JPH0931166A - Resin-sealed semiconductor device - Google Patents

Resin-sealed semiconductor device

Info

Publication number
JPH0931166A
JPH0931166A JP18241795A JP18241795A JPH0931166A JP H0931166 A JPH0931166 A JP H0931166A JP 18241795 A JP18241795 A JP 18241795A JP 18241795 A JP18241795 A JP 18241795A JP H0931166 A JPH0931166 A JP H0931166A
Authority
JP
Japan
Prior art keywords
resin
epoxy resin
semiconductor device
formula
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18241795A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Kokado
博義 小角
Kuniyuki Eguchi
州志 江口
Toshiaki Ishii
利昭 石井
Akira Nagai
永井  晃
Masahiko Ogino
雅彦 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18241795A priority Critical patent/JPH0931166A/en
Publication of JPH0931166A publication Critical patent/JPH0931166A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the resistance to reflowing, the reliability in the moisture resistance and reliability when left to stand at a high temperature of a resin- sealed semiconductor device. SOLUTION: This semiconductor device sealed with an epoxy resin composition contains an epoxy resin, a curing agent, a cure accelerator and a filler, wherein the cure accelerator used comprises an organophosphorus compound represented by formula I (m is an integer of 1 to 5; and R is an alkyl or alkoxy) and wherein the curing agent used comprises a phenolic resin represented by formula II (n is an integer of 0 to 5).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、成形性及び貯蔵安定性
が優れたエポキシ樹脂組成物で封止された樹脂封止型半
導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin-encapsulated semiconductor device encapsulated with an epoxy resin composition having excellent moldability and storage stability.

【0002】[0002]

【従来の技術】トランジスター,IC,LSI等の半導
体パッケージには量産性に優れた樹脂封止方式が用いら
れている。封止材料は成形性,電気特性,耐熱性などに
優れたo−クレゾールノボラック型エポキシ樹脂に、フ
ェノール系硬化剤及び無機充填剤や各種添化剤を配合し
たエポキシ樹脂組成物が広く用いられている。
2. Description of the Related Art For semiconductor packages such as transistors, ICs and LSIs, a resin encapsulation method which is excellent in mass productivity is used. As an encapsulating material, an epoxy resin composition is widely used in which a phenolic curing agent, an inorganic filler, and various additives are mixed with an o-cresol novolac type epoxy resin having excellent moldability, electrical characteristics, and heat resistance. There is.

【0003】ところで、各種エレクトロニクス機器の小
型軽量化,高性能化などのニーズから、これに用いる半
導体装置は実装の高密度化が強く要望され、最近では高
密度実装に適した表面実装型半導体装置が主流になりつ
つある。しかも、パッケージは年々小型薄型化の趨勢に
ある。それに伴い封止樹脂層の厚さは著しく薄肉化して
いる。特に、TSOP(Thi Small Outline Packag
e),TQFJ(Thin QuadOutline J−lead Packag
e),TQFP(Thin Quad Flat Package)といった半導
体装置の内で、厚さが1mm前後の表面実装型の薄型パッ
ケージの需要が急増している。更には、0.5mm 以下の
超薄型表面実装型パッケージの開発も鋭意行われてい
る。
By the way, in response to needs such as miniaturization, weight reduction, and high performance of various electronic equipments, there is a strong demand for high density mounting of semiconductor devices used for these devices, and recently, a surface mounting type semiconductor device suitable for high density mounting. Is becoming mainstream. In addition, packages are becoming smaller and thinner year after year. Accordingly, the thickness of the sealing resin layer has been significantly reduced. Especially TSOP (Thi Small Outline Packag
e), TQFJ (Thin QuadOutline J-lead Packag
Among semiconductor devices such as e) and TQFP (Thin Quad Flat Package), the demand for surface mount thin packages with a thickness of around 1 mm is rapidly increasing. Furthermore, the development of an ultra-thin surface mount package with a thickness of 0.5 mm or less is being earnestly pursued.

【0004】一般に、封止材料は保存中に特性が変化す
るので、その防止策として低温で保管している。しか
し、それでも硬化反応が徐々に進んで流動性が低下し、
所謂貯蔵安定性が不足して長期保管が出来ない。しか
も、封止材料は保管中に徐々に吸湿するため、硬化促進
剤の種類によっては加水分解などにより硬化阻害を起こ
し、均質な成形品が得られない問題がある。
In general, the characteristics of the encapsulating material change during storage, so that it is stored at a low temperature as a preventive measure. However, the curing reaction gradually progressed and the fluidity decreased,
So-called storage stability is insufficient and long-term storage is not possible. In addition, since the sealing material gradually absorbs moisture during storage, there is a problem that depending on the type of the curing accelerator, curing is inhibited by hydrolysis or the like, and a homogeneous molded product cannot be obtained.

【0005】一方、半導体パッケージ成形において、従
来は成形後に残っている未使用材料を再利用するため
に、回収して再度低温保管していた。しかしながら、最
近では成形工程の簡略化から、未使用材料をそのまま成
形機内あるいはその周辺に放置しておく場合があり、そ
のため、特性が変化して再利用時の障害になっている。
封止材料の特性が変化すると(1)均質で安定した成形品
が得られなくなる、(2)半導体パッケージの成形歩留ま
り低下、(3)吸湿による信頼性低下等の大きな要因にな
っている。従って、封止材料には成形硬化性,貯蔵安定
性,耐湿性等の三特性の向上が一層強く要求されてい
る。
On the other hand, in the molding of semiconductor packages, conventionally, unused materials remaining after molding have been collected and stored again at low temperature. However, recently, due to the simplification of the molding process, an unused material may be left as it is in the molding machine or in the vicinity thereof, which causes a change in the characteristics, which is an obstacle to reuse.
Changes in the characteristics of the encapsulation material are major factors such as (1) it is not possible to obtain a homogeneous and stable molded product, (2) the molding yield of the semiconductor package decreases, and (3) the reliability decreases due to moisture absorption. Therefore, the encapsulating material is required to further improve the three characteristics such as moldability, storage stability and moisture resistance.

【0006】他方、樹脂封止型半導体装置において封止
樹脂層が薄くなるにつれてパッケージへの水の浸入が容
易になり、しかも、樹脂層の機械強度が小さくなるた
め、パッケージは小さい力が加わっただけで容易に破損
するようになる問題が生じている。また、表面実装型半
導体装置を被支持体に固定する所謂実装は、赤外線やベ
ーパーリフロー方式によるはんだ付けが主流になってお
り、その際パッケージが約250℃の高温に曝される。
そのため、パッケージが吸湿していると吸湿水分が気化
して急激に体積膨張するために、その蒸気圧によってパ
ッケージが膨れてチップと封止樹脂との界面に剥離が生
じたり、あるいは封止樹脂強度が蒸気圧より小さい場合
はパッケージにクラックが発生したりする。その結果、
半導体装置は素子特性が変動したり、アルミニウム配線
が腐食され易くなり、実装後の各種信頼性が低下する。
そのため、樹脂層の薄い表面実装型パッケージには耐は
んだリフロー性の向上が強く望まれている。
On the other hand, in the resin-encapsulated semiconductor device, the thinner the encapsulating resin layer is, the easier water permeates into the package, and the mechanical strength of the resin layer is reduced. Therefore, a small force is applied to the package. There is a problem that it will be easily damaged. Further, the so-called mounting for fixing the surface mount type semiconductor device to a supported body is mainly soldering by an infrared ray or vapor reflow method, in which case the package is exposed to a high temperature of about 250 ° C.
Therefore, when the package absorbs moisture, the absorbed moisture evaporates and the volume expands rapidly, and the vapor pressure causes the package to swell and peel at the interface between the chip and the sealing resin, or the sealing resin strength. If is less than the vapor pressure, the package may crack. as a result,
In the semiconductor device, the element characteristics change and the aluminum wiring is easily corroded, so that various reliability after mounting deteriorates.
Therefore, it is strongly desired to improve the solder reflow resistance in the surface mount type package having a thin resin layer.

【0007】前記水分のパッケージへの浸入経路には次
の2つがある。(1)樹脂封止層からの拡散浸透、(2)リ
ードフレームと封止材料との界面からの浸入である。表
面実装型パッケージに要求される耐はんだリフロー性を
向上するためには、こうした浸入水分の低減が極めて重
要である。
There are the following two paths for the moisture to enter the package. (1) Diffusion and penetration from the resin sealing layer, and (2) Penetration from the interface between the lead frame and the sealing material. In order to improve the solder reflow resistance required for surface mount packages, it is extremely important to reduce such infiltration moisture.

【0008】上記課題を解決するために、これまで種々
の対策が検討され、特に、封止材料の低吸湿化並びに接
着力の強化が有効であった。例えば、特開平3−207714
号公報や特開平4−48759号公報に開示されているよう
に、ビフェニル骨格を有するエポキシ樹脂とフェノール
アラルキル樹脂硬化剤からなるエポキシ樹脂組成物でパ
ッケージを構成したり、また、特開平4−50223号公報や
特開平4−199856 号公報,特開平4−199857 号公報に開
示されているように、ナフタレン骨格を有する吸湿性の
低いエポキシ樹脂組成物でパッケージを構成することに
よって、耐はんだリフロー性を改善することが可能にな
った。
In order to solve the above problems, various measures have been studied so far, and it has been particularly effective to reduce the moisture absorption of the sealing material and to strengthen the adhesive force. For example, JP-A-3-207714
As disclosed in JP-A-4-48759 and JP-A-4-48759, a package is constituted by an epoxy resin composition comprising an epoxy resin having a biphenyl skeleton and a phenol aralkyl resin curing agent, and JP-A-4-50223. As disclosed in Japanese Patent Laid-Open Nos. 4-199856, 4-199857, and 4-199857, a package is made of an epoxy resin composition having a naphthalene skeleton and having a low hygroscopic property. It has become possible to improve.

【0009】[0009]

【発明が解決しようとする課題】しかし、前記の従来技
術は耐はんだリフロー性の改善にはかなりの効果がある
ものの、封止材料は室温付近の比較的低温でも硬化反応
が徐々に進んで流動性が低下し、貯蔵安定性が劣る問題
は解決されていない。しかも、成形時には成形品内部に
ボイドが発生し易いという欠点があり、品質の安定した
成形品を得るのが難しかった。また、封止品を高温に放
置すると、半導体素子表面のアルミニウム電極とリード
フレームとを電気的に接続する金ワイヤとの接合部が短
時間に腐食され易くなり、接続信頼性が著しく劣るとい
う問題があった。
However, although the above-mentioned prior art has a considerable effect on improving the solder reflow resistance, the encapsulating material undergoes a gradual curing reaction even at a relatively low temperature near room temperature to cause fluidization. The problem of poor storage stability and poor storage stability has not been solved. Moreover, there is a drawback that voids are likely to occur inside the molded product during molding, and it has been difficult to obtain a molded product with stable quality. Further, if the sealed product is left at a high temperature, the joint between the aluminum electrode on the surface of the semiconductor element and the gold wire that electrically connects the lead frame is easily corroded in a short time, and the connection reliability is significantly deteriorated. was there.

【0010】本発明の目的は、こうした状況に鑑み、貯
蔵安定性が優れており、ボイド等の欠陥がなく、しか
も、耐はんだリフロー性及び前記電極と金ワイヤとの接
続信頼性の優れたエポキシ樹脂組成物で封止された樹脂
封止型半導体装置を提供することにある。
In view of these circumstances, an object of the present invention is to provide an epoxy which has excellent storage stability, is free from defects such as voids, and has excellent solder reflow resistance and connection reliability between the electrode and the gold wire. It is intended to provide a resin-encapsulated semiconductor device encapsulated with a resin composition.

【0011】[0011]

【課題を解決するための手段】本発明者らは前記特性に
影響を及ぼすと考えられるエポキシ樹脂,硬化剤,硬化
促進剤を始め充填剤,カップリング剤,離型剤などの各
種添化剤、各素材の混練条件,成形条件等について鋭意
検討した。その結果、前記課題は特定の硬化剤と特定の
硬化促進剤とを用いることによって改善できることを見
出し、本発明に至った。本発明の要旨は次の通りであ
る。
The inventors of the present invention have added various additives such as epoxy resin, curing agent, curing accelerator, filler, coupling agent, release agent, etc., which are considered to affect the above properties. Intensive examination was made on the kneading conditions and molding conditions of each material. As a result, they have found that the above problems can be improved by using a specific curing agent and a specific curing accelerator, and have reached the present invention. The gist of the present invention is as follows.

【0012】エポキシ樹脂,硬化剤,硬化促進剤,無機
充填剤、各種添化剤などを含むエポキシ樹脂組成物で封
止された半導体装置において、該硬化促進剤は(化5)
In a semiconductor device encapsulated with an epoxy resin composition containing an epoxy resin, a curing agent, a curing accelerator, an inorganic filler, various additives, etc., the curing accelerator is
formula

【0013】[0013]

【化5】 Embedded image

【0014】(式中、mは1〜5の整数、Rはアルキル
基又はアルコキシ基を示す。)で表される有機リン系化
合物であり、該硬化剤は(化6)式
(In the formula, m is an integer of 1 to 5, R is an alkyl group or an alkoxy group.) An organic phosphorus compound represented by the formula (6)

【0015】[0015]

【化6】 [Chemical 6]

【0016】(式中、nは0〜5の整数を示す。)で表
されるフェノール系樹脂である樹脂封止型半導体装置に
ある。
In the resin-sealed semiconductor device, which is a phenolic resin represented by the formula (n represents an integer of 0 to 5).

【0017】本発明において、前記(化5)式で表され
る第3級ホスフィン系硬化促進剤は、具体的にはトリス
(アルキルフェニル)ホスフィン,トリス(アルコキシ
フェニル)ホスフィン,トリス(アルキル・アルコキシ
フェニル)ホスフィン,トリス(ジアルキルフェニル)
ホスフィン,トリス(トリアルキルフェニル)ホスフィ
ン,トリス(テトラアルキルフェニル)ホスフィン,ト
リス(ジアルコキシフェニル)ホスフィン,トリス(ト
リアルコキシフェニル)ホスフィン,トリス(テトラア
ルコキシフェニル)ホスフィン等がある。これら硬化促
進剤の内で特に好適なのは、(化7)式
In the present invention, the tertiary phosphine-based curing accelerator represented by the formula (5) is specifically tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkylalkoxy). Phenyl) phosphine, tris (dialkylphenyl)
Examples include phosphine, tris (trialkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, and tris (tetraalkoxyphenyl) phosphine. Among these curing accelerators, the most preferable one is the chemical formula (7).

【0018】[0018]

【化7】 [Chemical 7]

【0019】で表されるトリス(4−メチルフェニル)
ホスフィン又は、(化8)式
Tris (4-methylphenyl) represented by
Phosphine or (chemical formula 8)

【0020】[0020]

【化8】 Embedded image

【0021】で表されるトリス(4−メトキシフェニ
ル)ホスフィン等である。これら硬化促進剤は単独で用
いても良いしまた、必要に応じて2種類以上併用するこ
とが出来る。また、必要に応じて公知の他の硬化促進剤
と併用することが出来る。上記硬化促進剤は通常の硬化
促進剤と全く同様に用いることが出来る。しかも、必要
に応じて予め100℃以上で前記硬化剤と加熱,溶融さ
せてから用いることが出来る。硬化促進剤はエポキシ樹
脂100重量部に対して1〜500mmol、好ましくは3
〜50mmolの範囲で配合するのが良い。
Examples include tris (4-methoxyphenyl) phosphine and the like. These curing accelerators may be used alone or in combination of two or more as required. Further, it can be used in combination with other known curing accelerators, if necessary. The above curing accelerator can be used in exactly the same manner as a usual curing accelerator. Moreover, it can be used after being heated and melted with the curing agent at 100 ° C. or higher in advance, if necessary. The curing accelerator is 1 to 500 mmol, preferably 3 to 100 parts by weight of the epoxy resin.
It is preferable to mix it in the range of 50 mmol.

【0022】本発明において、(化2)式で表される硬
化剤はジシクロペンタジエンを骨格に有するフェノール
樹脂である。該硬化剤は公知のエポキシ樹脂に適用可能
であるが、それらの内では、o−クレゾールノボラック
型エポキシ樹脂の低吸湿化に特に好適であり、エポキシ
樹脂に対して0.5〜1.5当量配合するのが望ましい。
0.5 当量未満ではエポキシ樹脂の硬化が不十分とな
り、硬化物の耐熱性,耐湿性並びに体積固有抵抗や誘電
正接などの電気特性が劣る。また、1.5 当量を越える
と硬化剤成分が過剰になり、硬化樹脂中に多量のフェノ
ール性水酸基が残るため、前記電気特性並びに耐湿性が
悪くなる。上記硬化剤は本発明の目的を損なわない範囲
において、他の公知の硬化剤と併用することが出来る。
上記硬化剤は公知の通常の硬化剤と全く同様に用いるこ
とが出来る。
In the present invention, the curing agent represented by the formula (2) is a phenol resin having dicyclopentadiene in the skeleton. The curing agent is applicable to known epoxy resins, but among them, it is particularly suitable for low moisture absorption of o-cresol novolac type epoxy resin, and 0.5 to 1.5 equivalents relative to the epoxy resin. It is desirable to mix them.
If the amount is less than 0.5 equivalent, the curing of the epoxy resin will be insufficient, and the cured product will have poor heat resistance, moisture resistance, and electrical properties such as volume resistivity and dielectric loss tangent. On the other hand, if the amount exceeds 1.5 equivalents, the curing agent component becomes excessive and a large amount of phenolic hydroxyl groups remain in the cured resin, so that the electrical characteristics and the moisture resistance deteriorate. The above curing agent can be used in combination with other known curing agents as long as the object of the present invention is not impaired.
The above-mentioned curing agent can be used in the same manner as a known ordinary curing agent.

【0023】本発明に使用されるエポキシ樹脂は特に限
定されるものではなく、公知のエポキシ樹脂が広く使用
される。例えば、ビスフェノールA型エポキシ樹脂,ビ
スフェノールF型エポキシ樹脂,フェノールノボラック
型エポキシ樹脂,クレゾールノボラック型エポキシ樹
脂,ビフェニル型エポキシ樹脂,ナフタレン骨格を有す
る多官能のエポキシ樹脂,ハロゲン化フェノールノボラ
ック型エポキシ樹脂等が用いられる。
The epoxy resin used in the present invention is not particularly limited, and known epoxy resins are widely used. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, polyfunctional epoxy resin having a naphthalene skeleton, halogenated phenol novolac type epoxy resin, etc. Used.

【0024】無機充填剤として溶融シリカ,結晶シリ
カ,アルミナ,炭酸カルシウム,ケイ酸ジルコニウム,
ケイ酸カルシウム,タルク,クレー,マイカ等の微粉末
を用いることが出来る。無機充填剤の配合量は樹脂組成
物全体に対して、50〜90容量%が望ましい。これら
無機充填剤は硬化物の熱膨張係数や熱伝導率,弾性率な
どの改良を目的に添加するものであり、配合量が50容
量%未満ではこれらの特性を十分に改良できず、又、9
0容量%を越えると樹脂組成物の粘度が著しく上昇し流
動性が低下して成形が困難になる。又、無機充填剤の平
均粒径0.1 〜100μmの範囲が特に望ましい。0.
1μm 未満では樹脂組成物の粘度が上昇し、又、10
0μmを越えると樹脂成分と充填剤とが分離しやすくな
り、硬化物が不均一になったりあるいは硬化物物性がば
らついたり、更には狭い隙間への充填性が低下する。例
えば、充填剤を75容量%以上配合する場合、充填剤粒
子は角形より球形が好ましく、且つ、粒度分布が0.1
〜100μmと云う広範囲に分布したものが望ましい。
このような充填剤は最密充填構造をとりやすいため配合
量を増しても材料の粘度上昇が少なく、流動性の優れた
組成物を得ることが出来る。
As an inorganic filler, fused silica, crystalline silica, alumina, calcium carbonate, zirconium silicate,
Fine powders of calcium silicate, talc, clay, mica, etc. can be used. The content of the inorganic filler is preferably 50 to 90% by volume with respect to the entire resin composition. These inorganic fillers are added for the purpose of improving the thermal expansion coefficient, thermal conductivity, elastic modulus, etc. of the cured product. If the compounding amount is less than 50% by volume, these characteristics cannot be sufficiently improved, and 9
If it exceeds 0% by volume, the viscosity of the resin composition will remarkably increase and the fluidity will decrease, making molding difficult. The average particle size of the inorganic filler is particularly preferably in the range of 0.1 to 100 μm. 0.
If it is less than 1 μm, the viscosity of the resin composition increases,
When it exceeds 0 μm, the resin component and the filler are easily separated from each other, the cured product becomes non-uniform or the physical properties of the cured product vary, and further, the filling property into a narrow gap is deteriorated. For example, when the filler is blended in an amount of 75% by volume or more, the filler particles are preferably spherical rather than square and have a particle size distribution of 0.1.
It is desirable that the particles are distributed over a wide range of 100 μm.
Since such a filler tends to have a close-packed structure, the viscosity of the material does not increase even if the compounding amount is increased, and a composition having excellent fluidity can be obtained.

【0025】本発明では、必要に応じて樹脂硬化物の強
靱化や低弾性率化のための可とう化剤などを用いること
が出来る。可とう化剤はエポキシ樹脂及び硬化剤と非相
溶性あるいは一部相溶性のものがガラス転移温度を余り
下げずに硬化物の低弾性率化が図れることから、ブタジ
エン,アクリルニトリル系共重合体やそれらの末端又は
側鎖にアミノ基,エポキシ基,カルボキシル基を有する
変性共重合体やアクリルニトリル・ブタジエン・スチレ
ン共重合体等のブタジエン系可とう化剤や末端又は側鎖
にアミノ基,水酸基,エポキシ基,カルボキシ基等を有
する変性シリコーン系のエラストマー等が用いられる
が、耐湿性や純度の点からシリコーン系可とう化剤が特
に有効である。可とう化剤の配合量は全樹脂組成物に対
して2〜20重量%が好ましい。配合量が2重量%未満
では硬化物の強靱化や低弾性率化にはほとんど効果がな
い。又、20重量%を越えると樹脂組成物の流動性や高
温の機械的強度が著しく低下したり、樹脂硬化物表面に
可とう化剤が浮き出て成形金型を汚すので好ましくな
い。又、上記の各種添化剤の他に樹脂成分と充填剤との
接着を高めるためのカップリング剤として、各種シラン
系化合物,チタン系化合物,アルミニウムキレート類,
アルミニウム/ジルコニウム系化合物などの公知の添化
剤を用いることが出来る。更に、カルナバワックス,モ
ンタン酸系ワックス,ポリエチレン系ワックス,ポリア
ルキレン系ワックス等公知の化合物を離型剤として用い
てもよい。カーボンブラック,酸化チタン,鉛丹,ベン
ガラ等の公知の化合物を着色剤として用いてもよい。
In the present invention, a softening agent or the like for increasing the toughness and lowering the elastic modulus of the cured resin can be used if necessary. As the softening agent, those which are incompatible or partially compatible with the epoxy resin and the curing agent can lower the elastic modulus of the cured product without lowering the glass transition temperature so much that the butadiene / acrylonitrile copolymer is used. And modified copolymers having amino groups, epoxy groups, and carboxyl groups at their ends or side chains, butadiene-based flexible agents such as acrylonitrile / butadiene / styrene copolymers, and amino groups and hydroxyl groups at the ends or side chains A modified silicone-based elastomer having an epoxy group, a carboxy group or the like is used, and a silicone-based flexible agent is particularly effective in terms of moisture resistance and purity. The compounding amount of the softening agent is preferably 2 to 20% by weight based on the total resin composition. If the blending amount is less than 2% by weight, there is almost no effect on the toughness and low elastic modulus of the cured product. On the other hand, if it exceeds 20% by weight, the fluidity of the resin composition and the mechanical strength at high temperature are remarkably deteriorated, and the flexible agent is raised on the surface of the cured resin to stain the molding die, which is not preferable. In addition to the above various additives, various silane compounds, titanium compounds, aluminum chelates, as coupling agents for increasing the adhesion between the resin component and the filler,
Known additives such as aluminum / zirconium compounds can be used. Further, known compounds such as carnauba wax, montanic acid wax, polyethylene wax and polyalkylene wax may be used as a release agent. Known compounds such as carbon black, titanium oxide, red lead and red iron oxide may be used as the colorant.

【0026】前記の各素材は通常ミキシングロール,押
出機,ニーダ等を用い50〜120℃で溶融,混練して
封止材料にすることが出来る。
Each of the above materials can be usually melted and kneaded at 50 to 120 ° C. using a mixing roll, an extruder, a kneader or the like to form a sealing material.

【0027】[0027]

【作用】本発明の半導体装置が優れた生産性及び耐はん
だリフロー性を示す理由は以下のように考えられる。
(化1)式で示す硬化促進剤及び(化2)式で示す硬化
剤を用いたエポキシ樹脂組成物で封止した樹脂封止型半
導体装置が優れた信頼性を示すのは、本発明の硬化促進
剤は常温付近の温度では極めて安定で、且つ硬化性にも
優れていることから、均質で安定した成形品が得られる
ためである。すなわち、該硬化促進剤は潜在的な反応性
を有しているため、樹脂組成物の硬化時の溶融粘度の上
昇を防止し、被封止体に対する濡れ性を向上すると共に
ボイドの極めて少ない成形品が得られるためと考えられ
る。つまり、本発明の封止材料は金型の細部にまで充填
され易く、しかも硬化が速やかに行われるため成形品の
金型離型性が極めて良好である。それ故、成形品の金型
離型性が優れており、樹脂封止型半導体装置は損傷を受
けることなく、容易に金型から取り出すことが出来、均
質で安定した成形品が得られる。従って、信頼性の高い
樹脂封止型半導体装置が得られるものと考えられる。
The reason why the semiconductor device of the present invention exhibits excellent productivity and solder reflow resistance is considered as follows.
The resin-encapsulated semiconductor device encapsulated with the epoxy resin composition using the curing accelerator represented by the formula (1) and the curing agent represented by the formula (2) exhibits excellent reliability. This is because the curing accelerator is extremely stable at around room temperature and is excellent in curability, so that a homogeneous and stable molded product can be obtained. That is, since the curing accelerator has a latent reactivity, it prevents the increase of the melt viscosity at the time of curing the resin composition, improves the wettability with respect to the object to be sealed, and molds with extremely few voids. This is probably because the product is obtained. In other words, the encapsulating material of the present invention is easy to fill even the details of the mold, and since the curing is performed quickly, the mold releasability of the molded product is extremely good. Therefore, the mold releasing property of the molded product is excellent, the resin-encapsulated semiconductor device can be easily taken out from the mold without being damaged, and a homogeneous and stable molded product can be obtained. Therefore, it is considered that a highly reliable resin-sealed semiconductor device can be obtained.

【0028】また、優れた耐はんだリフロー性を有すの
は、(化2)式で示す硬化剤が樹脂封止型骨格中に疎水
性の化学構造である炭化水素構造を有するためである。
更には、得られた成形品は上述したようにボイドが少な
く無損傷な半導体装置が得られることから、実装試験に
おいても高い信頼性が得られるものと考えられる。本発
明の樹脂組成物を適用した成形品にボイドの発生が少な
いのは、硬化促進剤がエポキシ樹脂や硬化剤中の低分子
量成分と比較的低温で選択的に反応し、樹脂が硬化する
際に発生する揮発成分を低減させる作用があるためと考
えられる。
Further, it has excellent solder reflow resistance because the curing agent represented by the formula (2) has a hydrocarbon structure which is a hydrophobic chemical structure in the resin-encapsulated skeleton.
Furthermore, since the obtained molded product has a semiconductor device with few voids and no damage as described above, it is considered that high reliability can be obtained even in the mounting test. The occurrence of voids in a molded article to which the resin composition of the present invention is applied is small when the curing accelerator selectively reacts with the low molecular weight component in the epoxy resin or the curing agent at a relatively low temperature, and the resin is cured. It is considered that this is because it has the effect of reducing the volatile components generated in.

【0029】また、本発明で用いるエポキシ樹脂は特に
限定するものではないが、ビフェニル型エポキシ樹脂,
ジシクロペンタジエン型エポキシ樹脂,ナフタレン型エ
ポキシ樹脂,o−クレゾールノボラック型エポキシ樹脂
などを用いると特に好適な理由は、従来のものに比べて
硬化物は高い密度を有することから分子鎖パッキングが
密になっていて、形成された網目構造が水を透過し難い
事や、あるいは硬化物中の水酸基濃度が小さいため低吸
湿性になっているものと考えられる。従って、こうした
樹脂を用いた封止材料はそれ自体が吸湿性が低くなって
いるものと考えられる。また、このような樹脂は硬化物
のガラス転移温度が高い割に、橋かけ密度が低いために
樹脂が柔軟であり、硬化によって発生する残留応力が小
さく、これを用いた封止材料はチップやリードフレーム
に対する接着性が優れており、これらの界面からパッケ
ージ内に浸入する水分量は大幅に低減できるものと考え
る。従って、耐はんだリフロー性が著しく向上する理由
は、上記のようにパッケージ内へ浸入する水分量が大幅
に低減するためと考えられる。さらに耐はんだリフロー
性が著しく向上するのは上述したように、パッケージ内
に浸入する水分量が大幅に低減するためと考えられる。
The epoxy resin used in the present invention is not particularly limited, but biphenyl type epoxy resin,
The reason why the dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, o-cresol novolac type epoxy resin, etc. are particularly preferable is that the cured product has a higher density than that of the conventional one, so that the molecular chain packing is denser. Therefore, it is considered that the formed network structure is difficult to permeate water, or that the hydroxyl group concentration in the cured product is low, resulting in low hygroscopicity. Therefore, it is considered that the sealing material using such a resin itself has low hygroscopicity. In addition, such a resin has a high glass transition temperature of a cured product, but has a low cross-linking density, so that the resin is flexible and the residual stress generated by curing is small. The adhesiveness to the lead frame is excellent, and it is considered that the amount of water entering the package from these interfaces can be greatly reduced. Therefore, it is considered that the reason why the solder reflow resistance is remarkably improved is that the amount of water entering the package is significantly reduced as described above. Further, it is considered that the solder reflow resistance is remarkably improved, as described above, because the amount of water entering the package is significantly reduced.

【0030】上記の硬化促進剤及び硬化剤を含むエポキ
シ樹脂組成物で封止した樹脂封止型半導体装置が優れた
信頼性を有することは、全く予想出来ないことであっ
た。
It was totally unexpected that the resin-encapsulated semiconductor device encapsulated with the epoxy resin composition containing the curing accelerator and the curing agent had excellent reliability.

【0031】[0031]

【実施例】以下に、本発明を実施例を示して更に具体的
に説明する。
EXAMPLES The present invention will be described more specifically below with reference to examples.

【0032】(実施例1〜7)表1に実施例及び比較例
に用いた硬化促進剤の化合物名と略号を示す。
(Examples 1 to 7) Table 1 shows the compound names and abbreviations of the curing accelerators used in Examples and Comparative Examples.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】表2に示す配合量のエポキシ樹脂組成物を
50〜120℃に加熱した二軸ロールで約10分間混練
した後、冷却,粉砕して封止材料を得た。これらの封止
材料を4℃で一昼夜保管後、成形性,吸湿性,イオン性
不純物量について検討した。その結果を表3及び表4に
示す。
The epoxy resin compositions having the compounding amounts shown in Table 2 were kneaded by a twin-screw roll heated to 50 to 120 ° C. for about 10 minutes, then cooled and pulverized to obtain a sealing material. These encapsulating materials were stored at 4 ° C for one day and then examined for moldability, hygroscopicity, and amount of ionic impurities. The results are shown in Tables 3 and 4.

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】表中、トランスファー成形条件は180
℃,70kg/cm2 ,90秒間である。スパイラルフロー
はEMMI−1−66に定められたスパイラルフロー測
定用金型を成形機の上下熱板間に狭持し20gの封止材
料を上記条件で成形したときの成形品の長さを測定し
た。
In the table, the transfer molding condition is 180
° C., is 70kg / cm 2, 90 seconds. Spiral flow measures the length of the molded product when a mold for spiral flow measurement specified in EMMI-1-66 is sandwiched between the upper and lower hot plates of the molding machine and 20 g of sealing material is molded under the above conditions. did.

【0039】熱時硬度は直径20mmφの円板をトランス
ファー成形して成形金型が開いた直後の硬度をバーコル
硬度計で測定した。
The hot hardness was measured by using a Barcol hardness tester immediately after the molding die was opened by transfer molding of a disc having a diameter of 20 mmφ.

【0040】成形品の内部ボイドは上記の直径20mmφ
の円板をソフトX線透視装置で観察して評価した。
The internal void of the molded product has the above-mentioned diameter of 20 mmφ.
The disc was observed with a soft X-ray fluoroscope and evaluated.

【0041】吸湿率は直径90mmφ,厚さ2mmの円板を
85℃/85%RHの恒温恒湿槽中で240時間吸湿さ
せ、吸湿量から算出した。
The moisture absorption rate was calculated from the amount of moisture absorption by allowing a disc having a diameter of 90 mmφ and a thickness of 2 mm to absorb moisture for 240 hours in a constant temperature and humidity chamber at 85 ° C./85% RH.

【0042】ゲル化時間はJSR型キュラストメーター
(今中機械工業)を用い、180℃に加熱した凸凹のあ
る専用金型内に試料2gを投入し、金型に一定振幅振動
を与え、発生する応力を測定し、試料の硬化反応によっ
て生じる応力の立ち上がり時間をゲル化時間と仮定し
た。
The gelling time was generated by using a JSR type curast meter (Imanaka Machinery Industry Co., Ltd.), and inserting 2 g of the sample into a dedicated mold having irregularities heated to 180 ° C. and giving a constant amplitude vibration to the mold. The stress caused by the curing reaction of the sample was assumed to be the gelation time.

【0043】イオン性不純物の測定は次のようにして測
定した。上述した直径90mmφ、厚さ2mmの円板と同様
の試験片を成形し、180℃/5時間の加熱硬化を行っ
た後、ミル粉砕機TI−100型(HEIKO社製)で粉
砕した。その微粉末5gを純水500ccと共にポリ四沸
化エチレン−ステンレス二重圧力容器に入れて120℃
で所定時間加熱し、純水に抽出された遊離性ハロゲンイ
オンをイオンクロマトグラフ10型(Dionex社製)で測
定した。抽出量は成形品の単位重量当りに換算した。
The ionic impurities were measured as follows. A test piece similar to the disk having a diameter of 90 mmφ and a thickness of 2 mm described above was molded, heat-cured at 180 ° C. for 5 hours, and then ground with a mill grinder TI-100 type (manufactured by HEIKO). 5 g of the fine powder was put into a polytetrafluoroethylene-stainless steel double pressure vessel together with 500 cc of pure water and 120 ° C.
After heating for a predetermined period of time, free halogen ions extracted in pure water were measured with an ion chromatograph type 10 (manufactured by Dionex). The extraction amount was converted per unit weight of the molded product.

【0044】(比較例1〜4)表5に示すエポキシ樹脂
組成物を実施例1〜7と同様に50〜120℃に加熱し
た二軸ロールで約10分間混練した後、冷却,粉砕して
封止材料を得た。これらの封止材料を実施例1〜7と同
様に4℃で一昼夜保管後、成形性,吸湿性,イオン性不
純物量について検討し、表4及び表6に示す結果を得
た。
(Comparative Examples 1 to 4) The epoxy resin compositions shown in Table 5 were kneaded with a biaxial roll heated to 50 to 120 ° C. for about 10 minutes in the same manner as in Examples 1 to 7, then cooled and pulverized. A sealing material was obtained. Similar to Examples 1 to 7, these sealing materials were stored at 4 ° C. for one day and then examined for moldability, hygroscopicity, and amount of ionic impurities, and the results shown in Tables 4 and 6 were obtained.

【0045】[0045]

【表5】 [Table 5]

【0046】[0046]

【表6】 [Table 6]

【0047】表3,表4,表6より、本発明の封止材料
は比較例に対し、スパイラルフローと熱時硬度のバラン
スがとれ、硬化性の目安になるゲル化時間が短い特徴が
ある。しかも、本発明の封止材料から得られた成形品は
ボイドが少なく、且つ吸湿率も小さく、パッケージ化し
た場合のパッケージの長期信頼性向上に有効なものであ
ることを示している。
From Table 3, Table 4 and Table 6, the encapsulating material of the present invention is characterized in that the spiral flow and the hardness at the time of heating are well balanced and the gelation time which is a measure of curability is short, as compared with the comparative example. . In addition, the molded product obtained from the encapsulating material of the present invention has few voids and a small moisture absorption rate, which indicates that it is effective for improving the long-term reliability of the package when packaged.

【0048】(実施例8〜14)表2に示した組成物か
らなる封止材料を用いて耐はんだリフロー性,耐湿信頼
性,高温放置信頼性試験を行った。その結果を表7に示
す。
(Examples 8 to 14) Solder reflow resistance, moisture resistance reliability, and high temperature standing reliability tests were conducted using sealing materials made of the compositions shown in Table 2. The results are shown in Table 7.

【0049】[0049]

【表7】 [Table 7]

【0050】耐はんだリフロー性試験は表面にアルミニ
ウムのジクザク配線を形成したシリコンチップ(6×6
mm)を42アロイ系のリードフレームに搭載し、更にチ
ップ表面のアルミニウム電極とリードフレーム間を金線
(30μmφ)でワイヤボンデングした半導体装置(外
形20×14mm,厚さ2mm)を封止し180℃で5時間
硬化した。耐はんだリフローの信頼性試験はこの樹脂封
止型半導体装置を85℃/85%RH下にて168時間
放置後、240℃の赤外線リフロー炉中で90秒間加熱
する試験を行い、パッケージのクラック発生数を調べ
た。
The solder reflow resistance test was conducted on a silicon chip (6 × 6) having aluminum zigzag wiring formed on the surface.
mm) is mounted on a 42 alloy lead frame, and the semiconductor device (outer dimension 20 × 14 mm, thickness 2 mm) is wire-bonded between the lead electrode and the aluminum electrode on the chip surface with a gold wire (30 μmφ). Cured at 180 ° C. for 5 hours. As for the reliability test of solder reflow resistance, this resin-encapsulated semiconductor device was left at 85 ° C / 85% RH for 168 hours, and then heated in an infrared reflow oven at 240 ° C for 90 seconds. I checked the number.

【0051】耐湿信頼性試験は以下のようにして行っ
た。表面実装型のQFP(Quad FlatPackage )−1H
(タブ6.7×6.7mm)素子を用い、65℃,95%R
Hの高温高湿下で72時間放置後、215℃/90秒間
のベーパーリフローと塩水浸漬を行った。更に、これら
素子を65℃,95%RHの条件下で500時間放置し
た後、アルミニウム腐食が発生した素子数を数え、不良
の有無を調べた。
The moisture resistance reliability test was conducted as follows. Surface mount type QFP (Quad Flat Package) -1H
(Tab 6.7 x 6.7 mm) element, 65 ° C, 95% R
After being left under high temperature and high humidity of H for 72 hours, vapor reflow at 215 ° C./90 seconds and immersion in salt water were performed. Furthermore, after leaving these elements under the conditions of 65 ° C. and 95% RH for 500 hours, the number of elements in which aluminum corrosion occurred was counted and the presence or absence of defects was examined.

【0052】高温放置信頼性試験は次のようにして行っ
た。耐湿性試験に用いたものと同じ種類の樹脂封止型半
導体装置を200℃の恒温槽中に200時間放置し、金
ワイヤとアルミニウム配線の接合部不良を調べた。
The high temperature storage reliability test was conducted as follows. A resin-encapsulated semiconductor device of the same type as that used in the moisture resistance test was left in a thermostat at 200 ° C. for 200 hours, and defective joints between the gold wires and the aluminum wires were examined.

【0053】表7より明らかなように、第3級ホスフィ
ン系硬化促進剤とジシクロペンタジエン型フェノール系
樹脂を硬化剤に用いたエポキシ樹脂組成物で封止した、
本発明の樹脂封止型半導体装置の信頼性が優れているこ
とがわかった。
As is clear from Table 7, a tertiary phosphine type curing accelerator and a dicyclopentadiene type phenolic resin were sealed with an epoxy resin composition containing the curing agent.
It was found that the resin-sealed semiconductor device of the present invention has excellent reliability.

【0054】(比較例5〜8)表5に示した組成物から
なる封止材料を用いて実施例8〜14と同様に耐はんだ
リフロー性,耐湿信頼性,高温放置信頼性試験を行っ
た。その結果を表7に併せて示す。
(Comparative Examples 5-8) Using the encapsulating materials composed of the compositions shown in Table 5, solder reflow resistance, moisture resistance reliability and high temperature leaving reliability test were conducted in the same manner as in Examples 8-14. . The results are shown in Table 7.

【0055】本発明の封止材料は成形性、貯蔵安定性に
優れ、また、吸湿率が小さく、しかも信頼性の支配因子
の一つである遊離性ハロゲンイオン量も少ない。この樹
脂組成物で封止した樹脂封止型半導体装置は各種信頼性
が優れている。
The encapsulating material of the present invention is excellent in moldability and storage stability, has a low moisture absorption rate, and has a small amount of free halogen ions, which is one of the factors controlling reliability. The resin-encapsulated semiconductor device encapsulated with this resin composition has excellent reliability.

【0056】[0056]

【発明の効果】本発明の樹脂封止型半導体装置は耐はん
だリフロー性,耐湿信頼性,高温放置試験による信頼性
が優れている。
The resin-encapsulated semiconductor device of the present invention is excellent in solder reflow resistance, moisture resistance reliability, and reliability by a high temperature storage test.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永井 晃 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 荻野 雅彦 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Akira Nagai, 1-1 1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Masahiko Ogino 7-chome, Omika-cho, Hitachi-shi, Ibaraki No. 1 Hitachi Ltd. Hitachi Research Laboratory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】エポキシ樹脂と硬化剤と硬化促進剤と充填
剤とを含むエポキシ樹脂組成物によって封止された樹脂
封止型半導体装置において、前記硬化促進剤が(化1)
式 【化1】 (式中、mは1〜5の整数、Rはアルキル基又はアルコ
キシ基を示す。)で表される有機リン系化合物であり、
前記硬化剤が(化2)式 【化2】 (式中、nは0〜5の整数を示す。)で表されるフェノ
ール系樹脂であることを特徴とする樹脂封止型半導体装
置。
1. A resin-encapsulated semiconductor device encapsulated with an epoxy resin composition containing an epoxy resin, a curing agent, a curing accelerator and a filler, wherein the curing accelerator is
Formula 1 (In the formula, m represents an integer of 1 to 5 and R represents an alkyl group or an alkoxy group.),
The curing agent is of the formula (2) (In the formula, n represents an integer of 0 to 5.) A resin-encapsulated semiconductor device, which is a phenolic resin.
【請求項2】前記硬化促進剤が少なくとも(化3)式 【化3】 又は(化4)式 【化4】 で表される有機リン系化合物のいずれか1つである前記
エポキシ樹脂組成物で封止されたことを特徴とする請求
項1記載の樹脂封止型半導体装置。
2. The curing accelerator is of at least the formula (3): Or (formula 4) formula The resin-encapsulated semiconductor device according to claim 1, wherein the resin-encapsulated semiconductor device is encapsulated with the epoxy resin composition that is any one of the organic phosphorus compounds represented by.
【請求項3】前記エポキシ樹脂はビフェニル骨格を有す
るエポキシ樹脂、又はジシクロペンタジエン骨格を有す
るエポキシ樹脂、又はナフタレン骨格を有するエポキシ
樹脂、又はノボラック型エポキシ樹脂の少なくとも1種
類を含むことを特徴とする請求項1記載の樹脂封止型半
導体装置。
3. The epoxy resin contains at least one of an epoxy resin having a biphenyl skeleton, an epoxy resin having a dicyclopentadiene skeleton, an epoxy resin having a naphthalene skeleton, and a novolac type epoxy resin. The resin-sealed semiconductor device according to claim 1.
【請求項4】前記硬化剤が前記エポキシ樹脂100重量
部に対して0.5〜1.5当量配合されていることを特徴
とする請求項1記載の樹脂封止型半導体装置。
4. The resin-encapsulated semiconductor device according to claim 1, wherein the curing agent is added in an amount of 0.5 to 1.5 equivalents based on 100 parts by weight of the epoxy resin.
【請求項5】前記硬化促進剤が前記エポキシ樹脂100
重量部に対して1〜500mmol配合されていることを特
徴とする請求項1記載の樹脂封止型半導体装置。
5. The epoxy resin 100 is used as the curing accelerator.
The resin-encapsulated semiconductor device according to claim 1, wherein 1 to 500 mmol is blended with respect to parts by weight.
【請求項6】前記充填剤が平均粒径が0.1 〜100μ
mであることを特徴とした請求項1記載の樹脂封止型半
導体装置。
6. The filler has an average particle size of 0.1 to 100 μm.
The resin-encapsulated semiconductor device according to claim 1, wherein m is m.
JP18241795A 1995-07-19 1995-07-19 Resin-sealed semiconductor device Pending JPH0931166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18241795A JPH0931166A (en) 1995-07-19 1995-07-19 Resin-sealed semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18241795A JPH0931166A (en) 1995-07-19 1995-07-19 Resin-sealed semiconductor device

Publications (1)

Publication Number Publication Date
JPH0931166A true JPH0931166A (en) 1997-02-04

Family

ID=16117929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18241795A Pending JPH0931166A (en) 1995-07-19 1995-07-19 Resin-sealed semiconductor device

Country Status (1)

Country Link
JP (1) JPH0931166A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296940B1 (en) 1997-05-30 2001-10-02 Sumitomo Bakelite Company Limited Laminate comprising a flame-retardant resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296940B1 (en) 1997-05-30 2001-10-02 Sumitomo Bakelite Company Limited Laminate comprising a flame-retardant resin composition

Similar Documents

Publication Publication Date Title
KR101287712B1 (en) Epoxy resin composition and semiconductor device
US20010004651A1 (en) Epoxy resin compositions and premolded semiconductor packages
WO2006059542A1 (en) Epoxy resin composition and semiconductor devices
KR20130007545A (en) Epoxy resin composition and semiconductor device
JP3995421B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP3562565B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JPH0597970A (en) Thermosetting resin composition and semiconductor device
JPH0597969A (en) Thermosetting resin composition and semiconductor device
JP4496740B2 (en) Epoxy resin composition and semiconductor device
JP2005105087A (en) Epoxy resin composition and semiconductor device
JPH0931166A (en) Resin-sealed semiconductor device
JPH11130936A (en) Epoxy resin composition and semiconductor device
JP4770024B2 (en) Epoxy resin composition and semiconductor device
JPH09208669A (en) Resin-sealed semiconductor device
JP2593503B2 (en) Epoxy resin composition and resin-sealed semiconductor device using the same
JP3591377B2 (en) Epoxy resin composition and semiconductor device
JP2816290B2 (en) Resin-sealed semiconductor device
JPH04296046A (en) Resin-sealed semiconductor device
JP2005154717A (en) Epoxy resin composition and semiconductor device
JPH08165331A (en) Resin-sealed semiconductor device
KR19980030543A (en) Epoxy resin composition for sealing semiconductor devices with high thermal conductivity and low thermal expansion coefficient
JP2009256475A (en) Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JPH06271653A (en) Resin-encapsulated semiconductor device
JPH0794641A (en) Semiconductor device
JPH10306141A (en) Semiconductor device and epoxy resin composition