JPH09309767A - Production of ferrite powder material - Google Patents

Production of ferrite powder material

Info

Publication number
JPH09309767A
JPH09309767A JP8124826A JP12482696A JPH09309767A JP H09309767 A JPH09309767 A JP H09309767A JP 8124826 A JP8124826 A JP 8124826A JP 12482696 A JP12482696 A JP 12482696A JP H09309767 A JPH09309767 A JP H09309767A
Authority
JP
Japan
Prior art keywords
ferrite
powder
baking
temperature
baked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8124826A
Other languages
Japanese (ja)
Inventor
Yoshio Matsuo
良夫 松尾
Toshitaka Hashimoto
敏隆 橋本
Makoto Ishikura
誠 石倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP8124826A priority Critical patent/JPH09309767A/en
Publication of JPH09309767A publication Critical patent/JPH09309767A/en
Pending legal-status Critical Current

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)
  • Magnetic Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the labor needing to grind baked ferrite. SOLUTION: This ferrite powder material to be used as a material for e.g. wave absorbers is obtained by the following method: a ferrite stock is preliminarily baked to produce preliminarily baked powder, which is then incorporated with a binder to form a powder molding of appropriate size which is, in turn, subjected to regular baking. The regular baking is so designed that the baking temperature is gradually raised from normal temperature to a specified temperattire, then, the specified temperature is maintained and the power molding is heated for a specified time, and then gradually cooling. In this case, for the period of time from the beginning of the regular baking to the point when the specified temperature is reached, the baking is carried out in an atmosphere <=0.3wt.% of oxygen concentration. By conducting the regular baking under such conditions, ferrite granules randomly ground to some extent can be obtained as a baked ferrite. Thus, when the ferrite granules are to be ground next, labor for the grinding work can be reduced, leading to cost reduction and shortening the grinding time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電波吸収体の材料
などに用いられるフェライト粉末材料を製造する方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a ferrite powder material used as a material for a radio wave absorber.

【0002】[0002]

【従来の技術】電波吸収体の材料などに用いられるフェ
ライト粉末材料を製造する方法としては、まず、適当な
大きさのフェライト焼成体を一般的に知られた製法で作
製してから、得られたフェライト焼成体を粉末状に粉砕
する方法が採用されている。すなわち、まず、所定の混
合比率からなるフェライト原料を仮焼成し、得られた仮
焼成体を粉砕して仮焼成粉を作成する。次に、この仮焼
成粉にバインダーを加えて適当な大きさの粉末成形体に
成形し、この粉末成形体に対し本焼成を施してフェライ
ト焼成体を作製する。そして、このフェライト焼成体
を、粉砕装置などによるメカニカルな手段で粉砕して粒
径数μm〜数mm程の粉体を得てフェライト粉末材料と
する。
2. Description of the Related Art As a method for producing a ferrite powder material used as a material for a radio wave absorber, a ferrite fired body of an appropriate size is first produced by a generally known production method, and then obtained. A method of pulverizing the fired ferrite body into powder is adopted. That is, first, a ferrite raw material having a predetermined mixing ratio is calcinated, and the calcinated body obtained is crushed to prepare a calcinated powder. Next, a binder is added to the preliminarily fired powder to form a powder compact having an appropriate size, and the powder compact is subjected to main firing to produce a ferrite fired body. Then, the ferrite fired body is pulverized by a mechanical means such as a pulverizing device to obtain a powder having a particle diameter of several μm to several mm, which is used as a ferrite powder material.

【0003】前記粉末成形体の本焼成においては、まず
始めに空気中において焼成温度を徐々に上昇させて、途
中約600℃になるぐらいまでの間、粉末成形体に含ま
れているバインダーを除去する。その後、窒素雰囲気中
においてさらに焼成温度を上昇させて、所定温度、例え
ば1300℃ぐらいに到達させるとともに、所定温度を
維持して一定時間加熱を行う。これによって、粉末成形
体において仮焼粉の粉体間が十分に焼結した後、徐冷を
行う。
In the main firing of the powder compact, first, the firing temperature is gradually raised in air to remove the binder contained in the powder compact until the temperature reaches about 600 ° C. To do. After that, the firing temperature is further raised in a nitrogen atmosphere to reach a predetermined temperature, for example, about 1300 ° C., and heating is performed for a certain time while maintaining the predetermined temperature. As a result, the powder compacts are sufficiently sintered between the powders of the calcined powder, and then gradually cooled.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、本焼成
後に得られるフェライト焼成体は、通常、数cm乃至数
十cm位の塊であったため、フェライトの粉砕について
は、粗粉砕と微粉砕との2段階にわけて行う必要があっ
た。このため、粉砕作業には多大な労力と時間とがかか
り、作業の長期化やコストアップなどの問題を引き起こ
していた。
However, since the ferrite fired body obtained after the main firing is usually a lump of several cm to several tens of cm, there are two types of pulverization of ferrite: coarse pulverization and fine pulverization. It had to be done in stages. For this reason, the crushing work requires a great deal of labor and time, which causes problems such as a prolonged work and an increase in cost.

【0005】このような事情の中、本発明者らは、フェ
ライトの研究を行っていたところ、所定の形状を備えた
フェライト焼成体として作製されるはずのフェライト焼
成体が、焼成炉内においてバラバラに砕け散った状態で
発見されることがあった。そこで、本発明者らは、さら
に詳しく調査を行ったところ、本焼成をある特定の条件
で行うことによって、本焼成中に被焼成物に自己破砕が
生じて、本焼成後、ある程度粉砕された状態のフェライ
ト焼成体を得られることを知得した。
Under the circumstances, the inventors of the present invention have conducted research on ferrite. As a result, the ferrite fired bodies, which are supposed to be produced as ferrite fired bodies having a predetermined shape, are scattered in the firing furnace. It was sometimes found in a shattered state. Therefore, the present inventors conducted a more detailed investigation and found that by performing the main firing under certain specific conditions, the material to be fired self-crushed during the main firing and was crushed to some extent after the main firing. It is known that a ferrite fired body in a state can be obtained.

【0006】本発明は、前記知得に鑑みてなされたもの
であって、その目的は、本焼成後、粉砕された形のフェ
ライトを得ることによって、フェライトの粉砕にかかる
手間を軽減できるようなフェライト粉末材料の製造方法
を提供することにある。
The present invention has been made in view of the above-mentioned knowledge, and an object thereof is to obtain a crushed form of ferrite after the main calcination so that the labor for crushing the ferrite can be reduced. It is to provide a method for manufacturing a ferrite powder material.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に本発明に係るフェライト粉末材料の製造方法にあって
は、フェライト原料を仮焼成して得られた仮焼成体を粉
砕して仮焼成粉を作成し、該仮焼成粉にバインダーを加
えて粉末成形体を成形した後、該粉末成形体を本焼成
し、これにより得られたフェライト焼成体を粉砕してフ
ェライト粉末材料を製造する方法において、該粉末成形
体の本焼成は、焼成温度を常温から徐々に上昇させて所
定温度に到達させるとともに、該所定温度を維持して一
定時間加熱し、その後に徐冷してなるものであって、該
本焼成の焼成開始から該所定温度に到達させるまでの間
は酸素濃度0.3%以下の雰囲気中で行う。
In order to achieve the above object, in a method for producing a ferrite powder material according to the present invention, a calcined body obtained by calcining a ferrite raw material is crushed and calcined. A method for producing a ferrite powder material by preparing a powder, adding a binder to the preliminarily calcined powder to form a powder compact, and then subjecting the powder compact to a main calcination, and pulverizing the ferrite calcination product thus obtained In the main calcination of the powder compact, the calcination temperature is gradually raised from room temperature to reach a predetermined temperature, the predetermined temperature is maintained and heated for a certain time, and then gradually cooled. Then, from the start of firing of the main firing until the temperature reaches the predetermined temperature, the firing is performed in an atmosphere having an oxygen concentration of 0.3% or less.

【0008】このような条件で本焼成を行うことによっ
て、フェライト焼成体は当初の形状を維持することな
く、ある程度バラバラに自己粉砕された状態のフェライ
ト紛粒体となる。この原因については、粉末成形体にお
いてスピネル相の生成が急激に促進され、膨張が活発に
起こり、このときの応力で亀裂またはクラックが発生し
たことや、本焼成をはじめから低酸素濃度雰囲気中で行
っているので、除去されずに残留した一部のバインダー
が粉末成形体中の酸素を奪い、ウエスタイト(FeO)
相が生成されて歪みが生じたことなどが要因と考えられ
ている。
By carrying out the main firing under such conditions, the ferrite fired body becomes a ferrite powder granule which is self-crushed to some extent without maintaining the original shape. The reason for this is that the formation of spinel phase in the powder compact was rapidly promoted, expansion actively occurred, and cracks or cracks occurred due to the stress at this time, and in the low oxygen concentration atmosphere from the beginning of the main firing. Since some of the binder remains without being removed, oxygen in the powder compact is deprived of the waste, and
The cause is considered to be the generation of phases and distortion.

【0009】これによって、フェライトを粉砕するため
に必要な手間を軽減することができ、粉砕効率を向上さ
せて、コストの低減化や粉砕時間の短縮化を図ることが
できる。
As a result, the labor required for crushing the ferrite can be reduced, the crushing efficiency can be improved, and the cost and the crushing time can be shortened.

【0010】尚、前記のように酸素濃度の上限を定めた
のは、0.3%を越えるとフェライト焼成体中における
自己破砕が十分に進行しないためである。
The upper limit of the oxygen concentration is set as described above because if it exceeds 0.3%, the self-crushing in the ferrite fired body does not proceed sufficiently.

【0011】[0011]

【発明の実施の形態】以下に本発明に係るフェライト粉
末材料の製造方法の実施の形態について詳述する。本発
明に係るフェライト粉末材料とは、例えば電波吸収体の
材料などとして用いられるものであり、その粒径はだい
たい数μm〜数mm程である。代表的なものとしては、
Mn−Zn系フェライトを始め、Ni−Zn系フェライ
トやMg−Zn系フェライトなどがある。このうち、M
n−Zn系フェライトには、一般的に、主成分として、
Fe2 3 が50〜56mol%、MnOが30〜45
mol%、ZnOが5〜20mol%の各範囲内に、か
つこれらの総和が100mol%になるように設定され
ている混合物に、副成分として、0.03乃至0.1重
量%のCaO、0.05重量%以下のSiO2 及び0.
4重量%以下のTiO2 が含まれたフェライト原料が用
いられる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the method for producing a ferrite powder material according to the present invention will be described in detail below. The ferrite powder material according to the present invention is used, for example, as a material for a radio wave absorber, and its particle size is about several μm to several mm. As a typical one,
In addition to Mn-Zn ferrite, there are Ni-Zn ferrite and Mg-Zn ferrite. Of these, M
Generally, the main component of n-Zn ferrite is
Fe 2 O 3 is 50 to 56 mol%, MnO is 30 to 45
mol%, ZnO in each range of 5 to 20 mol%, and in a mixture set such that the total of these is 100 mol%, 0.03 to 0.1 wt% CaO, 0 as a sub-component. Up to 0.05% by weight of SiO 2 and 0.
A ferrite raw material containing 4% by weight or less of TiO 2 is used.

【0012】このようなフェライト粉末材料の製造は、
次のようにして行われる。まず、フェライト原料として
所定の比率の混合物を、例えば大気雰囲気中で温度60
0℃から1000℃で約2時間かけて仮焼成し、これに
より得られた仮焼成体を、粒径約0.5〜1μm程度に
粉砕して仮焼成粉を作成する。次に、この仮焼成粉に、
例えばポリビニルアルコールなどをバインダーとして加
えて仮焼成粉を相互に結着させて、寸法たて10cm、
よこ10cm、高さ5cm程度の大きさを有する粉末成
形体を成形する。その後、この粉末成形体を本焼成す
る。
The production of such a ferrite powder material is
This is performed as follows. First, as a ferrite raw material, a mixture having a predetermined ratio is used at a temperature of 60 in an air atmosphere, for example.
Pre-baking is performed at 0 ° C. to 1000 ° C. for about 2 hours, and the pre-baked body thus obtained is pulverized to a particle size of about 0.5 to 1 μm to prepare a pre-baked powder. Next, to this calcined powder,
For example, polyvinyl alcohol or the like is added as a binder to bond the calcined powders to each other, and the dimension is 10 cm,
A powder compact having a size of about 10 cm and a height of about 5 cm is formed. Then, this powder compact is fired.

【0013】本焼成では、焼成温度を常温から徐々に上
昇させて所定温度に到達させるとともに、その所定温度
を維持して一定時間加熱して十分な焼結を行った後、徐
冷を行う。
In the main firing, the firing temperature is gradually raised from room temperature to reach a predetermined temperature, and the predetermined temperature is maintained, heating is performed for a certain period of time to perform sufficient sintering, and then gradually cooled.

【0014】前記所定温度は、千乃至千数百℃位、例え
ば1300℃などに設定する。また、本焼成の開始から
所定温度に到達させるまでの時間は例えば8時間など
に、また、所定温度を維持している時間は例えば3時間
などに、また、徐冷時間は例えば8時間などに設定す
る。
The predetermined temperature is set to about 1,000 to several hundreds of degrees Celsius, for example, 1300 ° C. In addition, the time from the start of the main calcination to reaching the predetermined temperature is, for example, 8 hours, the time for maintaining the predetermined temperature is, for example, 3 hours, and the slow cooling time is, for example, 8 hours. Set.

【0015】殊に、本発明では、この本焼成で、焼成の
開始から前記所定温度に到達させるまでの間は、酸素濃
度0.3%以下の低酸素濃度雰囲気中で行う。ここで、
低酸素濃度雰囲気とは、例えば窒素など酸素以外の気体
を主体とした雰囲気である。尚、酸素濃度の上限を0.
3%としたのは、後述する試験結果に基づくものであ
る。
Particularly, in the present invention, this main firing is performed in a low oxygen concentration atmosphere having an oxygen concentration of 0.3% or less from the start of firing to the time when the predetermined temperature is reached. here,
The low oxygen concentration atmosphere is an atmosphere mainly composed of a gas other than oxygen, such as nitrogen. The upper limit of the oxygen concentration is set to 0.
The value of 3% is based on the test results described later.

【0016】このような条件で本焼成を行うことによっ
て、ある程度バラバラに自己破砕された状態のフェライ
ト焼成体を得ることができる。ここで得られるフェライ
ト焼成体は、多数の粒体及び粉体などから構成されてい
て、その大きさは数mm乃至数十μmの範囲で分布して
いる。
By carrying out the main firing under such conditions, it is possible to obtain a fired ferrite body which is self-crushed to some extent. The ferrite fired body obtained here is composed of a large number of particles and powders, and the size thereof is distributed in the range of several mm to several tens of μm.

【0017】次に、このようなフェライト焼成体を機械
的に粉砕する。この粉砕では、フェライト焼成体が十分
小さいので、粗粉砕を省略し、例えばスタンプミルなど
の微粉砕装置を用いて微粉砕のみとすることができる。
これによって微粉化されたフェライト焼成体をフルイな
どによって分級し、所望の粒径、即ち数十μm程のフェ
ライト焼成体だけを取り出してフェライト粉末材料とす
る。
Next, such a fired ferrite body is mechanically pulverized. In this pulverization, since the ferrite fired body is sufficiently small, coarse pulverization can be omitted, and only fine pulverization can be performed using a fine pulverizing device such as a stamp mill.
The finely pulverized ferrite fired body is classified by a sieve or the like, and only the ferrite fired body having a desired particle size, that is, about several tens of μm is taken out to obtain a ferrite powder material.

【0018】以上から、本発明によれば、本焼成後、バ
ラバラに自己破砕された状態のフェライト焼成体を得る
ことができるので、その後の粉砕に必要な手間を軽減す
ることができ、粉砕効率を向上させて、粉砕時間の短縮
化やコストの低減化を図ることができる。
From the above, according to the present invention, it is possible to obtain a ferrite fired body which is in a state of being self-crushed into pieces after the main firing, so that the labor required for the subsequent pulverization can be reduced and the pulverization efficiency can be reduced. It is possible to shorten the crushing time and reduce the cost by improving the temperature.

【0019】以下に、本発明の効果を確認するために行
った比較試験について説明する。この試験では、特にM
n−Zn系フェライトの製造の場合について行い、フェ
ライト原料として、主成分が53.3mol%のFe2
3 、38.5mol%のMnO及び8mol%のZn
Oからなる混合物に、副成分としてCaO、SiO2
TiO2 などを添加したものを用いた。
A comparative test conducted to confirm the effect of the present invention will be described below. In this test, especially M
This is carried out for the case of manufacturing n-Zn ferrite, and the main component of the ferrite is 53.3 mol% Fe 2
O 3 , 38.5 mol% MnO and 8 mol% Zn
In a mixture of O, CaO, SiO 2 ,
Used was added and TiO 2.

【0020】そして、従来の製法に係る本焼成を行って
バラバラに自己破砕されていない状態のフェライト焼成
体と、本発明の製法に係る本焼成を行ってバラバラに自
己破砕された状態のフェライト焼成体とを得た。そし
て、それぞれ100gずつ取り、スタンプミルによって
それぞれ10分間粉砕を行った後、上段5mm、下段
2.5mmのフルイにかけて分級を行い、得られたフェ
ライト粉末材料の重量を測定した。以下の表1はその結
果をまとめたものである。
Then, a ferrite fired body in a state in which the main firing according to the conventional manufacturing method is not performed and is not self-crushed into pieces, and a ferrite fired body in a state in which the main firing according to the manufacturing method of the present invention is not self-crushed into pieces Got a body and. Then, after taking 100 g of each and crushing each for 10 minutes by a stamp mill, classification was carried out by applying a sieve of 5 mm in the upper stage and 2.5 mm in the lower stage, and the weight of the obtained ferrite powder material was measured. Table 1 below summarizes the results.

【0021】[0021]

【表1】 この表1から、従来の製法では、得られた粉体重量が約
30gであるのに対して本発明の製法では、約90g得
ることができ、本発明の製法の方が、粉砕効率が良いこ
とが確認できた。
[Table 1] From Table 1, the obtained powder weight is about 30 g in the conventional production method, whereas about 90 g can be obtained in the production method of the present invention, and the production method of the present invention has better pulverization efficiency. I was able to confirm that.

【0022】また、前記酸素濃度の上限値については、
以下のようにして定めた。すなわち、前記試験と同様、
Mn−Zn系フェライトについて、酸素濃度をそれぞれ
0.0%,0.3%,0.4%に設定して本発明の製法
に係る本焼成を行った。そして、それぞれに対し、前記
試験同様、粉砕及び分級を行った後、得られたフェライ
ト粉末材料の重量を測定し、以下の表2にまとめた。
Regarding the upper limit of the oxygen concentration,
It was determined as follows. That is, similar to the above test
With respect to the Mn-Zn-based ferrite, the oxygen concentration was set to 0.0%, 0.3%, and 0.4%, and the main firing according to the manufacturing method of the present invention was performed. Then, after crushing and classifying each of them in the same manner as the above test, the weight of the obtained ferrite powder material was measured and summarized in Table 2 below.

【0023】[0023]

【表2】 この表2から、酸素濃度が低い程、多量の粉体が得られ
るのが認められる。酸素濃度0.4%については、30
gしか得られず、不十分である。このことから、フェラ
イト焼成体中における自己破砕を十分に進行させるため
には、酸素濃度を0.3%以下に設定するのが好ましい
ことがわかる。
[Table 2] From this Table 2, it is recognized that the lower the oxygen concentration, the larger the amount of powder obtained. For oxygen concentration 0.4%, 30
g is obtained, which is insufficient. From this, it is understood that the oxygen concentration is preferably set to 0.3% or less in order to sufficiently promote the self-crushing in the fired ferrite body.

【0024】尚、念のために、本発明の製法及び従来の
製法によって製造されたフェライト粉末材料を用いてそ
れぞれ電波吸収体を製作し、それぞれ本発明製法品及び
従来製法品として、電波吸収体の特性である透磁率、誘
電率及び比重についてそれぞれ調べた。以下の表3は、
これをまとめたものである。
As a precaution, a radio wave absorber is manufactured using the ferrite powder material manufactured by the manufacturing method of the present invention and the conventional manufacturing method. The magnetic permeability, the dielectric constant, and the specific gravity, which are the characteristics of, were examined. Table 3 below
This is a summary.

【0025】[0025]

【表3】 この表3から、特に、本発明の製法で得られたフェライ
ト粉末材料を用いて電波吸収体を製作しても、従来の製
法の場合とほとんど変わらない特性が得られることが確
認できた。
[Table 3] From this Table 3, it was confirmed that especially when a radio wave absorber is manufactured using the ferrite powder material obtained by the manufacturing method of the present invention, characteristics almost the same as those obtained by the conventional manufacturing method can be obtained.

【0026】[0026]

【発明の効果】前記発明の実施の形態で詳述したように
本発明に係るフェライト粉末材料の製造方法によれば、
粉末成形体の本焼成を所定の条件で行うことによって、
本焼成後、ある程度バラバラに自己粉砕された状態のフ
ェライト紛粒体を得ることができるので、フェライトを
粉砕するのに必要な手間を軽減することができ、従っ
て、コストの低減化や粉砕時間の短縮化を図ることがで
きる。
As described in detail in the above embodiments of the invention, according to the method for producing a ferrite powder material according to the present invention,
By performing the main firing of the powder compact under predetermined conditions,
After the main firing, it is possible to obtain the ferrite powder particles that are self-pulverized to some extent, so that the labor required for pulverizing the ferrite can be reduced, thus reducing the cost and the pulverization time. It can be shortened.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 フェライト原料を仮焼成して得られた仮
焼成体を粉砕して仮焼成粉を作成し、該仮焼成粉にバイ
ンダーを加えて粉末成形体を成形した後、該粉末成形体
を本焼成し、これにより得られたフェライト焼成体を粉
砕してフェライト粉末材料を製造する方法において、該
粉末成形体の本焼成は、焼成温度を常温から徐々に上昇
させて所定温度に到達させるとともに、該所定温度を維
持して一定時間加熱し、その後に徐冷してなるものであ
って、該本焼成の開始から該所定温度に到達させるまで
の間は酸素濃度0.3%以下の雰囲気中で行うことを特
徴とするフェライト粉末材料の製造方法。
1. A calcinated body obtained by calcination of a ferrite raw material is pulverized to prepare a calcinated powder, a binder is added to the calcinated powder to mold a powder molded body, and then the powder molded body. In the method for producing a ferrite powder material by pulverizing the obtained calcinated ferrite and pulverizing the obtained ferrite calcinated body, the calcination temperature of the powder compact is gradually raised from room temperature to reach a predetermined temperature. Along with heating at the predetermined temperature for a certain period of time and then gradually cooling, the oxygen concentration is 0.3% or less from the start of the main calcination until the predetermined temperature is reached. A method for producing a ferrite powder material, which is performed in an atmosphere.
JP8124826A 1996-05-20 1996-05-20 Production of ferrite powder material Pending JPH09309767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8124826A JPH09309767A (en) 1996-05-20 1996-05-20 Production of ferrite powder material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8124826A JPH09309767A (en) 1996-05-20 1996-05-20 Production of ferrite powder material

Publications (1)

Publication Number Publication Date
JPH09309767A true JPH09309767A (en) 1997-12-02

Family

ID=14895067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8124826A Pending JPH09309767A (en) 1996-05-20 1996-05-20 Production of ferrite powder material

Country Status (1)

Country Link
JP (1) JPH09309767A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100588853B1 (en) * 1999-08-24 2006-06-14 티디케이가부시기가이샤 Granule for forming ferrite body, ferrite sintered product and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100588853B1 (en) * 1999-08-24 2006-06-14 티디케이가부시기가이샤 Granule for forming ferrite body, ferrite sintered product and production method thereof

Similar Documents

Publication Publication Date Title
JP2000501893A (en) Ferrite magnets, powders for ferrite magnets, and methods for producing them
CN109102977B (en) High-density dry-pressed anisotropic ferrite magnet and manufacturing method thereof
JP2000351625A (en) PRODUCTION OF Mn-Zn FERRITE
KR100707366B1 (en) Method for producing ferrite sintered compact
JP4877514B2 (en) Manufacturing method of sintered ferrite magnet
JPH09309767A (en) Production of ferrite powder material
US3458927A (en) Method for improving the switching coefficient of ferrites with hysteresis loops of rectangular shape
JP2005294330A (en) Method of manufacturing ferrite magnet
JP2708160B2 (en) Ferrite manufacturing method
JP2914554B2 (en) Method for producing high permeability MnZn ferrite
JP2762531B2 (en) Ferrite magnetic body and method of manufacturing the same
JP3545438B2 (en) Method for producing Ni-Zn ferrite powder
JP2706975B2 (en) Method for producing Mn-Zn ferrite material
JPH06290923A (en) Manufacture of ferrite magnet
JPH06325920A (en) Low-loss magnetic material and manufacture thereof
US3294687A (en) Magnetic ceramic material
JP2024052568A (en) Manufacturing method of sintered ferrite magnet
JP2005170763A (en) Mn/Zn FERRITE, ITS MANUFACTURING METHOD AND ELECTRONIC PART
JP2003321273A (en) Method for producing spinel-type ferrite core and spinel- type ferrite core produced thereby
JP2005277179A (en) Method for manufacturing ferrite cores
JP3008566B2 (en) Manufacturing method of oxide magnetic material
JPH06260323A (en) Mn-zn ferrite temporary baked powder for obtaining core with high saturation magnetic flux density and low loss
JP2627637B2 (en) Oxide magnetic material
JP2004035375A (en) Magnetic composite material and its manufacturing method
JPH06204023A (en) Manufacture of ferrite powder