP3572141B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/2435Loop-type reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reactor for synthesizing a lactide, capable of continuously and stably synthesizing the highly pure lactide from a lactic acid oligomer in a simple constitution and easily in response to the increase of treating capacity. SOLUTION: This reactor for synthesizing a lactide is provided with a reaction tank 1 equipped with a jacket having a gas extraction port 1a in the upper part, and a shell tube type flow heat exchanger 2 which is disposed on the side of the reaction tank 1, whose upper end is connected to the bottom of the reaction tank 1 through a heat-insulated pipe route 3 having a circulation pump 4, a residue-discharging pipe 8 and a raw material-charging pipe 9 on the way and whose lower end is connected to the side of the reaction tank 1 at a liquid surface-forming height through a connection pipe 7 equipped with a jacket 7a. Thereby, the melted raw material is circulated in the system. The lactide reaction and vaporization are allowed to proceed in the heat exchanger, and the products are transferred into the reaction tank. The vapor is separated from the solid in a gaseous phase in the upper part of the reaction tank, and the gasified highly pure lactide can stably and continuously be recovered from the system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ラクチド生成用の
反応装置に関し、詳細にはポリ乳酸の原料用としての高
純度ラクチドを連続して合成するための反応装置に関す
る。
TECHNICAL FIELD The present invention relates to a reactor for producing lactide, and more particularly to a reactor for continuously synthesizing high-purity lactide as a raw material for polylactic acid.

【0002】[0002]

【従来の技術】ポリ乳酸は生体安全性の高い高分子化合
物であり、また生物学的あるいは加水分解的に劣化し、
生理学的および環境的に安全な乳酸に分解することよ
り、医療用の縫合糸、徐放性カプセル、体内充填補強材
などに用いられ、また自然環境下での分解性プラスチッ
クとしても注目されている。また、このようなポリ乳酸
の製造方法としては、出発原料としての乳酸を脱水縮重
合させて比較的低分子量の乳酸オリゴマーとし、これを
触媒(オクチル酸スズ等)の存在下で加熱して環状2量
体化させると共に減圧下で蒸発させ、蒸気生成物の流れ
の成分としてラクチドを回収し、次いで、このラクチド
を開環重合させて目的のポリ乳酸を得る方法が知られて
いる。
2. Description of the Related Art Polylactic acid is a polymer compound with high biosafety, and is degraded biologically or hydrolytically.
It decomposes into physiologically and environmentally safe lactic acid, and is used for medical sutures, sustained-release capsules, filling agents for internal filling, etc., and is attracting attention as a degradable plastic in the natural environment. . In addition, as a method for producing such polylactic acid, lactic acid as a starting material is dehydrated and polycondensed into a lactic acid oligomer having a relatively low molecular weight, which is heated in the presence of a catalyst (tin octylate, etc.) to form a cyclic compound. It is known to dimerize and evaporate under reduced pressure to recover lactide as a component of the stream of vapor product, and then subject this lactide to ring-opening polymerization to obtain the target polylactic acid.

【0003】そして従来では、乳酸オリゴマーからラク
チドを合成するには、〔図4〕に示すバッチ処理式の反
応槽が一般的に用いられている。この反応槽(30)では、
一定量の乳酸オリゴマーを導入し、周壁のジャケット(3
1)に供給する熱媒により加熱すると共に攪拌翼(32)で均
一に攪拌し、減圧した反応槽(30)内でラクチド反応と蒸
発とを同時平行的に進行させて、蒸気化したラクチドを
上部から回収する。
Conventionally, in order to synthesize lactide from a lactic acid oligomer, a batch treatment type reaction vessel shown in FIG. 4 is generally used. In this reaction tank (30),
Introduce a fixed amount of lactic acid oligomer and
It is heated by a heat medium supplied to 1) and uniformly stirred by a stirring blade (32), and the lactide reaction and the evaporation are simultaneously progressed in parallel in the depressurized reaction tank (30) to vaporize the lactide. Collect from the top.

【0004】また例えば、特表平7-500091号にあるよう
に、ワイプレン型の薄膜蒸発機により連続的に合成する
技術も知られている。この薄膜蒸発機では、〔図5〕に
示すように、ジャケット(41)付の筒状蒸発器(40)の内壁
面と、中心部の内部凝縮器(42)との間に回転可能な筒状
のワイパーブレート(43)を配置し、上部から連続供給し
た溶融乳酸オリゴマーを、蒸発器(40)内壁面に沿って流
下させると共に、回転するワイパーブレート(43)によっ
て内壁面全体に均一な厚さの薄膜に広げ、これによりラ
クチド反応と蒸発とを連続的に進行させて、蒸発したラ
クチドを上部から連続して回収する構成とされている。
Further, for example, as disclosed in Japanese Patent Publication No. 7-500091, a technique for continuously synthesizing by a wiper type thin film evaporator is known. In this thin-film evaporator, as shown in [FIG. 5], a tube that can rotate between the inner wall surface of the tubular evaporator (40) with a jacket (41) and the internal condenser (42) in the center part. A wiper plate (43) is placed, and the molten lactic acid oligomer continuously supplied from the top is caused to flow down along the inner wall surface of the evaporator (40), and the rotating wiper plate (43) is used to form a uniform thickness over the entire inner wall surface. The lactide is spread on a thin film, and the lactide reaction and the evaporation are allowed to proceed continuously, and the evaporated lactide is continuously collected from the upper portion.

【0005】[0005]

【発明が解決しようとする課題】ところで、ポリ乳酸の
原料用としてのラクチドに、合成の際の不純物(水や乳
酸のモノマー、ダイマーおよびトリマー等)が含まれる
と、これら不純物はラクチドの開環重合の阻害物として
働くため、高分子量のポリ乳酸を得るには高純度のラク
チドが必要となる。しかしながら、上記従来の反応槽
は、構造が簡易で設備費を低く抑えられるものの、バッ
チ処理であるがために、効率面で劣り、かつ熱ロスが多
くてランニングコストが大きくなる。しかも、槽内組成
が経時で変化し、かつ槽内で反応と蒸気化が同時に起こ
るため蒸気に未反応原料が同伴され易く、安定した品質
のラクチドを抜き出すことができない。ここで、反応シ
ステムでキーとなる問題は、所定温度下で所定反応時間
(滞留時間)を経て反応させ、反応物を蒸気化して抜き
出すこと、つまり系内液体積と反応および蒸気化に必要
な熱量供給のための伝熱面積とを適正にバランスさせる
ことにあるが、ジャケット付反応槽のみでは、滞留量
(槽内容積または液体積)に対する伝熱面積(ジャケッ
ト面積)は比例的に変化させられない。また、反応槽内
に伝熱コイル等の加熱手段を設けることもできるが、こ
の場合、槽内での液の流動が阻害されて非流動部が生じ
易く、かつ蒸気化の際に未反応物の同伴が生じ易く、こ
れが純度低下の原因となる。従って、反応槽の大型化に
よる処理能力の増大には限界が生じる。一方、上記薄膜
蒸発機では、溶融原料を薄膜化することで滞留量に対す
る伝熱面積を適正にバランさせられるものの、その内部
に複雑な回転機構を有するため、設備費が多くかかり、
かつ処理能力増大のための大型化は困難である。しか
も、内部の機構が複雑なため非流動部や堆積部が生じ易
く、これがコンタミの原因となり、更にまた、蒸発器内
壁面にヒールと呼ばれる残渣が付着形成されるため、こ
れらを除去するための溶媒の事前添加や定期的な洗浄が
必要となり、それら操作がプロセスを複雑化する。
When lactide used as a raw material for polylactic acid contains impurities (water, lactic acid monomer, dimer, trimer, etc.) during synthesis, these impurities cause ring opening of lactide. High-purity lactide is required to obtain high-molecular-weight polylactic acid because it acts as an inhibitor of polymerization. However, although the above-mentioned conventional reaction tank has a simple structure and can keep the equipment cost low, it is inferior in efficiency because of batch processing, and a large heat loss causes a large running cost. Moreover, since the composition in the tank changes with time, and the reaction and vaporization occur simultaneously in the tank, unreacted raw materials are easily entrained in the steam, and stable lactide cannot be extracted. Here, a key problem in the reaction system is that the reaction is carried out at a predetermined temperature for a predetermined reaction time (residence time) to vaporize and withdraw the reaction product, that is, it is necessary for the system liquid volume and the reaction and vaporization. This is to properly balance the heat transfer area for supplying heat, but in the case of a jacketed reaction tank only, the heat transfer area (jacket area) should be changed proportionally to the residence amount (tank volume or liquid volume). I can't. Further, heating means such as a heat transfer coil can be provided in the reaction tank, but in this case, the flow of the liquid in the tank is hindered and a non-fluid portion is apt to occur, and unreacted substances are generated during vaporization. Entrainment easily occurs, which causes a decrease in purity. Therefore, there is a limit to the increase in processing capacity due to the increase in size of the reaction tank. On the other hand, in the above-mentioned thin film evaporator, although the heat transfer area with respect to the amount of stay can be properly baluned by thinning the molten raw material, since it has a complicated rotating mechanism inside, it costs a lot of equipment cost,
Moreover, it is difficult to increase the size to increase the processing capacity. Moreover, since the internal mechanism is complicated, a non-fluid portion or a deposited portion is liable to occur, which causes contamination, and a residue called a heel is attached and formed on the inner wall surface of the evaporator. Pre-addition of solvents and regular washing are required, which complicates the process.

【0006】本発明は、上記従来技術の問題点を解消す
るため、乳酸オリゴマーから高純度のラクチドを連続か
つ安定して合成できてなお、構成が簡易で設備費および
保守負担を低く抑えることができ、しかも処理能力の増
大に対応可能なラクチド合成用の反応装置を提供するこ
とを目的とする。
In order to solve the above-mentioned problems of the prior art, the present invention is capable of continuously and stably synthesizing high-purity lactide from a lactic acid oligomer, yet has a simple structure and keeps equipment costs and maintenance burden low. It is an object of the present invention to provide a reactor for lactide synthesis which can be processed and can cope with an increase in processing capacity.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は以下の構成とされている。すなわち、本
発明に係るラクチド合成用の反応装置は、乳酸オリゴマ
ーを触媒の存在下で加熱して解重合反応させ、生成した
ラクチドを減圧下で蒸発させて回収するラクチド生成用
の反応装置であって、上部にガス抽出口を設けたジャケ
ット付の反応槽と、この反応槽の側方に配され、中途に
循環ポンプ、原料導入部および残渣排出部を配した断熱
管路を介して、上端部を該反応槽の底部に接続されると
共に、ジャケット付連結管を介して、下端部を該反応槽
の側部に接続されたシェルチューブ型の流下式熱交換器
とを備えてなることを特徴とする。
In order to achieve the above object, the present invention has the following arrangement. That is, the reactor for lactide synthesis according to the present invention is a reactor for lactide production in which a lactic acid oligomer is heated in the presence of a catalyst to cause a depolymerization reaction, and the produced lactide is evaporated and collected under reduced pressure. , A jacketed reaction tank with a gas extraction port on the top, and a heat insulating pipe lined on the side of this reaction tank with a circulation pump, raw material introduction section and residue discharge section A bottom part of the reaction tank, and a shell tube type downflow heat exchanger having a lower end connected to a side part of the reaction tank through a connecting pipe with a jacket. Characterize.

【0008】上記本発明の反応装置では、触媒を添加し
た原料の乳酸オリゴマーを、原料導入部を介して導入
し、流下式熱交換器を経て反応槽に送り、これを断熱管
路を経て再び流下式熱交換器に循環させる。このとき、
原料の乳酸オリゴマーは、流下式熱交換器のチューブ内
を流下し、周囲のシェルに供給された熱媒の熱を受けて
加熱され、ラクチド反応および蒸発を生じながら、ジャ
ケット付連結管を経て反応槽に流入する。そして、熱交
換器と連結管内で気液分離され、更に反応槽内上部の気
相部により完全に気液分離されてガス化したラクチド
は、槽上部のガス抽出口から系外に取り出される。一
方、反応槽内に流入した未反応原料は、この反応槽内で
一時滞留し、周壁のジャケットに供給された熱媒から温
度保持のために必要な熱量を受けると共に、更に反応お
よび気液分離を進行させた上で、槽底から断熱管路を経
て流下式熱交換器に向けて循環液として送られ、その中
途の原料導入部から導入される原料と混合されて流下式
熱交換器に入り、これにより流下式熱交換器と反応槽と
を循環し、順次目的のラクチドへと反応および気液分離
される。ここで、系内液量は、系外へのガス化物の回収
量とのバランスにおいて、残渣排出部からの残渣排出量
を原料導入部からの原料供給量と対応させて設定するこ
とで調整でき、また、系内滞留時間と供給熱量とのバラ
ンスは、循環ポンプによる循環流量制御と、熱交換器へ
の熱媒の供給量制御とにより調整できる。更に、反応お
よび蒸気化に必要な熱量供給のための伝熱面積は、熱交
換器のチューブの径、本数、長さ等の選定により、系内
設定液量に対応して変更できる。従って、非流動部のな
い理想的な反応操作のもとで、系内液量と伝熱面積とを
適正にバランスさせて、高純度のラクチドを連続かつ安
定して得ることができ、しかも処理能力増大のための大
容量化にも容易に対応することができる。
In the above-mentioned reaction apparatus of the present invention, the raw material lactic acid oligomer to which the catalyst has been added is introduced through the raw material introduction section, sent to the reaction tank through the downflow heat exchanger, and again fed through the adiabatic pipe. Circulate through a downflow heat exchanger. At this time,
The lactic acid oligomer, which is the raw material, flows down through the tube of the downflow heat exchanger and is heated by the heat of the heat medium supplied to the surrounding shell, and undergoes a lactide reaction and evaporation while reacting via the jacketed connecting pipe. It flows into the tank. The lactide gas-liquid separated in the heat exchanger and the connecting pipe and further completely gas-liquid separated by the gas phase part in the upper part of the reaction tank is taken out of the system from the gas extraction port in the upper part of the tank. On the other hand, the unreacted raw material that has flowed into the reaction tank temporarily stays in this reaction tank, receives the amount of heat necessary for maintaining the temperature from the heat medium supplied to the jacket of the peripheral wall, and further reacts and separates the gas and liquid. After being advanced, it is sent as a circulating liquid from the bottom of the tank to the downflow heat exchanger through the heat insulation pipe, and is mixed with the raw material introduced from the raw material introduction part in the middle to the downflow heat exchanger. After entering, it circulates through the downflow heat exchanger and the reaction tank, and is sequentially reacted and gas-liquid separated into the target lactide. Here, the amount of liquid in the system can be adjusted by setting the amount of residue discharged from the residue discharge part in correspondence with the amount of recovered gasified substances outside the system in correspondence with the amount of raw material supply from the raw material introduction part. Also, the balance between the residence time in the system and the supplied heat amount can be adjusted by controlling the circulation flow rate by the circulation pump and controlling the supply amount of the heat medium to the heat exchanger. Furthermore, the heat transfer area for supplying the amount of heat necessary for the reaction and vaporization can be changed according to the set liquid amount in the system by selecting the diameter, number, length, etc. of the tubes of the heat exchanger. Therefore, under an ideal reaction operation without a non-fluid part, it is possible to obtain a high-purity lactide continuously and stably by appropriately balancing the amount of liquid in the system and the heat transfer area. It is possible to easily cope with an increase in capacity for increasing capacity.

【0009】また、上記反応槽が、内部に攪拌翼を配置
していて良く、この構成によると、反応槽内で一時滞留
している液を攪拌し、ジャケットから液への入熱を均一
なものとして、該反応槽内での反応および気液分離をよ
り促進でき、特に操作条件での液粘度が高い場合や、反
応槽が大容量である場合に有効である。
Further, the reaction tank may be provided with a stirring blade inside, and according to this structure, the liquid temporarily retained in the reaction tank is agitated, and the heat input from the jacket to the liquid is made uniform. As a matter of fact, the reaction and gas-liquid separation in the reaction tank can be further promoted, and it is particularly effective when the liquid viscosity is high under the operating conditions or when the reaction tank has a large capacity.

【0010】また、上記反応槽内の液面レベルを検出す
る液面検出手段と、この液面検出手段で検出された液面
レベルに基づいて上記流下式熱交換器への熱媒供給量を
制御する供給熱量制御手段とを備えていても良く、この
構成によると、熱交換器での入熱量を反応槽内の液面レ
ベルに対応して制御し、幅広い操作条件を選定すること
ができ、外的要因の変動等に容易に対応して安定した反
応を継続できる。
Further, the liquid level detecting means for detecting the liquid level in the reaction tank, and the amount of heat medium supplied to the downflow heat exchanger based on the liquid level detected by the liquid level detecting means. It may be provided with a supply heat amount control means for controlling, and according to this configuration, the heat input amount in the heat exchanger can be controlled according to the liquid level in the reaction tank, and a wide range of operating conditions can be selected. Therefore, it is possible to easily respond to fluctuations in external factors and continue a stable reaction.

【0011】また、上記流下式熱交換器の上端部が不活
性ガス供給源に接続されていても良く、この構成による
と、熱交換器の上部から少量の窒素ガス等を注入し、該
熱交換器内での反応により生じたガス(蒸気化ラクチ
ド)が上端部内で滞留することのないように下方へのガ
スの流れを促進して安定化させ、気液分離の効率を高め
ることができる。
Further, the upper end of the flow-down heat exchanger may be connected to an inert gas supply source. According to this structure, a small amount of nitrogen gas or the like is injected from the upper part of the heat exchanger to heat the heat exchanger. The gas generated by the reaction in the exchanger (vaporized lactide) can be promoted and stabilized in the downward direction so that it does not stay in the upper end, and the efficiency of gas-liquid separation can be increased. .

【0012】また、上記ジャケット付連結管が、上記反
応槽内の液面の上方に位置して開口する上部連結管と、
同液面下に位置して開口する下部連結管とに分岐されて
いても良く、この構成によると、熱交換器内での反応に
より生じたガス(蒸気化ラクチド)を上部連結管を介し
て反応槽内上部の気相部に、未反応原料液を下部連結管
を介して反応槽内液面下にそれぞれ分離させて送り、反
応槽内での気液分離をより効率的なものとすることがで
きる。
Further, the jacketed connecting pipe is an upper connecting pipe which is located above the liquid level in the reaction tank and opens.
It may be branched to a lower connecting pipe that is located below the liquid level and opens. According to this configuration, the gas (vaporized lactide) generated by the reaction in the heat exchanger is passed through the upper connecting pipe. The unreacted raw material liquid is sent to the upper gas phase part in the reaction tank separately through the lower connecting pipe below the liquid level in the reaction tank to make the gas-liquid separation in the reaction tank more efficient. be able to.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。〔図1〕は、本発明に係る反応装
置の1実施形態を示す概略図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view showing one embodiment of a reaction device according to the present invention.

【0014】〔図1〕において、(1) は反応槽であっ
て、この反応槽(1) は、全周壁にジャケット(10)を設け
た縦型筒状の圧力容器に形成されると共に、その上部に
ガス抽出口(1a)、液面形成高さ位置に対応する側部に気
液流入口(1b)、下底部に液流出口(1c)を設けている。ま
た、その内部には、槽頂部に配したモータ(11)で駆動回
転されるパドル型の攪拌翼(12)を配置している。
In FIG. 1, (1) is a reaction tank, and this reaction tank (1) is formed in a vertical cylindrical pressure vessel having a jacket (10) on the entire peripheral wall, and A gas extraction port (1a) is provided at the upper part thereof, a gas-liquid inlet (1b) is provided at a side portion corresponding to a liquid surface formation height position, and a liquid outlet (1c) is provided at a lower bottom portion. In addition, a paddle type stirring blade (12) driven and rotated by a motor (11) arranged at the top of the tank is arranged inside thereof.

【0015】また、この反応槽(1) の下底部の液流出口
(1c)は、中間に循環ポンプ(4) を装備した断熱管路(3)
を介して、該反応槽(1) の側方に配設された流下式の熱
交換器(2) の上部チャンネル(21)に接続されている。ま
た、この熱交換器(2) の下部チャンネル(23)は、L形に
曲げられたジャケット(7a)付の連結管(7) を介して、反
応槽(1) の気液流入口(1b)に接続されており、これによ
り反応槽(1) 〜断熱管路(3) 〜熱交換器(2) 〜連結管
(7) 〜反応槽(1) へと循環する液循環系が形成されてい
る。
The liquid outlet at the bottom of the reaction tank (1)
(1c) is an adiabatic pipeline (3) equipped with a circulation pump (4) in the middle
Is connected to the upper channel (21) of the flow-down type heat exchanger (2) disposed on the side of the reaction tank (1). The lower channel (23) of the heat exchanger (2) is connected to the gas-liquid inlet (1b) of the reaction tank (1) through the connecting pipe (7) with an L-shaped jacket (7a). ), So that the reaction tank (1) -adiabatic conduit (3) -heat exchanger (2) -connection pipe
A liquid circulation system is circulated from (7) to the reaction tank (1).

【0016】ここで、熱交換器(2) は、上部チャンネル
(21)と下部チャンネル(23)とを多数のチューブ(22)で連
結すると共に、それらチューブ(22)回りの胴部シェル(2
0)内に、上下のノズル(20a),(20b) から熱媒を循環導入
し、各チューブ(22)の内面に沿って流下する液に熱を供
給するシェルチューブ型のものである。また、上部チャ
ンネル(21)内には、導入した液を各チューブ(22)に均一
に分散させて流入させるために上端縁を水平とした整流
板(21a) が設けてある。更に、その上部チャンネル(21)
の頂部には、図示省略の不活性ガス供給源に接続された
ガス導入孔(24)が設けてある。また、反応槽(1) のジャ
ケット(10)および連結管(7) のジャケット(7a)も、同様
に上下のノズル(10a),(10b) および(7b),(7c) から熱媒
を循環導入し、それぞれの内部の液に熱を供給する。
Here, the heat exchanger (2) has an upper channel
(21) and the lower channel (23) are connected by a large number of tubes (22), and the body shell (2) around the tubes (22) is connected.
It is a shell tube type in which heat medium is circulated and introduced into upper and lower nozzles (20a), (20b) in (0) to supply heat to the liquid flowing down along the inner surface of each tube (22). In addition, in the upper channel (21), there is provided a straightening plate (21a) having a horizontal upper edge in order to uniformly disperse the introduced liquid into each tube (22). Furthermore, its upper channel (21)
A gas introduction hole (24) connected to an inert gas supply source (not shown) is provided at the top of the. Similarly, the jacket (10) of the reaction tank (1) and the jacket (7a) of the connecting pipe (7) also circulate the heat medium from the upper and lower nozzles (10a), (10b) and (7b), (7c). It is introduced and heat is supplied to the liquid inside each.

【0017】翻って、断熱管路(3) には、反応槽(1) 底
部寄りの部位にギヤーポンプ(8a)を装備した残渣排出管
(8) が分岐接続され、また循環ポンプ(4) と熱交換器
(2) との間にギヤーポンプ(9a)を装備した原料導入管
(9) が分岐接続されている。また、この原料導入管(9)
には、触媒を添加するための、触媒注入管(9b)が分岐接
続されている。更に、循環ポンプ(4) の直後流側には、
循環流量の制御のために、内部の流量を計測して循環ポ
ンプ(4) の回転数を制御する流量制御器(5) が介装され
ている。なお、循環流量の厳密な調整は必要でなく、循
環ポンプ(4) は可変モータで流量調整可能なものが望ま
しいが、流量制御器(5) は省略しても良い。また、原料
導入管(9) の直後流側には、この原料導入管(9) を介し
て導入する原料と循環流とを混合するスタチックミキサ
ー(6) が介装されている。
On the other hand, in the heat insulation pipe line (3), a residue discharge pipe equipped with a gear pump (8a) at a portion near the bottom of the reaction tank (1)
(8) is branched and the circulation pump (4) and heat exchanger are connected.
Raw material introducing pipe equipped with gear pump (9a) between (2)
(9) is branched and connected. Also, this raw material introduction pipe (9)
A catalyst injection pipe (9b) for adding a catalyst is branched and connected to. Furthermore, immediately after the circulation pump (4),
In order to control the circulation flow rate, a flow rate controller (5) that measures the internal flow rate and controls the rotation speed of the circulation pump (4) is installed. It is not necessary to strictly adjust the circulation flow rate, and it is desirable that the circulation pump (4) be capable of adjusting the flow rate with a variable motor, but the flow rate controller (5) may be omitted. A static mixer (6) for mixing the raw material introduced through the raw material introduction pipe (9) and the circulating flow is provided on the immediate downstream side of the raw material introduction pipe (9).

【0018】一方、反応槽(1) 上部のガス抽出口(1a)
は、図示省略の減圧手段を備えた回収管路に接続され、
これにより反応槽(1) 内は、3000Pa以下に減圧される。
また、この反応槽(1) は、内上部の気相部と液相部との
圧力差から液面(L) レベルを検出すると共に、検出した
液面レベルに基づき、熱交換器(2) の胴部シェル(20)に
熱媒を導入するノズル(20a) の流量制御弁(25)に対して
開度変更の指令を出す液面制御器(13)と、液温を検出す
る温度計(14)とを備えている。
On the other hand, the gas extraction port (1a) above the reaction tank (1)
Is connected to a recovery pipeline provided with a decompression means (not shown),
As a result, the pressure inside the reaction tank (1) is reduced to 3000 Pa or less.
In addition, this reaction tank (1) detects the liquid level (L) level from the pressure difference between the gas phase part and the liquid phase part inside the upper part, and based on the detected liquid level, the heat exchanger (2) A liquid level controller (13) that issues a command to change the opening to the flow control valve (25) of the nozzle (20a) that introduces the heat medium into the body shell shell (20), and a thermometer that detects the liquid temperature. (14) and are provided.

【0019】上記構成の本例の反応装置では、加熱(120
℃前後)溶融された原料の乳酸オリゴマーを、原料導入
管(9) からギヤーポンプ(9a)により定量かつ連続に導入
する一方、このギヤーポンプ(9a)の流量と比例設定され
た触媒を、触媒注入管(9b)を介して注入し、これらを循
環ポンプ(4) により循環系内で循環させる。ここで、反
応槽(1) 内は3000Pa以下に減圧し、また、添加する触媒
としては、従来公知のオクチル酸スズ、3酸化アンチモ
ン、酸化亜鉛、ステアリン酸などを用いる。
In the reactor of this example having the above-mentioned structure, heating (120
(About ℃) Melted raw material lactic acid oligomer is quantitatively and continuously introduced from the raw material introduction pipe (9) by the gear pump (9a), while the catalyst set proportional to the flow rate of the gear pump (9a) It is injected through (9b), and these are circulated in the circulation system by the circulation pump (4). Here, the pressure in the reaction tank (1) is reduced to 3000 Pa or less, and as a catalyst to be added, conventionally known tin octylate, antimony trioxide, zinc oxide, stearic acid, etc. are used.

【0020】このとき、原料の乳酸オリゴマーは、熱交
換器(2) の上部チャンネル(21)に入り、整流板(21a) に
より均一に分散されて各チューブ(22)内を流下し、周囲
の胴部シェル(20)に循環供給される熱媒の熱を受けて加
熱(150〜 225℃、好ましくは150〜 200℃の温度)さ
れ、環化反応(乳酸オリゴマーの解重合反応による環状
2量体化)および蒸発を生じながら、ジャケット(7a)付
の連結管(7) を経て反応槽(1) に送られる。そして、熱
交換器(2) と連結管(7) 内で気液分離され、更に反応槽
内(1) 上部の気相部により完全に気液分離されてガス化
したラクチドは、槽上部のガス抽出口(1a)から系外に取
り出される。
At this time, the lactic acid oligomer as a raw material enters the upper channel (21) of the heat exchanger (2), is evenly dispersed by the current plate (21a), flows down in each tube (22), and It is heated (150 to 225 ℃, preferably 150 to 200 ℃ temperature) by receiving the heat of the heat medium circulated and supplied to the body shell (20), and the cyclization reaction (cyclic dimerization by depolymerization reaction of lactic acid oligomer) It is sent to the reaction tank (1) through a connecting pipe (7) with a jacket (7a) while undergoing solidification and evaporation. Then, the lactide gas-liquid separated in the heat exchanger (2) and the connecting pipe (7) and completely gas-liquid separated by the gas phase part in the upper part of the reaction tank (1) is gasified in the upper part of the tank. It is taken out of the system through the gas extraction port (1a).

【0021】一方、熱交換器(2) での未反応原料は、反
応槽(1) 内に流入して一時滞留し、攪拌翼(12)によって
均一に攪拌混合されると共に、周壁のジャケット(10)に
循環供給される熱媒から温度保持のために必要な熱量(1
50〜 225℃の温度を保持する熱量)を受け、反応槽(1)
内で更に反応および気液分離を進行させた上で、槽底か
ら断熱管路(3) を経て熱交換器(2) に向けて循環液とし
て送られる。そして、中途のスタチックミキサー(6) に
よって原料導入管(9) から導入される原料と均一に混合
されて熱交換器(2) に入り、これにより必要な熱量を受
けてラクチド反応と気液分離が順次進行し、ガス化した
ラクチドが連続回収される。また、系内で濃縮される触
媒および高沸点残渣は、残渣排出管(8) からギヤーポン
プ(8a)により定量排出される。
On the other hand, the unreacted raw material in the heat exchanger (2) flows into the reaction tank (1) and temporarily stays there, and is uniformly stirred and mixed by the stirring blades (12). The amount of heat required to maintain the temperature (1
Reactor (1) that receives the amount of heat that maintains a temperature of 50 to 225 ° C
After further progressing the reaction and gas-liquid separation inside, it is sent as a circulating liquid from the bottom of the tank to the heat exchanger (2) via the heat insulating pipe (3). Then, it is uniformly mixed with the raw material introduced from the raw material introduction pipe (9) by the static mixer (6) in the middle and enters the heat exchanger (2), where it receives the necessary amount of heat and receives the lactide reaction and gas-liquid reaction. Separation proceeds in sequence and gasified lactide is continuously recovered. The catalyst and high-boiling residue concentrated in the system are quantitatively discharged from the residue discharge pipe (8) by the gear pump (8a).

【0022】また、熱交換器(2) の上部チャンネル(21)
内に、その頂部のガス導入孔(24)を介して少量のN2
スを注入し、熱交換器(2) 内での反応により生じたガス
(蒸気化ラクチド)が上部チャンネル(21)内で滞留しな
いように下方へのガスの流れを促進して安定化させる。
このN2 ガスは、反応槽(1) 内に流入して気液分離さ
れ、ガス化ラクチドと共に系外に取り出される。
Also, the upper channel (21) of the heat exchanger (2)
A small amount of N 2 gas was injected into the upper channel (21) through the gas introduction hole (24) at the top, and the gas (vaporized lactide) generated by the reaction in the heat exchanger (2) was in the upper channel (21). It promotes and stabilizes the downward flow of gas so that it does not stay at.
This N 2 gas flows into the reaction tank (1) to be gas-liquid separated, and is taken out of the system together with the gasified lactide.

【0023】ここで、上記操作時における処理量は、原
料導入管(9) のギヤーポンプ(9a)の回転数で設定され、
その流量に見合う触媒量が設定される。また、設定処理
量と系内での触媒の濃縮倍率とにより、残渣排出量を残
渣排出管(8) のギヤーポンプ(8a)の回転数で設定する。
また、処理量に見合う適正循環量が循環ポンプ(4) にて
設定される。そして、適正反応時間と処理量とより系内
滞留時間が決定され、その滞留時間に見合う液面が、液
面制御器(13)にて設定される。また、その液面の制御
は、熱交換器(2) への流量制御弁(25)の開度を変更し、
熱交換器(2) への入熱量を制御することにより、ラクチ
ド蒸発量を自動的に制御することによりなされる。更
に、適正反応時間は、処理温度および系内圧力の調整で
変更が可能であり、これらの設定・制御にて、簡単に幅
広い操作条件を選定することができる。
Here, the throughput in the above operation is set by the number of rotations of the gear pump (9a) of the raw material introducing pipe (9),
A catalyst amount corresponding to the flow rate is set. Further, the residue discharge amount is set by the rotation speed of the gear pump (8a) of the residue discharge pipe (8) based on the set processing amount and the concentration ratio of the catalyst in the system.
In addition, the circulation pump (4) sets an appropriate circulation amount commensurate with the throughput. Then, the residence time in the system is determined from the appropriate reaction time and the throughput, and the liquid level corresponding to the residence time is set by the liquid level controller (13). The liquid level is controlled by changing the opening of the flow control valve (25) to the heat exchanger (2),
This is done by automatically controlling the evaporation amount of lactide by controlling the heat input amount to the heat exchanger (2). Furthermore, the appropriate reaction time can be changed by adjusting the processing temperature and the system internal pressure, and a wide range of operating conditions can be easily selected by setting and controlling these.

【0024】このように、溶融状態の原料を系内で循環
させながらラクチド反応と気液分離とを順次進行させ
て、蒸発生成物として製品ラクチドを取り出す本例の反
応装置では、非流動部のない理想的な反応操作のもと
で、系内液量と伝熱面積とを適正にバランスさせて、高
純度のラクチドを連続かつ安定して得ることができる。
しかも、その構成が簡易であって設備費および保守負担
を低く抑えることができ、また、反応および蒸気化に必
要な熱量供給のための伝熱面積は、熱交換器のチューブ
の径、本数、長さ等の選定により、系内での設定液量に
対応して変更できるので、処理能力増大のための大容量
化にも容易に対応することができる。
As described above, in the reaction apparatus of this example, the lactide reaction and the gas-liquid separation are sequentially advanced while circulating the molten raw material in the system to take out the product lactide as the evaporation product. Under a non-ideal reaction operation, a high-purity lactide can be continuously and stably obtained by properly balancing the amount of liquid in the system and the heat transfer area.
Moreover, the structure is simple and the equipment cost and maintenance burden can be kept low, and the heat transfer area for supplying the amount of heat required for the reaction and vaporization is the tube diameter of the heat exchanger, the number of tubes, Since the amount of liquid set in the system can be changed by selecting the length and the like, it is possible to easily cope with a large capacity for increasing the processing capacity.

【0025】なお、上記例の反応装置では、反応槽(1)
内にパドル型の攪拌翼(12)を配置したが、これは大容量
に対応し、液を攪拌混合してジャケット(10)からの入熱
を均等かつ効率的なものとするためであって、その攪拌
翼は、適用する反応槽の容量および操作条件での液粘度
等を勘案してパドル型以外の形態のものを用いて良い
く、また、比較的容量が小さく、かつ操作条件での液粘
度が低くて反応槽内での流動混合が期待される場合に
は、この攪拌翼の配置は省略されても良い。
In the reactor of the above example, the reaction tank (1)
A paddle type stirring blade (12) was placed inside this because this is to support a large volume and to stir and mix the liquid so that the heat input from the jacket (10) is even and efficient. The stirring blade may be of a shape other than the paddle type in consideration of the capacity of the reaction tank to be applied, the liquid viscosity under the operating conditions, etc., and the capacity is relatively small and the operating conditions When the liquid viscosity is low and fluid mixing in the reaction tank is expected, the placement of the stirring blade may be omitted.

【0026】また、上記例の反応装置では、熱交換器
(2) の上部チャンネル(21)内に設けた整流板(21a) は、
上端縁を水平に形成されたものとしたが、その別の実施
形態の説明図である〔図2〕の (a)図に示すように、上
端縁に複数のVノッチ(21b) を切ることも液を均一分散
させるに有効であり、更に、上端縁の水平度を調整でき
るように、固定される下部と上下動可能な上部とを組み
合わせた構成とされることも好ましい実施形態である。
更にまた、下端部に複数のウイープホール(21c)を設け
ることも液の均一分散に有効である。一方、各チューブ
(22)は、液の均一分散のために必要な液深が取れるよう
に、それぞれの上端部を上部チャンネル(21)内に突出さ
せた状態で取り付けられるが、液の均等流入ためには互
いの上端面が水平であることが要求される。しかし、大
容量でチューブ数が多くなる場合には、各チューブの上
端面を水平に揃えることは製作上困難となるので、これ
に対処するには、各チューブを取り付けた後に、 (b)図
に示すように、各チューブ(22)の上端にVノッチ(22a)
を切ることや、(c)図に示すように、各チューブ(22)上
端にアダプター(26)を取り付けることが効果的であり、
更には (d)図に示すように、各チューブ(22)に、上端に
Vノッチ(27a) を切ったアダプター(27)をネジ等を介し
て高さ調整可能に取り付けることがより効果的で好まし
い実施形態である。更にまた、各チューブ(22)の上部チ
ャンネル(21)内での付け根部にウイープホール(22b) を
設けることも液の均一分散に有効である。
Further, in the reactor of the above example, the heat exchanger
The current plate (21a) installed in the upper channel (21) of (2) is
Although the upper edge is formed horizontally, a plurality of V notches (21b) are cut in the upper edge as shown in (a) of FIG. 2 which is an explanatory view of another embodiment. Is also effective in uniformly dispersing the liquid, and it is also a preferred embodiment to have a configuration in which a fixed lower portion and a vertically movable upper portion are combined so that the horizontalness of the upper edge can be adjusted.
Furthermore, providing a plurality of weep holes (21c) at the lower end is also effective for uniform dispersion of the liquid. Meanwhile, each tube
The (22) are installed with their upper ends projecting into the upper channel (21) so that the required liquid depth can be obtained for uniform distribution of the liquid, but they are attached to each other for uniform liquid inflow. It is required that the upper end surface of the is horizontal. However, if the number of tubes is large and the number of tubes is large, it will be difficult to align the upper end faces of each tube horizontally. As shown in, each tube (22) has a V-notch (22a) at the top.
It is effective to cut the tube and attach the adapter (26) to the upper end of each tube (22) as shown in (c).
Furthermore, as shown in Fig. (D), it is more effective to attach an adapter (27) with a V notch (27a) cut at the upper end to each tube (22) through screws so that the height can be adjusted. This is a preferred embodiment. Furthermore, providing a weep hole (22b) at the base of each tube (22) in the upper channel (21) is also effective for uniform dispersion of the liquid.

【0027】また、上記例の反応装置では、熱交換器
(2) は、その胴部シェル(20)の径よりも小さな径のジャ
ケット(7a)付の連結管(7) を介して、反応槽(1) の接続
したが、これは1例であって、相互間の取り合わせに特
段の制約がなければ、例えば、その別の実施形態の説明
図である〔図3〕の (a)図に示すように、熱交換器(2)
の胴部シェル(20)と同径のジャケット(7a)付の連結管
(7')を介して連結することも、効率的な気液分離流動が
得られて好ましい。更に、(b) 図に示すように、ジャケ
ット(7a)付の連結管(7")を、反応槽(1) 内の液面(L) の
上方に位置して開口する上部連結管(16)と、同液面(L)
下に位置して開口する下部連結管(17)とに分岐させ、熱
交換器(2) 内での反応により生じたガス(蒸気化ラクチ
ド)を上部連結管(16)を介して反応槽(1) 内上部の気相
部に、未反応原料液を下部連結管(17)を介して液面(L)
下にそれぞれ分離して流入させる構成とすることも、よ
り効率的な気液分離が行えると共に、液相の系内滞留時
間の調整幅が広げられて、より好ましい実施形態であ
る。
In the reactor of the above example, the heat exchanger
(2) was connected to the reaction tank (1) through a connecting pipe (7) with a jacket (7a) having a diameter smaller than the diameter of the shell (20), but this is one example. If there are no particular restrictions on the mutual arrangement, for example, as shown in (a) of FIG. 3 which is an explanatory view of another embodiment, the heat exchanger (2)
Connecting pipe with jacket (7a) of the same diameter as the body shell shell (20)
It is also preferable to connect via (7 ′) because efficient gas-liquid separation flow can be obtained. Further, as shown in (b), the connecting pipe (7 ") with the jacket (7a) is connected to the upper connecting pipe (16) which is located above the liquid level (L) in the reaction tank (1) and opens. ) And the same liquid level (L)
It is branched to the lower connecting pipe (17) that is located below and opens, and the gas (vaporized lactide) generated by the reaction in the heat exchanger (2) is passed through the upper connecting pipe (16) to the reaction tank ( 1) Unreacted raw material liquid is passed through the lower connecting pipe (17) to the liquid phase (L) in the upper vapor phase.
It is also a more preferable embodiment to have a structure in which the gas is separated and flowed into each of the lower parts, because more efficient gas-liquid separation can be performed and the adjustment range of the residence time of the liquid phase in the system is widened.

【0028】[0028]

【発明の効果】以上に述べたように、本発明に係るラク
チド合成用の反応装置は、連続操作のもとで、乳酸オリ
ゴマーから高純度のラクチドを安定して合成できてな
お、構成が簡易で設備費および保守負担を低く抑えるこ
とができ、しかも処理能力増大のための大型化が容易
で、大容量連続処理に対応可能である。
As described above, the reactor for lactide synthesis according to the present invention is capable of stably synthesizing high-purity lactide from a lactic acid oligomer under a continuous operation and has a simple structure. The equipment cost and maintenance load can be kept low, and it is easy to increase the size to increase the processing capacity, and it is possible to handle large-capacity continuous processing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の反応装置の1実施形態を示す概略図で
ある。
FIG. 1 is a schematic view showing an embodiment of a reaction apparatus of the present invention.

【図2】本発明の反応装置に関わる熱交換器の別の実施
形態の説明図である。
FIG. 2 is an explanatory view of another embodiment of a heat exchanger relating to the reaction device of the present invention.

【図3】本発明の反応装置に関わる連結管の別の実施形
態の説明図である。
FIG. 3 is an explanatory view of another embodiment of the connecting pipe related to the reaction device of the present invention.

【図4】従来のラクチド合成用反応槽を示す概略図であ
る。
FIG. 4 is a schematic view showing a conventional reaction tank for lactide synthesis.

【図5】従来のラクチド合成用薄膜蒸発機を示す概略図
である。
FIG. 5 is a schematic view showing a conventional thin film evaporator for lactide synthesis.

【符号の説明】[Explanation of symbols]

(1) --反応槽、(1a)--ガス抽出口、(1b)--気液流出口、
(1c)--液流出口、(2)--熱交換器、(3) --断熱管路、(4)
--循環ポンプ、(5) --流量制御器、(6) --スタチック
ミキサー、(7) --連結管、(7')--連結管、(7")--連結
管、(7a)--ジャケット、(7b)--ノズル、 (7c)-- ノズ
ル、(8) --残渣排出管、(8a)--ギヤーポンプ、(9) --原
料導入管、(9a)--ギヤーポンプ、(9b)--触媒注入管、(1
0)--ジャケット、(10a) --ノズル、 (10b)--ノズル、(1
1)--モータ、(12)--攪拌翼、(13)--制御器、(14)--温度
計、(16)--上部連結管、(17)--下部連結管、(20)--胴部
シェル、(20a) --ノズル、(20b) --ノズル、(21)--上部
チャンネル、(21a) --整流板、(21b) --Vノッチ、(21
c) --ウイープホール、(22)--チューブ、(22a) --Vノ
ッチ、(22b) --ウイープホール、(23)--下部チャンネ
ル、(24)--ガス導入孔、(25)--流量制御弁、(26)--アダ
プター、(27)--アダプター、(27a) --Vノッチ、(L)--
液面(L) 。
(1)-Reactor, (1a)-Gas extraction port, (1b)-Gas-liquid outlet,
(1c)-Liquid outlet, (2)-Heat exchanger, (3)-Adiabatic conduit, (4)
--Circulation pump, (5) --flow controller, (6) --static mixer, (7) --connection pipe, (7 ')-connection pipe, (7 ")-connection pipe, ( 7a)-jacket, (7b)-nozzle, (7c)-nozzle, (8) --residue discharge pipe, (8a)-gear pump, (9) --raw material introduction pipe, (9a)- Gear pump, (9b)-catalyst injection pipe, (1
0)-Jacket, (10a)-Nozzle, (10b)-Nozzle, (1
1)-motor, (12)-stirring blade, (13)-controller, (14)-thermometer, (16)-upper connecting pipe, (17)-lower connecting pipe, (20 )-Body shell, (20a) --Nozzle, (20b) --Nozzle, (21)-Upper channel, (21a) --Baffle plate, (21b) --V notch, (21
c) --Weep hole, (22)-Tube, (22a) --V notch, (22b) --Weep hole, (23)-Lower channel, (24)-Gas introduction hole, (25)- Flow control valve, (26)-Adapter, (27)-Adapter, (27a) --V notch, (L)-
Liquid level (L).

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 乳酸オリゴマーを触媒の存在下で加熱し
て解重合反応させ、生成したラクチドを減圧下で蒸発さ
せて回収するラクチド生成用の反応装置であって、上部
にガス抽出口を設けたジャケット付の反応槽と、この反
応槽の側方に配され、中途に循環ポンプ、原料導入部お
よび残渣排出部を配した断熱管路を介して、上端部を該
反応槽の底部に接続されると共に、ジャケット付連結管
を介して、下端部を該反応槽の側部に接続されたシェル
チューブ型の流下式熱交換器とを備えてなることを特徴
とするラクチド合成用の反応装置。
1. A reaction device for lactide production, wherein a lactic acid oligomer is heated in the presence of a catalyst to cause a depolymerization reaction, and the produced lactide is evaporated and recovered under reduced pressure. The upper end is connected to the bottom of the reaction tank with a jacket, and a heat insulating pipe that is arranged on the side of the reaction tank and has a circulation pump, a raw material introduction section, and a residue discharge section. And a shell tube flow-down heat exchanger whose lower end is connected to the side of the reaction vessel via a connecting pipe with a jacket, and a reactor for lactide synthesis. .
【請求項2】 前記反応槽が、内部に攪拌翼を配置して
いる請求項1記載のラクチド合成用の反応装置。
2. The reaction apparatus for lactide synthesis according to claim 1, wherein the reaction tank has a stirring blade inside.
【請求項3】 前記反応槽内の液面レベルを検出する液
面検出手段と、この液面検出手段で検出された液面レベ
ルに基づいて前記流下式熱交換器への熱媒供給量を制御
する供給熱量制御手段とを備えている請求項1または2
記載のラクチド合成用の反応装置。
3. A liquid level detecting means for detecting a liquid level in the reaction tank, and a heat medium supply amount to the downflow heat exchanger based on the liquid level detected by the liquid level detecting means. 3. A supply heat amount control means for controlling the flow rate is provided.
A reactor for the synthesis of the lactide described.
【請求項4】 前記流下式熱交換器の上端部が不活性ガ
ス供給源に接続されている請求項1、2または3記載の
ラクチド合成用の反応装置。
4. The reaction apparatus for lactide synthesis according to claim 1, 2 or 3, wherein an upper end portion of the downflow heat exchanger is connected to an inert gas supply source.
【請求項5】 前記ジャケット付連結管が、前記反応槽
内の液面の上方に位置して開口する上部連結管と、同液
面下に位置して開口する下部連結管とに分岐されている
請求項1、2、3または4記載のラクチド合成用の反応
装置。
5. The jacketed connecting pipe is branched into an upper connecting pipe that is opened above the liquid level in the reaction tank and a lower connecting pipe that is opened below the liquid level. The reaction apparatus for lactide synthesis according to claim 1, 2, 3, or 4.
JP13203496A 1996-05-27 1996-05-27 Reactor for lactide synthesis Expired - Fee Related JP3572141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13203496A JP3572141B2 (en) 1996-05-27 1996-05-27 Reactor for lactide synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13203496A JP3572141B2 (en) 1996-05-27 1996-05-27 Reactor for lactide synthesis

Publications (2)

Publication Number Publication Date
JPH09316070A true JPH09316070A (en) 1997-12-09
JP3572141B2 JP3572141B2 (en) 2004-09-29

Family

ID=15071959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13203496A Expired - Fee Related JP3572141B2 (en) 1996-05-27 1996-05-27 Reactor for lactide synthesis

Country Status (1)

Country Link
JP (1) JP3572141B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100011A (en) * 2005-10-07 2007-04-19 Hitachi Ltd Production method and production apparatus for polyester
JP2007330896A (en) * 2006-06-15 2007-12-27 Tlv Co Ltd Heating and cooling device
KR101486213B1 (en) * 2013-11-26 2015-01-26 한국화학연구원 Manufacturing method for lactide using a tube bundle falling film reactor and an agitated thin film reactor
CN106986816A (en) * 2017-04-13 2017-07-28 新乡市博科精细化工有限公司 A kind of device for producing 2 picolines
CN113842657A (en) * 2021-10-28 2021-12-28 北京工商大学 Equipment for circularly preparing lactide
CN114984860A (en) * 2022-07-18 2022-09-02 东营科宏化工有限公司 Continuous catalyst quantitative feeding device for production of o-tert-butylcyclohexanol
CN116173873A (en) * 2023-03-21 2023-05-30 江苏东南环保科技有限公司 Alkali residue treatment homogenizing and stirring device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100011A (en) * 2005-10-07 2007-04-19 Hitachi Ltd Production method and production apparatus for polyester
JP4696824B2 (en) * 2005-10-07 2011-06-08 株式会社日立プラントテクノロジー Polyester production method and polyester production apparatus
JP2007330896A (en) * 2006-06-15 2007-12-27 Tlv Co Ltd Heating and cooling device
KR101486213B1 (en) * 2013-11-26 2015-01-26 한국화학연구원 Manufacturing method for lactide using a tube bundle falling film reactor and an agitated thin film reactor
WO2015080402A1 (en) * 2013-11-26 2015-06-04 한국화학연구원 Method for producing lactide using multi-tube falling film reactor and agitated thin film reactor
CN106986816A (en) * 2017-04-13 2017-07-28 新乡市博科精细化工有限公司 A kind of device for producing 2 picolines
CN113842657A (en) * 2021-10-28 2021-12-28 北京工商大学 Equipment for circularly preparing lactide
CN113842657B (en) * 2021-10-28 2023-10-03 北京工商大学 Equipment for circularly preparing lactide
CN114984860A (en) * 2022-07-18 2022-09-02 东营科宏化工有限公司 Continuous catalyst quantitative feeding device for production of o-tert-butylcyclohexanol
CN116173873A (en) * 2023-03-21 2023-05-30 江苏东南环保科技有限公司 Alkali residue treatment homogenizing and stirring device
CN116173873B (en) * 2023-03-21 2024-01-26 江苏东南环保科技有限公司 Alkali residue treatment homogenizing and stirring device

Also Published As

Publication number Publication date
JP3572141B2 (en) 2004-09-29

Similar Documents

Publication Publication Date Title
KR100518258B1 (en) Manufacturing method of high purity terephthalic acid using dispersion medium replacement device
KR101883440B1 (en) A reactor for crystallization
EP2276751B1 (en) Process for producing high-quality melamine from urea
US7893301B2 (en) Method of preparing polymethylene-polyphenyl-polyamine
JP2530780B2 (en) Method and apparatus for continuous polymerization of laurolactam
CN102892490A (en) Vertical countercurrent solid-liquid contact method, method for washing solid particles, method for producing polyarylene sulfide, and device therefor
TW492979B (en) Method and apparatus for preparing polymers
JPH09316070A (en) Reactor for synthesizing lactide
TW201525020A (en) Continuous polyamidation process-II
TW201527354A (en) Continuous polyamidation process - i
KR100926414B1 (en) Preparation method of massive crystalline particles by separate feeding of reaction materials
CN115093348B (en) Method for preparing isocyanate by pipeline phosgene method
EP2145874B1 (en) Process for the preparation of polymethylene polyphenyl polyamine
CN106810492A (en) A kind of continous way prepares the industrialized preparing process of the picoline of 2 chlorine 5
JP3598692B2 (en) Crystallization method and crystallizer
US3465021A (en) Preparation of aromatic isocyanates
CN112679436B (en) Continuous circulation industrial production method of 5-tert-butyl-5-hydroxy-1, 3-diphenyl-2, 4-imidazolidinedione
KR101423232B1 (en) High efficiency chemical reaction method and apparatus
US3130180A (en) Continuous method and apparatus for the production of polyhexamethylene adipamide
US3954867A (en) Continuous process for preparing methylene dianilines
CN215505577U (en) High-purity product crystallization process system
KR101423233B1 (en) High efficiency chemical reaction method and apparatus
CN111269108B (en) Continuous hydrolysis device and method for 2,4,6 trimethyl benzoic acid acylation liquid
CN110681334B (en) Continuous gas-liquid reaction device and continuous gas-liquid reaction system comprising same
WO2023208914A2 (en) A process for storing a toluene diisocyanate and high boilers containing mixture and a process for working up a toluene diisocyanate comprising crude reaction product

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040628

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees