【0001】
【発明の属する技術分野】
本発明は、ラクチド生成用の反応装置に関し、詳細にはポリ乳酸の原料用としての高純度ラクチドを連続して合成するための反応装置に関する。
【0002】
【従来の技術】
ポリ乳酸は生体安全性の高い高分子化合物であり、また生物学的あるいは加水分解的に劣化し、生理学的および環境的に安全な乳酸に分解することより、医療用の縫合糸、徐放性カプセル、体内充填補強材などに用いられ、また自然環境下での分解性プラスチックとしても注目されている。
また、このようなポリ乳酸の製造方法としては、出発原料としての乳酸を脱水縮重合させて比較的低分子量の乳酸オリゴマーとし、これを触媒(オクチル酸スズ等)の存在下で加熱して環状2量体化させると共に減圧下で蒸発させ、蒸気生成物の流れの成分としてラクチドを回収し、次いで、このラクチドを開環重合させて目的のポリ乳酸を得る方法が知られている。
【0003】
そして従来では、乳酸オリゴマーからラクチドを合成するには、〔図4〕に示すバッチ処理式の反応槽が一般的に用いられている。この反応槽(30)では、一定量の乳酸オリゴマーを導入し、周壁のジャケット(31)に供給する熱媒により加熱すると共に攪拌翼(32)で均一に攪拌し、減圧した反応槽(30)内でラクチド反応と蒸発とを同時平行的に進行させて、蒸気化したラクチドを上部から回収する。
【0004】
また例えば、特表平7−500091号にあるように、ワイプレン型の薄膜蒸発機により連続的に合成する技術も知られている。
この薄膜蒸発機では、〔図5〕に示すように、ジャケット(41)付の筒状蒸発器(40)の内壁面と、中心部の内部凝縮器(42)との間に回転可能な筒状のワイパーブレート(43)を配置し、上部から連続供給した溶融乳酸オリゴマーを、蒸発器(40)内壁面に沿って流下させると共に、回転するワイパーブレート(43)によって内壁面全体に均一な厚さの薄膜に広げ、これによりラクチド反応と蒸発とを連続的に進行させて、蒸発したラクチドを上部から連続して回収する構成とされている。
【0005】
【発明が解決しようとする課題】
ところで、ポリ乳酸の原料用としてのラクチドに、合成の際の不純物(水や乳酸のモノマー、ダイマーおよびトリマー等)が含まれると、これら不純物はラクチドの開環重合の阻害物として働くため、高分子量のポリ乳酸を得るには高純度のラクチドが必要となる。
しかしながら、上記従来の反応槽は、構造が簡易で設備費を低く抑えられるものの、バッチ処理であるがために、効率面で劣り、かつ熱ロスが多くてランニングコストが大きくなる。しかも、槽内組成が経時で変化し、かつ槽内で反応と蒸気化が同時に起こるため蒸気に未反応原料が同伴され易く、安定した品質のラクチドを抜き出すことができない。
ここで、反応システムでキーとなる問題は、所定温度下で所定反応時間(滞留時間)を経て反応させ、反応物を蒸気化して抜き出すこと、つまり系内液体積と反応および蒸気化に必要な熱量供給のための伝熱面積とを適正にバランスさせることにあるが、ジャケット付反応槽のみでは、滞留量(槽内容積または液体積)に対する伝熱面積(ジャケット面積)は比例的に変化させられない。
また、反応槽内に伝熱コイル等の加熱手段を設けることもできるが、この場合、槽内での液の流動が阻害されて非流動部が生じ易く、かつ蒸気化の際に未反応物の同伴が生じ易く、これが純度低下の原因となる。従って、反応槽の大型化による処理能力の増大には限界が生じる。
一方、上記薄膜蒸発機では、溶融原料を薄膜化することで滞留量に対する伝熱面積を適正にバランさせられるものの、その内部に複雑な回転機構を有するため、設備費が多くかかり、かつ処理能力増大のための大型化は困難である。
しかも、内部の機構が複雑なため非流動部や堆積部が生じ易く、これがコンタミの原因となり、更にまた、蒸発器内壁面にヒールと呼ばれる残渣が付着形成されるため、これらを除去するための溶媒の事前添加や定期的な洗浄が必要となり、それら操作がプロセスを複雑化する。
【0006】
本発明は、上記従来技術の問題点を解消するため、乳酸オリゴマーから高純度のラクチドを連続かつ安定して合成できてなお、構成が簡易で設備費および保守負担を低く抑えることができ、しかも処理能力の増大に対応可能なラクチド合成用の反応装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、本発明は以下の構成とされている。すなわち、本発明に係るラクチド合成用の反応装置は、乳酸オリゴマーを触媒の存在下で加熱して解重合反応させ、生成したラクチドを減圧下で蒸発させて回収するラクチド生成用の反応装置であって、上部にガス抽出口を設けたジャケット付の反応槽と、この反応槽の側方に配され、中途に循環ポンプ、原料導入部および残渣排出部を配した断熱管路を介して、上端部を該反応槽の底部に接続されると共に、ジャケット付連結管を介して、下端部を該反応槽の側部に接続されたシェルチューブ型の流下式熱交換器とを備えてなることを特徴とする。
【0008】
上記本発明の反応装置では、触媒を添加した原料の乳酸オリゴマーを、原料導入部を介して導入し、流下式熱交換器を経て反応槽に送り、これを断熱管路を経て再び流下式熱交換器に循環させる。
このとき、原料の乳酸オリゴマーは、流下式熱交換器のチューブ内を流下し、周囲のシェルに供給された熱媒の熱を受けて加熱され、ラクチド反応および蒸発を生じながら、ジャケット付連結管を経て反応槽に流入する。そして、熱交換器と連結管内で気液分離され、更に反応槽内上部の気相部により完全に気液分離されてガス化したラクチドは、槽上部のガス抽出口から系外に取り出される。
一方、反応槽内に流入した未反応原料は、この反応槽内で一時滞留し、周壁のジャケットに供給された熱媒から温度保持のために必要な熱量を受けると共に、更に反応および気液分離を進行させた上で、槽底から断熱管路を経て流下式熱交換器に向けて循環液として送られ、その中途の原料導入部から導入される原料と混合されて流下式熱交換器に入り、これにより流下式熱交換器と反応槽とを循環し、順次目的のラクチドへと反応および気液分離される。
ここで、系内液量は、系外へのガス化物の回収量とのバランスにおいて、残渣排出部からの残渣排出量を原料導入部からの原料供給量と対応させて設定することで調整でき、また、系内滞留時間と供給熱量とのバランスは、循環ポンプによる循環流量制御と、熱交換器への熱媒の供給量制御とにより調整できる。更に、反応および蒸気化に必要な熱量供給のための伝熱面積は、熱交換器のチューブの径、本数、長さ等の選定により、系内設定液量に対応して変更できる。
従って、非流動部のない理想的な反応操作のもとで、系内液量と伝熱面積とを適正にバランスさせて、高純度のラクチドを連続かつ安定して得ることができ、しかも処理能力増大のための大容量化にも容易に対応することができる。
【0009】
また、上記反応槽が、内部に攪拌翼を配置していて良く、この構成によると、反応槽内で一時滞留している液を攪拌し、ジャケットから液への入熱を均一なものとして、該反応槽内での反応および気液分離をより促進でき、特に操作条件での液粘度が高い場合や、反応槽が大容量である場合に有効である。
【0010】
また、上記反応槽内の液面レベルを検出する液面検出手段と、この液面検出手段で検出された液面レベルに基づいて上記流下式熱交換器への熱媒供給量を制御する供給熱量制御手段とを備えていても良く、この構成によると、熱交換器での入熱量を反応槽内の液面レベルに対応して制御し、幅広い操作条件を選定することができ、外的要因の変動等に容易に対応して安定した反応を継続できる。
【0011】
また、上記流下式熱交換器の上端部が不活性ガス供給源に接続されていても良く、この構成によると、熱交換器の上部から少量の窒素ガス等を注入し、該熱交換器内での反応により生じたガス(蒸気化ラクチド)が上端部内で滞留することのないように下方へのガスの流れを促進して安定化させ、気液分離の効率を高めることができる。
【0012】
また、上記ジャケット付連結管が、上記反応槽内の液面の上方に位置して開口する上部連結管と、同液面下に位置して開口する下部連結管とに分岐されていても良く、この構成によると、熱交換器内での反応により生じたガス(蒸気化ラクチド)を上部連結管を介して反応槽内上部の気相部に、未反応原料液を下部連結管を介して反応槽内液面下にそれぞれ分離させて送り、反応槽内での気液分離をより効率的なものとすることができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
〔図1〕は、本発明に係る反応装置の1実施形態を示す概略図である。
【0014】
〔図1〕において、(1) は反応槽であって、この反応槽(1) は、全周壁にジャケット(10)を設けた縦型筒状の圧力容器に形成されると共に、その上部にガス抽出口(1a)、液面形成高さ位置に対応する側部に気液流入口(1b)、下底部に液流出口(1c)を設けている。また、その内部には、槽頂部に配したモータ(11)で駆動回転されるパドル型の攪拌翼(12)を配置している。
【0015】
また、この反応槽(1) の下底部の液流出口(1c)は、中間に循環ポンプ(4) を装備した断熱管路(3) を介して、該反応槽(1) の側方に配設された流下式の熱交換器(2) の上部チャンネル(21)に接続されている。また、この熱交換器(2) の下部チャンネル(23)は、L形に曲げられたジャケット(7a)付の連結管(7) を介して、反応槽(1) の気液流入口(1b)に接続されており、これにより反応槽(1) 〜断熱管路(3) 〜熱交換器(2) 〜連結管(7) 〜反応槽(1) へと循環する液循環系が形成されている。
【0016】
ここで、熱交換器(2) は、上部チャンネル(21)と下部チャンネル(23)とを多数のチューブ(22)で連結すると共に、それらチューブ(22)回りの胴部シェル(20)内に、上下のノズル(20a),(20b) から熱媒を循環導入し、各チューブ(22)の内面に沿って流下する液に熱を供給するシェルチューブ型のものである。
また、上部チャンネル(21)内には、導入した液を各チューブ(22)に均一に分散させて流入させるために上端縁を水平とした整流板(21a) が設けてある。更に、その上部チャンネル(21)の頂部には、図示省略の不活性ガス供給源に接続されたガス導入孔(24)が設けてある。また、反応槽(1) のジャケット(10)および連結管(7) のジャケット(7a)も、同様に上下のノズル(10a),(10b) および(7b),(7c) から熱媒を循環導入し、それぞれの内部の液に熱を供給する。
【0017】
翻って、断熱管路(3) には、反応槽(1) 底部寄りの部位にギヤーポンプ(8a)を装備した残渣排出管(8) が分岐接続され、また循環ポンプ(4) と熱交換器(2) との間にギヤーポンプ(9a)を装備した原料導入管(9) が分岐接続されている。また、この原料導入管(9) には、触媒を添加するための、触媒注入管(9b)が分岐接続されている。更に、循環ポンプ(4) の直後流側には、循環流量の制御のために、内部の流量を計測して循環ポンプ(4) の回転数を制御する流量制御器(5) が介装されている。なお、循環流量の厳密な調整は必要でなく、循環ポンプ(4) は可変モータで流量調整可能なものが望ましいが、流量制御器(5) は省略しても良い。また、原料導入管(9) の直後流側には、この原料導入管(9) を介して導入する原料と循環流とを混合するスタチックミキサー(6) が介装されている。
【0018】
一方、反応槽(1) 上部のガス抽出口(1a)は、図示省略の減圧手段を備えた回収管路に接続され、これにより反応槽(1) 内は、3000Pa以下に減圧される。また、この反応槽(1) は、内上部の気相部と液相部との圧力差から液面(L) レベルを検出すると共に、検出した液面レベルに基づき、熱交換器(2) の胴部シェル(20)に熱媒を導入するノズル(20a) の流量制御弁(25)に対して開度変更の指令を出す液面制御器(13)と、液温を検出する温度計(14)とを備えている。
【0019】
上記構成の本例の反応装置では、加熱(120℃前後)溶融された原料の乳酸オリゴマーを、原料導入管(9) からギヤーポンプ(9a)により定量かつ連続に導入する一方、このギヤーポンプ(9a)の流量と比例設定された触媒を、触媒注入管(9b)を介して注入し、これらを循環ポンプ(4) により循環系内で循環させる。ここで、反応槽(1) 内は3000Pa以下に減圧し、また、添加する触媒としては、従来公知のオクチル酸スズ、3酸化アンチモン、酸化亜鉛、ステアリン酸などを用いる。
【0020】
このとき、原料の乳酸オリゴマーは、熱交換器(2) の上部チャンネル(21)に入り、整流板(21a) により均一に分散されて各チューブ(22)内を流下し、周囲の胴部シェル(20)に循環供給される熱媒の熱を受けて加熱(150〜 225℃、好ましくは 150〜 200℃の温度)され、環化反応(乳酸オリゴマーの解重合反応による環状2量体化)および蒸発を生じながら、ジャケット(7a)付の連結管(7) を経て反応槽(1) に送られる。そして、熱交換器(2) と連結管(7) 内で気液分離され、更に反応槽内(1) 上部の気相部により完全に気液分離されてガス化したラクチドは、槽上部のガス抽出口(1a)から系外に取り出される。
【0021】
一方、熱交換器(2) での未反応原料は、反応槽(1) 内に流入して一時滞留し、攪拌翼(12)によって均一に攪拌混合されると共に、周壁のジャケット(10)に循環供給される熱媒から温度保持のために必要な熱量(150〜 225℃の温度を保持する熱量)を受け、反応槽(1) 内で更に反応および気液分離を進行させた上で、槽底から断熱管路(3) を経て熱交換器(2) に向けて循環液として送られる。
そして、中途のスタチックミキサー(6) によって原料導入管(9) から導入される原料と均一に混合されて熱交換器(2) に入り、これにより必要な熱量を受けてラクチド反応と気液分離が順次進行し、ガス化したラクチドが連続回収される。また、系内で濃縮される触媒および高沸点残渣は、残渣排出管(8) からギヤーポンプ(8a)により定量排出される。
【0022】
また、熱交換器(2) の上部チャンネル(21)内に、その頂部のガス導入孔(24)を介して少量のN2 ガスを注入し、熱交換器(2) 内での反応により生じたガス(蒸気化ラクチド)が上部チャンネル(21)内で滞留しないように下方へのガスの流れを促進して安定化させる。このN2 ガスは、反応槽(1) 内に流入して気液分離され、ガス化ラクチドと共に系外に取り出される。
【0023】
ここで、上記操作時における処理量は、原料導入管(9) のギヤーポンプ(9a)の回転数で設定され、その流量に見合う触媒量が設定される。また、設定処理量と系内での触媒の濃縮倍率とにより、残渣排出量を残渣排出管(8) のギヤーポンプ(8a)の回転数で設定する。また、処理量に見合う適正循環量が循環ポンプ(4) にて設定される。
そして、適正反応時間と処理量とより系内滞留時間が決定され、その滞留時間に見合う液面が、液面制御器(13)にて設定される。また、その液面の制御は、熱交換器(2) への流量制御弁(25)の開度を変更し、熱交換器(2) への入熱量を制御することにより、ラクチド蒸発量を自動的に制御することによりなされる。
更に、適正反応時間は、処理温度および系内圧力の調整で変更が可能であり、これらの設定・制御にて、簡単に幅広い操作条件を選定することができる。
【0024】
このように、溶融状態の原料を系内で循環させながらラクチド反応と気液分離とを順次進行させて、蒸発生成物として製品ラクチドを取り出す本例の反応装置では、非流動部のない理想的な反応操作のもとで、系内液量と伝熱面積とを適正にバランスさせて、高純度のラクチドを連続かつ安定して得ることができる。
しかも、その構成が簡易であって設備費および保守負担を低く抑えることができ、また、反応および蒸気化に必要な熱量供給のための伝熱面積は、熱交換器のチューブの径、本数、長さ等の選定により、系内での設定液量に対応して変更できるので、処理能力増大のための大容量化にも容易に対応することができる。
【0025】
なお、上記例の反応装置では、反応槽(1) 内にパドル型の攪拌翼(12)を配置したが、これは大容量に対応し、液を攪拌混合してジャケット(10)からの入熱を均等かつ効率的なものとするためであって、その攪拌翼は、適用する反応槽の容量および操作条件での液粘度等を勘案してパドル型以外の形態のものを用いて良いく、また、比較的容量が小さく、かつ操作条件での液粘度が低くて反応槽内での流動混合が期待される場合には、この攪拌翼の配置は省略されても良い。
【0026】
また、上記例の反応装置では、熱交換器(2) の上部チャンネル(21)内に設けた整流板(21a) は、上端縁を水平に形成されたものとしたが、その別の実施形態の説明図である〔図2〕の (a)図に示すように、上端縁に複数のVノッチ(21b) を切ることも液を均一分散させるに有効であり、更に、上端縁の水平度を調整できるように、固定される下部と上下動可能な上部とを組み合わせた構成とされることも好ましい実施形態である。更にまた、下端部に複数のウイープホール(21c) を設けることも液の均一分散に有効である。
一方、各チューブ(22)は、液の均一分散のために必要な液深が取れるように、それぞれの上端部を上部チャンネル(21)内に突出させた状態で取り付けられるが、液の均等流入ためには互いの上端面が水平であることが要求される。しかし、大容量でチューブ数が多くなる場合には、各チューブの上端面を水平に揃えることは製作上困難となるので、これに対処するには、各チューブを取り付けた後に、 (b)図に示すように、各チューブ(22)の上端にVノッチ(22a) を切ることや、 (c)図に示すように、各チューブ(22)上端にアダプター(26)を取り付けることが効果的であり、更には (d)図に示すように、各チューブ(22)に、上端にVノッチ(27a) を切ったアダプター(27)をネジ等を介して高さ調整可能に取り付けることがより効果的で好ましい実施形態である。更にまた、各チューブ(22)の上部チャンネル(21)内での付け根部にウイープホール(22b) を設けることも液の均一分散に有効である。
【0027】
また、上記例の反応装置では、熱交換器(2) は、その胴部シェル(20)の径よりも小さな径のジャケット(7a)付の連結管(7) を介して、反応槽(1) の接続したが、これは1例であって、相互間の取り合わせに特段の制約がなければ、例えば、その別の実施形態の説明図である〔図3〕の (a)図に示すように、熱交換器(2) の胴部シェル(20)と同径のジャケット(7a)付の連結管(7’)を介して連結することも、効率的な気液分離流動が得られて好ましい。
更に、(b) 図に示すように、ジャケット(7a)付の連結管(7”)を、反応槽(1) 内の液面(L) の上方に位置して開口する上部連結管(16)と、同液面(L) 下に位置して開口する下部連結管(17)とに分岐させ、熱交換器(2) 内での反応により生じたガス(蒸気化ラクチド)を上部連結管(16)を介して反応槽(1) 内上部の気相部に、未反応原料液を下部連結管(17)を介して液面(L) 下にそれぞれ分離して流入させる構成とすることも、より効率的な気液分離が行えると共に、液相の系内滞留時間の調整幅が広げられて、より好ましい実施形態である。
【0028】
【発明の効果】
以上に述べたように、本発明に係るラクチド合成用の反応装置は、連続操作のもとで、乳酸オリゴマーから高純度のラクチドを安定して合成できてなお、構成が簡易で設備費および保守負担を低く抑えることができ、しかも処理能力増大のための大型化が容易で、大容量連続処理に対応可能である。
【図面の簡単な説明】
【図1】本発明の反応装置の1実施形態を示す概略図である。
【図2】本発明の反応装置に関わる熱交換器の別の実施形態の説明図である。
【図3】本発明の反応装置に関わる連結管の別の実施形態の説明図である。
【図4】従来のラクチド合成用反応槽を示す概略図である。
【図5】従来のラクチド合成用薄膜蒸発機を示す概略図である。
【符号の説明】
(1) −−反応槽、(1a)−−ガス抽出口、(1b)−−気液流出口、(1c)−−液流出口、(2) −−熱交換器、(3) −−断熱管路、(4) −−循環ポンプ、(5) −−流量制御器、(6) −−スタチックミキサー、(7) −−連結管、(7’)−−連結管、(7”)−−連結管、(7a)−−ジャケット、(7b)−−ノズル、 (7c)−− ノズル、(8) −−残渣排出管、(8a)−−ギヤーポンプ、(9) −−原料導入管、(9a)−−ギヤーポンプ、(9b)−−触媒注入管、(10)−−ジャケット、(10a) −−ノズル、 (10b)−−ノズル、(11)−−モータ、(12)−−攪拌翼、(13)−−制御器、(14)−−温度計、(16)−−上部連結管、(17)−−下部連結管、(20)−−胴部シェル、(20a) −−ノズル、(20b) −−ノズル、(21)−−上部チャンネル、(21a) −−整流板、(21b) −−Vノッチ、(21c) −−ウイープホール、(22)−−チューブ、(22a) −−Vノッチ、(22b) −−ウイープホール、(23)−−下部チャンネル、(24)−−ガス導入孔、(25)−−流量制御弁、(26)−−アダプター、(27)−−アダプター、(27a) −−Vノッチ、(L) −−液面(L) 。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a reactor for producing lactide, and more particularly to a reactor for continuously synthesizing high-purity lactide as a raw material for polylactic acid.
[0002]
[Prior art]
Polylactic acid is a high-biosafety polymer compound that degrades biologically or hydrolytically and breaks down into physiologically and environmentally safe lactic acid. It is used as a capsule, a reinforcing material for filling in the body, etc., and also attracts attention as a degradable plastic under natural environments.
In addition, as a method for producing such polylactic acid, lactic acid as a starting material is subjected to dehydration-condensation polymerization to form a lactic acid oligomer having a relatively low molecular weight, which is heated in the presence of a catalyst (such as tin octylate) to form a cyclic lactic acid. It is known to dimerize and evaporate under reduced pressure to recover lactide as a component of a vapor product stream, and then subject the lactide to ring-opening polymerization to obtain the desired polylactic acid.
[0003]
Conventionally, in order to synthesize lactide from a lactic acid oligomer, a batch processing type reaction tank shown in FIG. 4 is generally used. In the reaction tank (30), a certain amount of lactic acid oligomer is introduced, heated by a heating medium supplied to the jacket (31) of the peripheral wall, and uniformly stirred by the stirring blade (32) to reduce the pressure of the reaction tank (30). In the inside, the lactide reaction and the evaporation proceed simultaneously and in parallel, and the vaporized lactide is recovered from above.
[0004]
Also, for example, as disclosed in Japanese Patent Application Laid-Open No. 7-50091, a technique of continuously synthesizing a film using a wipen type thin film evaporator is also known.
In this thin film evaporator, as shown in FIG. 5, a rotatable cylinder is provided between an inner wall surface of a cylindrical evaporator (40) having a jacket (41) and an internal condenser (42) at the center. A wiper plate (43) in the shape of is arranged, and the molten lactic acid oligomer continuously supplied from above is caused to flow down along the inner wall surface of the evaporator (40), and the rotating wiper plate (43) has a uniform thickness on the entire inner wall surface. In this configuration, the lactide reaction and the evaporation are continuously progressed, and the evaporated lactide is continuously collected from above.
[0005]
[Problems to be solved by the invention]
By the way, if lactide used as a raw material for polylactic acid contains impurities during synthesis (such as water and lactic acid monomers, dimers and trimers), these impurities act as inhibitors of ring-opening polymerization of lactide. High-purity lactide is required to obtain polylactic acid having a molecular weight.
However, although the above-mentioned conventional reaction tank has a simple structure and can keep the equipment cost low, it is inferior in efficiency due to batch processing, and has a large heat loss and a large running cost. In addition, since the composition in the tank changes over time and the reaction and vaporization occur simultaneously in the tank, unreacted raw materials are easily entrained in the steam, and lactide of stable quality cannot be extracted.
Here, the key problem in the reaction system is that the reaction is performed at a predetermined temperature for a predetermined reaction time (residence time), and the reactants are vaporized and extracted. In order to properly balance the heat transfer area for heat supply, the heat transfer area (jacket area) is proportionally changed with respect to the retained amount (volume in the tank or liquid volume) only in the jacketed reactor. I can't.
Further, a heating means such as a heat transfer coil may be provided in the reaction tank. However, in this case, the flow of the liquid in the tank is hindered, and a non-flowing portion is easily generated. Are easily entrained, which causes a decrease in purity. Therefore, there is a limit to the increase in the processing capacity due to the increase in the size of the reaction tank.
On the other hand, in the above-mentioned thin film evaporator, although the heat transfer area with respect to the stagnation amount can be properly balanced by making the molten raw material into a thin film, a complicated rotation mechanism is provided inside the thin film evaporator, so that equipment costs are high and the processing capacity is high. It is difficult to increase the size for the increase.
In addition, since the internal mechanism is complicated, a non-flowing portion and a depositing portion are apt to occur, which causes contamination, and furthermore, a residue called a heel adheres to the inner wall surface of the evaporator and is formed. Pre-addition of solvent and periodic washing are required, and these operations complicate the process.
[0006]
The present invention is capable of continuously and stably synthesizing high-purity lactide from a lactic acid oligomer in order to solve the above-mentioned problems of the prior art. An object of the present invention is to provide a reactor for lactide synthesis that can cope with an increase in processing capacity.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration. That is, the reactor for lactide synthesis according to the present invention is a reactor for lactide production in which a lactic acid oligomer is heated in the presence of a catalyst to cause a depolymerization reaction, and the produced lactide is evaporated and recovered under reduced pressure. And a jacketed reaction tank provided with a gas extraction port in the upper part, and a heat insulating pipe line arranged on the side of the reaction tank and provided with a circulation pump, a raw material introduction section and a residue discharge section on the way. And a shell-tube flow-down heat exchanger having a lower end connected to the bottom of the reaction vessel and a lower end connected to a side of the reaction vessel via a connection pipe with a jacket. Features.
[0008]
In the reactor of the present invention, the lactic acid oligomer as the raw material to which the catalyst has been added is introduced through the raw material introduction section, sent to the reaction tank through the flow-down heat exchanger, and then sent again through the adiabatic conduit to the flow-through heat. Circulate through the exchanger.
At this time, the lactic acid oligomer as a raw material flows down the tubes of the falling heat exchanger, is heated by the heat of the heat medium supplied to the surrounding shell, and is heated while undergoing lactide reaction and evaporation. And flows into the reaction tank. The lactide gas-liquid separated in the heat exchanger and the connection pipe, and further gas-liquid separated completely by the gas phase in the upper part of the reaction tank, is taken out of the system from the gas extraction port in the upper part of the tank.
On the other hand, the unreacted raw material that has flowed into the reaction tank temporarily stays in the reaction tank, receives the heat required for maintaining the temperature from the heat medium supplied to the jacket of the peripheral wall, and further performs the reaction and gas-liquid separation. And then sent as circulating liquid from the bottom of the tank through the adiabatic pipeline to the falling heat exchanger, where it is mixed with the raw material introduced from the intermediate raw material introduction section to form the falling heat exchanger. Then, it is circulated through the falling heat exchanger and the reaction tank, and is sequentially reacted and vapor-liquid separated into a target lactide.
Here, the amount of liquid in the system can be adjusted by setting the amount of residue discharged from the residue discharge unit in correspondence with the amount of gasified material collected outside the system in correspondence with the amount of raw material supplied from the raw material introduction unit. The balance between the residence time in the system and the amount of heat supplied can be adjusted by controlling the circulation flow rate by the circulation pump and controlling the supply amount of the heat medium to the heat exchanger. Further, the heat transfer area for supplying the amount of heat required for the reaction and vaporization can be changed in accordance with the set liquid amount in the system by selecting the diameter, number, length, etc. of the tubes of the heat exchanger.
Therefore, under an ideal reaction operation without a non-fluid part, a high-purity lactide can be obtained continuously and stably by properly balancing the amount of liquid in the system and the heat transfer area. It is possible to easily cope with an increase in capacity to increase capacity.
[0009]
Further, the reaction vessel may have a stirring blade disposed therein, and according to this configuration, the liquid temporarily staying in the reaction vessel is stirred, and the heat input from the jacket to the liquid is made uniform. The reaction and gas-liquid separation in the reaction tank can be further promoted, and it is particularly effective when the liquid viscosity under operating conditions is high or when the reaction tank has a large capacity.
[0010]
A liquid level detecting means for detecting a liquid level in the reaction tank; and a supply for controlling a heat medium supply amount to the flow-down type heat exchanger based on the liquid level detected by the liquid level detecting means. Heat control means may be provided, and according to this configuration, the heat input in the heat exchanger can be controlled in accordance with the liquid level in the reaction tank, and a wide range of operating conditions can be selected. A stable reaction can be continued easily in response to fluctuations in factors.
[0011]
Further, the upper end of the falling heat exchanger may be connected to an inert gas supply source. According to this configuration, a small amount of nitrogen gas or the like is injected from the upper part of the heat exchanger, and the inside of the heat exchanger is The gas (vaporized lactide) generated by the reaction in step (1) can be stabilized by promoting the downward gas flow so that the gas (vaporized lactide) does not stay in the upper end portion, and the efficiency of gas-liquid separation can be increased.
[0012]
Further, the jacketed connecting pipe may be branched into an upper connecting pipe which is located above the liquid level in the reaction tank and opens, and a lower connecting pipe which is located below and opened below the liquid level. According to this configuration, the gas (vaporized lactide) generated by the reaction in the heat exchanger is supplied to the upper gas phase in the reaction tank via the upper connecting pipe, and the unreacted raw material liquid is supplied via the lower connecting pipe. It is possible to make gas-liquid separation in the reaction tank more efficient by separating and sending them below the liquid level in the reaction tank.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view showing one embodiment of a reaction apparatus according to the present invention.
[0014]
In FIG. 1, (1) is a reaction tank, which is formed in a vertical cylindrical pressure vessel provided with a jacket (10) on the entire peripheral wall, and has a A gas extraction port (1a), a gas-liquid inlet (1b) on the side corresponding to the liquid surface formation height position, and a liquid outlet (1c) on the lower bottom are provided. Further, a paddle-type stirring blade (12) driven and rotated by a motor (11) disposed at the top of the tank is disposed therein.
[0015]
The liquid outlet (1c) at the lower bottom of the reaction tank (1) is connected to the side of the reaction tank (1) via an adiabatic pipe (3) equipped with a circulation pump (4) in the middle. It is connected to the upper channel (21) of the flow-down type heat exchanger (2) arranged. The lower channel (23) of the heat exchanger (2) is connected to a gas-liquid inlet (1b) of the reaction tank (1) through a connecting pipe (7) with an L-shaped bent jacket (7a). ), Thereby forming a liquid circulation system that circulates through the reaction tank (1), the heat-insulating pipeline (3), the heat exchanger (2), the connecting pipe (7), and the reaction tank (1). ing.
[0016]
Here, the heat exchanger (2) connects the upper channel (21) and the lower channel (23) with a number of tubes (22), and also includes a body shell (20) around the tubes (22). A shell tube type in which a heat medium is circulated and introduced from upper and lower nozzles (20a) and (20b) to supply heat to the liquid flowing down along the inner surface of each tube (22).
In the upper channel (21), there is provided a straightening plate (21a) having a horizontal upper end edge for uniformly dispersing the introduced liquid into each tube (22) and flowing the same. Further, a gas introduction hole (24) connected to an inert gas supply source (not shown) is provided at the top of the upper channel (21). Similarly, the jacket (10) of the reaction tank (1) and the jacket (7a) of the connecting pipe (7) circulate the heat medium from the upper and lower nozzles (10a), (10b) and (7b), (7c). Introduce and supply heat to the liquid inside each.
[0017]
In turn, a residue discharge pipe (8) equipped with a gear pump (8a) is connected to the adiabatic conduit (3) at a position near the bottom of the reaction tank (1), and a circulation pump (4) and a heat exchanger are connected. A raw material introduction pipe (9) equipped with a gear pump (9a) is connected between (2) and (3). Further, a catalyst injection pipe (9b) for adding a catalyst is branched and connected to the raw material introduction pipe (9). Further, a flow controller (5) for measuring the internal flow rate and controlling the number of revolutions of the circulation pump (4) is provided immediately downstream of the circulation pump (4) for controlling the circulation flow rate. ing. It is not necessary to strictly adjust the circulating flow rate, and the circulating pump (4) is preferably a variable motor capable of adjusting the flow rate, but the flow rate controller (5) may be omitted. A static mixer (6) for mixing the circulating flow with the raw material introduced via the raw material introduction pipe (9) is provided immediately downstream of the raw material introduction pipe (9).
[0018]
On the other hand, the gas extraction port (1a) in the upper part of the reaction tank (1) is connected to a collecting pipe provided with a depressurizing means (not shown), whereby the pressure in the reaction tank (1) is reduced to 3000 Pa or less. The reaction tank (1) detects a liquid level (L) level from a pressure difference between a gas phase part and a liquid phase part in the upper part, and based on the detected liquid level, a heat exchanger (2) A liquid level controller (13) for issuing a command to change the opening to a flow control valve (25) of a nozzle (20a) for introducing a heat medium into a body shell (20) of the body, and a thermometer for detecting a liquid temperature (14).
[0019]
In the reactor of the present embodiment having the above-described configuration, the heated (about 120 ° C.) molten lactic acid oligomer as the raw material is quantitatively and continuously introduced from the raw material introduction pipe (9) by the gear pump (9a), while the gear pump (9a) is used. The catalyst set in proportion to the flow rate is injected through a catalyst injection pipe (9b) and circulated in a circulation system by a circulation pump (4). Here, the pressure inside the reaction tank (1) is reduced to 3000 Pa or less, and as a catalyst to be added, conventionally known tin octylate, antimony trioxide, zinc oxide, stearic acid, or the like is used.
[0020]
At this time, the lactic acid oligomer as a raw material enters the upper channel (21) of the heat exchanger (2), is uniformly dispersed by the current plate (21a), flows down in each tube (22), and surrounds the body shell. (20) is heated (at a temperature of 150 to 225 ° C., preferably 150 to 200 ° C.) by receiving heat of the heat medium circulated and supplied, and is subjected to a cyclization reaction (cyclic dimerization by depolymerization of lactic acid oligomer). While evaporating, it is sent to the reaction tank (1) through the connecting pipe (7) with the jacket (7a). The lactide gas-liquid separated in the heat exchanger (2) and the connection pipe (7) and completely gas-liquid separated by the gas phase in the upper part of the reaction tank (1) is supplied to the upper part of the tank. It is taken out of the system from the gas extraction port (1a).
[0021]
On the other hand, the unreacted raw material in the heat exchanger (2) flows into the reaction tank (1) and temporarily stays there, and is uniformly stirred and mixed by the stirring blade (12), and is mixed with the jacket (10) of the peripheral wall. After receiving the amount of heat required for maintaining the temperature (the amount of heat for maintaining the temperature of 150 to 225 ° C.) from the circulated and supplied heat medium, the reaction and gas-liquid separation are further advanced in the reaction tank (1). It is sent as circulating liquid from the tank bottom to the heat exchanger (2) through the heat insulating pipe (3).
The raw material introduced from the raw material introduction pipe (9) is uniformly mixed with the raw material introduced into the heat exchanger (2) by the halfway static mixer (6) and enters the heat exchanger (2). Separation proceeds sequentially, and gasified lactide is continuously recovered. The catalyst and high-boiling residue concentrated in the system are quantitatively discharged from a residue discharge pipe (8) by a gear pump (8a).
[0022]
In addition, a small amount of N 2 gas is injected into the upper channel (21) of the heat exchanger (2) through the gas introduction hole (24) at the top thereof, and is generated by the reaction in the heat exchanger (2). The gas flow (vaporized lactide) is promoted and stabilized downward so that the gas does not stay in the upper channel (21). This N 2 gas flows into the reaction tank (1), is separated into gas and liquid, and is taken out of the system together with gasified lactide.
[0023]
Here, the processing amount at the time of the above operation is set by the number of revolutions of the gear pump (9a) of the raw material introduction pipe (9), and the amount of catalyst corresponding to the flow rate is set. Further, the residue discharge amount is set by the number of rotations of the gear pump (8a) of the residue discharge pipe (8) according to the set processing amount and the concentration ratio of the catalyst in the system. Further, an appropriate circulation amount corresponding to the processing amount is set by the circulation pump (4).
The residence time in the system is determined from the appropriate reaction time and the processing amount, and the liquid level corresponding to the residence time is set by the liquid level controller (13). The level of the lactide is controlled by changing the opening of the flow control valve (25) to the heat exchanger (2) and controlling the heat input to the heat exchanger (2). This is done by automatic control.
Furthermore, the appropriate reaction time can be changed by adjusting the processing temperature and the pressure in the system, and a wide range of operating conditions can be easily selected by setting and controlling these.
[0024]
As described above, the lactide reaction and gas-liquid separation are sequentially performed while circulating the raw material in the molten state in the system, and the product lactide is extracted as an evaporation product. Under a suitable reaction operation, a high-purity lactide can be continuously and stably obtained by appropriately balancing the amount of liquid in the system and the heat transfer area.
In addition, the structure is simple and the equipment cost and maintenance burden can be kept low.The heat transfer area for supplying the heat quantity necessary for the reaction and vaporization depends on the diameter, number of tubes of the heat exchanger, Since the length can be changed in accordance with the set liquid volume in the system by selecting the length and the like, it is possible to easily cope with an increase in the capacity for increasing the processing capacity.
[0025]
In the reactor of the above example, a paddle-type stirring blade (12) was disposed in the reaction tank (1), which corresponded to a large capacity, and the liquid was stirred and mixed to be introduced from the jacket (10). In order to make the heat uniform and efficient, the stirring blade may be of a type other than the paddle type in consideration of the volume of the reaction tank to be applied and the liquid viscosity under operating conditions. If the capacity is relatively small and the liquid viscosity under the operating conditions is low and fluid mixing in the reaction tank is expected, the arrangement of the stirring blade may be omitted.
[0026]
Further, in the reactor of the above example, the current plate (21a) provided in the upper channel (21) of the heat exchanger (2) has the upper end edge formed horizontally. As shown in FIG. 2 (a), which is an explanatory view of FIG. 2, cutting a plurality of V notches (21b) at the upper edge is also effective for uniformly dispersing the liquid. It is also a preferred embodiment that the fixed lower part and the vertically movable upper part are combined so that the height can be adjusted. Providing a plurality of weep holes (21c) at the lower end is also effective for uniform dispersion of the liquid.
On the other hand, each tube (22) is mounted with its upper end protruding into the upper channel (21) so that the liquid depth required for uniform dispersion of the liquid can be obtained. For this purpose, it is required that the upper end faces be horizontal. However, when the number of tubes is large and the number of tubes is large, it is difficult to make the upper end surfaces of the tubes horizontal, so that it is difficult to cope with this. It is effective to cut a V notch (22a) at the upper end of each tube (22), as shown in (c), and to attach an adapter (26) to the upper end of each tube (22), as shown in FIG. (D) As shown in the figure, it is more effective to attach an adapter (27) having a V-notch (27a) at the upper end to each tube (22) via a screw or the like so that the height can be adjusted. This is a preferred embodiment. Furthermore, providing a weep hole (22b) at the base of each tube (22) in the upper channel (21) is also effective for uniform dispersion of the liquid.
[0027]
Further, in the reactor of the above example, the heat exchanger (2) is connected to the reaction vessel (1) via a connecting pipe (7) with a jacket (7a) having a diameter smaller than the diameter of its body shell (20). However, this is only an example, and if there is no particular restriction on the arrangement between them, for example, as shown in FIG. Also, by connecting the body shell (20) of the heat exchanger (2) via a connecting pipe (7 ') with a jacket (7a) having the same diameter, an efficient gas-liquid separation flow can be obtained. preferable.
(B) As shown in the figure, a connecting pipe (7 ") with a jacket (7a) is opened above the liquid level (L) in the reaction tank (1). ) And a lower connecting pipe (17) located below the liquid level (L) and opened, and the gas (vaporized lactide) generated by the reaction in the heat exchanger (2) is transferred to the upper connecting pipe. (16) The unreacted raw material liquid is separated and flows below the liquid level (L) through the lower connecting pipe (17) into the gas phase portion inside the upper part of the reaction tank (1) through (16). This is a more preferred embodiment because more efficient gas-liquid separation can be performed and the adjustment range of the residence time of the liquid phase in the system is widened.
[0028]
【The invention's effect】
As described above, the reactor for lactide synthesis according to the present invention is capable of stably synthesizing high-purity lactide from lactic acid oligomers under continuous operation, and has a simple structure, equipment cost and maintenance. The burden can be kept low, and it is easy to increase the size to increase the processing capacity, and it is possible to handle large-capacity continuous processing.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing one embodiment of a reaction apparatus of the present invention.
FIG. 2 is an explanatory diagram of another embodiment of the heat exchanger related to the reaction apparatus of the present invention.
FIG. 3 is an explanatory view of another embodiment of the connecting pipe relating to the reaction apparatus of the present invention.
FIG. 4 is a schematic view showing a conventional reactor for lactide synthesis.
FIG. 5 is a schematic view showing a conventional thin film evaporator for lactide synthesis.
[Explanation of symbols]
(1)-reaction tank, (1a)-gas extraction port, (1b)-gas-liquid outlet, (1c)-liquid outlet, (2)-heat exchanger, (3)- Adiabatic pipeline, (4) circulating pump, (5) flow controller, (6) static mixer, (7) connecting pipe, (7 ') connecting pipe, (7 ") )-Connecting pipe, (7a)-jacket, (7b)-nozzle, (7c)-nozzle, (8)-residue discharge pipe, (8a)-gear pump, (9)-raw material introduction Pipe, (9a) -gear pump, (9b) -catalyst injection pipe, (10) -jacket, (10a) -nozzle, (10b) -nozzle, (11) -motor, (12)- -Stirring blade, (13)-controller, (14)-thermometer, (16)-upper connecting pipe, (17)-lower connecting pipe, (20)-body section (20a)-Nozzle, (20b)-Nozzle, (21)-Upper channel, (21a)-Rectifier plate, (21b)-V notch, (21c)-Weep hole, (22) -Tube, (22a)-V notch, (22b)-Weep hole, (23)-Lower channel, (24)-Gas inlet, (25)-Flow control valve, (26)- Adapter, (27) --- Adapter, (27a)-V notch, (L)-Liquid level (L).