JP4877514B2 - Manufacturing method of sintered ferrite magnet - Google Patents

Manufacturing method of sintered ferrite magnet Download PDF

Info

Publication number
JP4877514B2
JP4877514B2 JP2007079186A JP2007079186A JP4877514B2 JP 4877514 B2 JP4877514 B2 JP 4877514B2 JP 2007079186 A JP2007079186 A JP 2007079186A JP 2007079186 A JP2007079186 A JP 2007079186A JP 4877514 B2 JP4877514 B2 JP 4877514B2
Authority
JP
Japan
Prior art keywords
additive
powder
ferrite
raw material
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007079186A
Other languages
Japanese (ja)
Other versions
JP2008160052A (en
Inventor
誠一朗 湊
清幸 増澤
勝美 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2007079186A priority Critical patent/JP4877514B2/en
Publication of JP2008160052A publication Critical patent/JP2008160052A/en
Application granted granted Critical
Publication of JP4877514B2 publication Critical patent/JP4877514B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Ceramics (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、フェライト焼結磁石の製造方法に関する。 The present invention relates to a method for manufacturing a sintered ferrite magnet .

従来の圧縮成形法に基づく2極異方性円筒状フェライト焼結磁石(以下、単にフェライト焼結磁石と称する)の製造においては、磁場配向性を高めるため、所要の金型に充填されたフェライト焼結磁石粉末に対して、磁界を印加しながら予備的な成形を施した予備成形体を解砕して顆粒材にしたもの(以下、磁場顆粒材と呼ぶ)を出発原料として用いるのが一般的である。
そして、顆粒材を金型に充填し、磁場を印加しつつ加圧することで所定形状への成形を行う、いわゆる磁場中成形を行うことで成形体を形成し、これを焼成してフェライト焼結磁石を得ている。
In the production of a bipolar anisotropic cylindrical ferrite sintered magnet (hereinafter simply referred to as a ferrite sintered magnet ) based on a conventional compression molding method, a ferrite filled in a required mold in order to enhance the magnetic field orientation. It is common to use as a starting material a sintered magnet powder obtained by pulverizing a preform that has been preliminarily shaped while applying a magnetic field into granules (hereinafter referred to as magnetic field granules). Is.
Then, the granule material is filled in a mold, and is molded into a predetermined shape by applying pressure while applying a magnetic field, so that a molded body is formed by performing so-called molding in a magnetic field, which is fired and sintered with ferrite. I'm getting a magnet .

このようなフェライト焼結磁石において、磁気特性を向上させることは、常に求められている。
また、圧縮方向の高さ寸法(L)と外径(R)との比(L/R)が大きい(例えば2.0以上)のフェライト焼結磁石を形成する場合、金型への材料の充填性、磁場配向性等の面で、工業的に安定した状態で製造するのは困難であり、これを安定して製造できるような技術も常に望まれている。
In such a sintered ferrite magnet , it is always required to improve the magnetic characteristics.
When forming a ferrite sintered magnet having a large ratio (L / R) of the height dimension (L) in the compression direction (L) to the outer diameter (R) (for example, 2.0 or more), In terms of filling properties, magnetic field orientation, and the like, it is difficult to manufacture in an industrially stable state, and a technique capable of stably manufacturing this is always desired.

これに対し、フェライト焼結磁石粉末に磁場を印加しながら予備的な成形を施した予備成型体を解砕して磁場顆粒材にしたものを原料とする場合において、その予備的な成形が乾式成形であること、予備成型体の密度を理論密度の42〜51%とすること、及び磁場顆粒材に含まれる75μm以下の粒子比率を10wt%以下とする手法(例えば、特許文献1参照。)や、磁場配向方向を工夫する手法(例えば、特許文献2参照。)等により、上記のような要求を満たそうという努力が行われている。 On the other hand, in the case of using as a raw material a material obtained by crushing a preform formed by applying a magnetic field to a sintered ferrite magnet powder into a magnetic field granule material, the preliminary molding is a dry process. It is shaping | molding, the density of a preforming body shall be 42 to 51% of theoretical density, and the method of making the particle | grain ratio of 75 micrometers or less contained in a magnetic-field granule material 10 wt% or less (for example, refer patent document 1). In addition, efforts have been made to satisfy the above-described requirements by means of devising the magnetic field orientation direction (see, for example, Patent Document 2).

特開平11−273939号公報Japanese Patent Laid-Open No. 11-273939 特開2004−296849号公報JP 2004-296849 A

前記したように、フェライト焼結磁石が用いられる機器には、常に高性能化が要求されている。例えば、モータに用いられる2極異方性又は極異方性を有するリング状磁石等種々の形態を有するフェライト焼結磁石の特性を向上することが要求されている。
そこで本発明は、磁場顆粒材を用いて製造されるフェライト焼結磁石の磁気特性をさらに向上させることのできるフェライト焼結磁石の製造方法を提供することを目的とする。
As described above, a device using a ferrite sintered magnet is always required to have high performance. For example, it is required to improve the properties of sintered ferrite magnets having various forms such as a dipole anisotropy or a ring magnet having polar anisotropy used in a motor.
Then, an object of this invention is to provide the manufacturing method of the ferrite sintered magnet which can further improve the magnetic characteristic of the ferrite sintered magnet manufactured using a magnetic field granule material.

かかる目的のもと、本発明のフェライト焼結磁石の製造方法は、フェライト焼結磁石の原料粉末に、第一の添加剤としてオクタン酸および/またはヘキサン酸を添加・分散させる添加剤添加工程と、第一の添加剤が分散した原料粉末を、磁界を印加しながら加圧成形し、予備成形体を得る予備成形工程と、予備成形体を解砕し、顆粒材を得る解砕工程と、顆粒材を、磁界を印加しながら加圧成形し、本成形体を得る本成形工程と、本成形体を焼成して、焼成体を得る焼成工程と、を備えることを特徴とする。
第一の添加剤は、予備成形工程、本成形工程における原料粉末の配向性を高めるためのものであり、これを添加することで、予備成形工程、本成形工程における原料粉末の配向性を高め、得られるフェライト焼結磁石の磁気特性を向上させることが可能となる。
このとき、第一の添加剤は、原料粉末に対し、0.05〜0.20wt%添加するのが好ましい。添加量が少ないとその効果が小さく、また添加量が過度に多いとその効果は大きいが成形体の強度が低下するため、本成形後の成形体へのクラック発生等につながる。
このような第一の添加剤は、第一の添加剤の融点以上に加熱した状態で添加する。第一の添加剤が溶融状態であることにより、その粘性抵抗が小さくなることから、原料粉末の配向性をさらに高めることができる。
また、添加剤添加工程から本成形工程までを、第一の添加剤の融点以上の温度に維持して行うのも好ましい。
さらに、添加剤添加工程で、第一の添加剤とは異なる第二の添加剤を添加することもできる。第二の添加剤は、本成形工程において用いる金型と原料粉末との摩擦を低減するためのものである。
For this purpose, the method for producing a sintered ferrite magnet according to the present invention includes an additive addition step of adding and dispersing octanoic acid and / or hexanoic acid as a first additive to a raw material powder of a sintered ferrite magnet. The raw material powder in which the first additive is dispersed is pressure-formed while applying a magnetic field, and a preforming step for obtaining a preform, a crushing step for crushing the preform and obtaining a granule, It is characterized by comprising a main forming step of pressing the granule while applying a magnetic field to obtain a main formed body, and a firing step of baking the main formed body to obtain a fired body.
The first additive is for increasing the orientation of the raw material powder in the pre-forming step and the main forming step, and by adding this, the orientation of the raw material powder in the pre-forming step and the main forming step is increased. Thus, the magnetic properties of the obtained sintered ferrite magnet can be improved.
At this time, it is preferable to add 0.05 to 0.20 wt% of the first additive with respect to the raw material powder. If the added amount is small, the effect is small, and if the added amount is excessively large, the effect is large, but the strength of the molded body is reduced, leading to the occurrence of cracks in the molded body after the main molding.
Such a 1st additive is added in the state heated more than melting | fusing point of the 1st additive. When the first additive is in a molten state, the viscosity resistance is reduced, so that the orientation of the raw material powder can be further increased.
In addition, it is also preferable to perform the steps from the additive addition step to the main forming step while maintaining the temperature at or above the melting point of the first additive.
Furthermore, the 2nd additive different from a 1st additive can also be added at an additive addition process. The second additive is for reducing the friction between the mold used in the main molding step and the raw material powder.

本発明によれば、オクタン酸やヘキサン酸を第一の添加剤として添加することで、原料粉末の配向性を高めることができ、より高い磁気特性を有したフェライト焼結磁石を得ることが可能となる。 According to the present invention, by adding octanoic acid or hexanoic acid as the first additive, the orientation of the raw material powder can be improved, and a sintered ferrite magnet having higher magnetic properties can be obtained. It becomes.

以下、添付図面に示す実施の形態に基づいてこの発明を詳細に説明する。
図1は、本実施の形態におけるフェライト焼結磁石の概略を説明するための図である。
図1に示すように、フェライト磁石(フェライト焼結磁石)10は、外形円筒状で、その中央部には軸線方向に伸びる孔11が形成されて、リング状の断面を有している。このフェライト磁石10は、高さ方向の寸法(L)と外径(R)との比(L/R)を、例えば2.0以上とすることもできる。
このようなフェライト磁石10は、孔11に図示しない回転シャフトが挿入・固定されることで、洗濯機、皿洗い機等のウォーターポンプ用のモータに組み込まれるマグネット等を構成する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.
FIG. 1 is a diagram for explaining an outline of a sintered ferrite magnet in the present embodiment.
As shown in FIG. 1, a ferrite magnet (ferrite sintered magnet) 10 has an outer cylindrical shape, and a hole 11 extending in the axial direction is formed at the center thereof, and has a ring-shaped cross section. The ferrite magnet 10 can have a ratio (L / R) of a dimension (L) in the height direction to an outer diameter (R) of, for example, 2.0 or more.
Such a ferrite magnet 10 constitutes a magnet or the like incorporated in a motor for a water pump such as a washing machine or a dishwasher by inserting and fixing a rotation shaft (not shown) in the hole 11.

このようなフェライト磁石10は、六方晶構造を有するフェライトを主相とし、Sr、Ba、CaおよびPbから選択される少なくとも1種の元素であって、Srを必ず含むものをAとし、希土類元素(Yを含む)およびBiから選択される少なくとも1種の元素であって、Laを必須とするものをRとし、Co、またはCoおよびZnをMとしたとき、A、R、FeおよびMを含有し、
式(1) A1−x(Fe12−y19(x、y、zはモル数)
と表したとき、
0.04≦x≦0.5
0.04≦y≦0.5
0.7≦z≦1.2
1≦(x/y)
であるものとするのが好ましい。
Such a ferrite magnet 10 is mainly composed of a ferrite having a hexagonal crystal structure, and at least one element selected from Sr, Ba, Ca, and Pb, which always contains Sr, is A, and a rare earth element At least one element selected from (including Y) and Bi, wherein La is essential and R is Co, or Co and Zn are M, and A, R, Fe and M are Contains,
Equation (1) A 1-x R x (Fe 12-y M y) z O 19 (x, y, z is the number of moles)
When
0.04 ≦ x ≦ 0.5
0.04 ≦ y ≦ 0.5
0.7 ≦ z ≦ 1.2
1 ≦ (x / y)
It is preferable that

さて、このようなフェライト磁石10は、以下のような工程を経て製造される。
図2は、本実施の形態におけるフェライト磁石10の製造工程の流れの一例を示す図である。なお、本実施の形態で示すフェライト磁石10の製造工程はあくまでも一例に過ぎず、適宜変更を加えることが可能なのは言うまでも無い。
Now, such a ferrite magnet 10 is manufactured through the following processes.
FIG. 2 is a diagram showing an example of the flow of the manufacturing process of the ferrite magnet 10 in the present embodiment. In addition, it cannot be overemphasized that the manufacturing process of the ferrite magnet 10 shown in this Embodiment is only an example, and can change suitably.

(原料組成物生成工程)
この図2に示すように、フェライト磁石10を製造するには、まず原料粉末を所定の配合比で混合する(ステップS101)。原料粉末としては、例えば、Fe粉末、SrCO粉末、SiO粉末、CaCO粉末を用いる。FeとSrが所定の比率(モル比)になるようにFe粉末およびSrCO粉末を秤量し、さらにこの混合物に対してSiO粉末、CaCO粉末を所定量添加して原料組成物を得る。
(Raw material composition production process)
As shown in FIG. 2, in order to manufacture the ferrite magnet 10, first, raw material powders are mixed at a predetermined blending ratio (step S101). As the raw material powder, for example, Fe 2 O 3 powder, SrCO 3 powder, SiO 2 powder, and CaCO 3 powder are used. Fe 2 O 3 powder and SrCO 3 powder are weighed so that Fe and Sr have a predetermined ratio (molar ratio), and then a predetermined amount of SiO 2 powder and CaCO 3 powder are added to this mixture to obtain a raw material composition Get.

(仮焼工程)
得られた原料組成物を、アトライタ等で所定時間湿式混合し、造粒して、乾燥させた後に、所定温度で所定時間の仮焼を行うことで、仮焼体を得る(ステップS102)。
(Calcination process)
The obtained raw material composition is wet-mixed with an attritor or the like for a predetermined time, granulated and dried, and then calcined at a predetermined temperature for a predetermined time to obtain a calcined body (step S102).

(粉砕工程)
次いで、得られた仮焼体を粗粉砕工程、微粉砕工程を経ることでサブミクロンサイズまで粉砕し、フェライト粒子からなる微粉砕粉末を得る(ステップS103)。
粗粉砕工程では、仮焼体をローラーミル等で粗粉砕する。この後、粗粉砕された仮焼体に、磁気特性を向上させるための添加剤として、例えば、Fe粉末、La(OH)粉末、Co粉末、SiO粉末、CaCO粉末を添加し、アトライタ等で微粉砕を行う。なお、微粉砕には分散媒として水等を用いることができる。
(Crushing process)
Next, the obtained calcined body is pulverized to a submicron size through a coarse pulverization process and a fine pulverization process to obtain a fine pulverized powder composed of ferrite particles (step S103).
In the coarse pulverization step, the calcined body is coarsely pulverized with a roller mill or the like. Thereafter, as an additive for improving the magnetic characteristics of the coarsely pulverized calcined body, for example, Fe 2 O 3 powder, La (OH) 3 powder, Co 3 O 4 powder, SiO 2 powder, CaCO 3 Add powder and pulverize with an attritor. Note that water or the like can be used as a dispersion medium for the fine pulverization.

この後、微粉砕スラリーを脱水することにより固形分濃度を調整し、これをアニールキルン等によって乾燥する(ステップS104)。   Thereafter, the solid content concentration is adjusted by dehydrating the finely pulverized slurry, and this is dried by an annealing kiln or the like (step S104).

(添加剤添加・分散工程)
得られた乾燥粉に対して、添加剤を添加し、これらをヘンシェルミキサー等で分散・混合させる(ステップS105)。
ここで添加する添加剤としては、予備成形時における粒子の配向性を向上させるための第一の添加剤を添加する。さらに、磁場成形時における磁性材料と金型との摩擦を軽減し、磁性材料の金型への噛み付きを抑制するための第二の添加剤を加えるのが好ましい。
ここで、第一の添加剤としては、オクタン酸、ヘキサン酸を用いることができる。
そして、第一の添加剤の添加量は、0.05wt%以上とするのが好ましい。第一の添加剤の添加量が多いほど、配向性向上効果は高まるが、添加量の増大にともなって、形成する成形体(本成形)における成形性が低下し、クラック等の発生につながる。したがって、第一の添加剤の添加量の上限は0.2wt%とするのが好ましい。すなわち、好ましい第一の添加剤の添加量は、0.05〜0.2wt%、より好ましくは0.10〜0.15wt%である。
(Additive addition / dispersion process)
Additives are added to the obtained dry powder, and these are dispersed and mixed with a Henschel mixer or the like (step S105).
As an additive added here, the 1st additive for improving the orientation of the particle | grains at the time of preforming is added. Furthermore, it is preferable to add a second additive for reducing friction between the magnetic material and the mold during magnetic field molding and suppressing the biting of the magnetic material to the mold.
Here, octanoic acid and hexanoic acid can be used as the first additive.
And it is preferable that the addition amount of a 1st additive shall be 0.05 wt% or more. As the amount of the first additive added is increased, the effect of improving the orientation is enhanced. However, as the amount of the additive is increased, the formability in the formed body (main forming) is reduced, leading to the occurrence of cracks and the like. Accordingly, the upper limit of the amount of the first additive is preferably 0.2 wt%. That is, the preferable addition amount of the first additive is 0.05 to 0.2 wt%, more preferably 0.10 to 0.15 wt%.

また、第二の添加剤としては、SiO、ステアリン酸カルシウム、昇華性バインダ(カンファ)等を用いることができる。 As the second additive, it can be used SiO 2, calcium stearate, sublimation binder (camphor), or the like.

ここで、第一の添加剤は、乾燥粉に対する分散性および付着性を高めるため、添加時に、液体の状態で添加するのが好ましい。したがって、第一の添加剤は、融点以上に加熱した状態で添加するのが好ましい。さらに、その後の工程においても、後述する本成形工程まで、第一の添加剤が液体状態を保つよう、乾燥粉に第一の添加剤および第二の添加剤を分散させた混合粉末を、第一の添加剤の融点以上に加熱するのが好ましい。これには、各工程にヒータ等を設けることで、混合粉末の温度コントロールを行うのが好ましい。   Here, the first additive is preferably added in a liquid state at the time of addition in order to improve dispersibility and adhesion to the dry powder. Therefore, it is preferable to add the first additive in a state heated to the melting point or higher. Further, in the subsequent steps, the mixed powder in which the first additive and the second additive are dispersed in the dry powder so that the first additive is kept in a liquid state until the main forming step described later, It is preferable to heat above the melting point of one additive. For this purpose, it is preferable to control the temperature of the mixed powder by providing a heater or the like in each step.

(微粒子化工程)
続いて、この混合粉末を、アトマイザー等により、微粒子化させる(ステップS106)。
(Micronization process)
Subsequently, the mixed powder is atomized by an atomizer or the like (step S106).

(予備成形工程)
そして、解砕した粉末を、所定の磁場を印加しつつ予備成形する。このとき、印加する磁場は、加圧方向と平行な方向とし、いわゆる縦磁場成形とする(ステップS107)。
(Preliminary molding process)
Then, the pulverized powder is preformed while applying a predetermined magnetic field. At this time, the magnetic field to be applied is a direction parallel to the pressurizing direction, so-called longitudinal magnetic field shaping (step S107).

(解砕工程)
得られた予備成形体を、解砕し、磁場顆粒材を得る(ステップS108)。これには、所定サイズの開口を有したスクリーンメッシュに、予備成形体を通すことで解砕を行うのが好ましい。
(Crushing process)
The obtained preform is crushed to obtain a magnetic granule (step S108). For this purpose, it is preferable to perform crushing by passing the preform through a screen mesh having openings of a predetermined size.

(本成形工程)
この磁場顆粒材を用いて磁場中成形を行い、リング状の成形体を得る(ステップS109)。このとき、得られる成形体は、予め設定した範囲内の密度となるようにするのが好ましい。
磁場中成形では、加圧方向と垂直な方向とした、いわゆる横磁場成形とし、所定の強度の磁場を印加する。
(Main molding process)
Using this magnetic granule material, molding is performed in a magnetic field to obtain a ring-shaped molded body (step S109). At this time, it is preferable that the obtained molded body has a density within a preset range.
In the magnetic field forming, so-called transverse magnetic field forming in a direction perpendicular to the pressing direction is applied, and a magnetic field having a predetermined strength is applied.

(焼成工程、加工工程)
このようにして作製した成形体を所定条件で焼成して焼結体を得る(ステップS110)。次いで焼結体を所定寸法に加工することで、フェライト磁石10が得られる(ステップS111)。
(Baking process, processing process)
The molded body thus produced is fired under predetermined conditions to obtain a sintered body (step S110). Next, the ferrite magnet 10 is obtained by processing the sintered body into a predetermined dimension (step S111).

さて、本発明においては、予備成形工程に先立ち、粒子の配向性を向上させるための第一の添加剤を添加するようにしたので、予備成形工程における磁場顆粒材の配向性を向上させることができる。また、その添加量を適切な範囲内とすることで、成形性が損なわれることも無く、クラック等の不良発生が増加するのを回避しつつ、高い磁気特性を得ることができる。   In the present invention, since the first additive for improving the orientation of the particles is added prior to the preforming step, the orientation of the magnetic granule material in the preforming step can be improved. it can. Moreover, by making the addition amount within an appropriate range, it is possible to obtain high magnetic characteristics while avoiding an increase in the occurrence of defects such as cracks without impairing moldability.

原料粉末としては、例えば、Fe粉末、SrCO粉末、SiO粉末、CaCO粉末を用いる。これら原料粉末を、FeとSrとのモル比Fe/Srが7.1となるようにFe粉末およびSrCO粉末を秤量し、さらにこの混合物に対してSiO粉末を0.17wt%、CaCO粉末を0.17wt%、BaO粉末を0.15wt%、Al粉末を0.1wt%添加して原料組成物を得た。この原料組成物をアトライタで1時間湿式混合し、乾燥して整粒した後に、1330℃で2時間仮焼を行った。 As the raw material powder, for example, Fe 2 O 3 powder, SrCO 3 powder, SiO 2 powder, and CaCO 3 powder are used. From these raw material powders, Fe 2 O 3 powder and SrCO 3 powder were weighed so that the molar ratio Fe / Sr between Fe and Sr was 7.1, and 0.12 wt% of SiO 2 powder was further added to this mixture. Then, 0.17 wt% of CaCO 3 powder, 0.15 wt% of BaO powder and 0.1 wt% of Al 2 O 3 powder were added to obtain a raw material composition. This raw material composition was wet mixed with an attritor for 1 hour, dried and sized, and then calcined at 1330 ° C. for 2 hours.

仮焼体をローラーミルで粗粉砕した後に、LaCO粉末を2.7wt%、CoO粉末を0.85wt%、SiO粉末を0.45wt%、CaCO粉末を1.35wt%、BaO粉末を0.15wt%、Al粉末を0.1wt%添加し、アトライタで比表面積(BET)が6.5m/gになるように微粉砕を行った。なお、微粉砕には分散媒として水を使用した。この時のフェライト組成はSr0.792La0.208Fe11.84Co0.16219である。 After roughly pulverizing the calcined body with a roller mill, La 2 CO 3 powder is 2.7 wt%, CoO powder is 0.85 wt%, SiO 2 powder is 0.45 wt%, CaCO 3 powder is 1.35 wt%, BaO 0.15 wt% of the powder and 0.1 wt% of the Al 2 O 3 powder were added, and pulverization was performed with an attritor so that the specific surface area (BET) was 6.5 m 2 / g. Note that water was used as a dispersion medium for the fine pulverization. The ferrite composition at this time is Sr 0.792 La 0.208 Fe 11.84 Co 0.162 O 19 .

微粉砕スラリーを脱水することにより固形分濃度を77wt%に調整し、これを350℃にて乾燥して水分濃度を0.3wt%以下にした。   The solid content concentration was adjusted to 77 wt% by dehydrating the finely pulverized slurry, and this was dried at 350 ° C. to reduce the water concentration to 0.3 wt% or less.

得られた乾燥粉に対して、第一の添加剤としてオクタン酸を0〜0.3wt%、第二の添加剤としてSiOを0.11wt%添加し、ヘンシェルミキサーで5分間混合した後に、アトマイザーを使用して混合粉末を2回解砕した。この時、アトマイザーには穴径が0.5mmのスクリーンを配置した。
このとき添加したオクタン酸については、その温度を、融点(16.7℃)以上とした。
The obtained dry powder, 0~0.3Wt% octanoic acid as the first additive, the SiO 2 after adding 0.11 wt%, and mixed for 5 minutes in a Henschel mixer as a second additive, The mixed powder was pulverized twice using an atomizer. At this time, a screen having a hole diameter of 0.5 mm was arranged in the atomizer.
About the octanoic acid added at this time, the temperature was made into melting | fusing point (16.7 degreeC) or more.

以上で得られた粉末について、嵩密度を測定した。
その結果を、表1に示す。
About the powder obtained above, the bulk density was measured.
The results are shown in Table 1.

Figure 0004877514
Figure 0004877514

表1に示すように、オクタン酸の添加量が多いほど、嵩密度は大きくなっており、これによりオクタン酸の添加により、粉末の流動性が高まっていることが示唆される。   As shown in Table 1, the larger the amount of octanoic acid added, the larger the bulk density, suggesting that the powder fluidity is increased by the addition of octanoic acid.

次いで、得られた粉末を、磁場を印加しながら加圧成形して予備成形体を得た後、この予備成形体を解砕して顆粒材を得た。この顆粒材を、磁場を印加しながら加圧成形し、高さ15mm、直径30mmの円柱状の成形体を得た。磁場は加圧方向と同一方向に850kA/mの強度で印加した。   Subsequently, the obtained powder was pressure-molded while applying a magnetic field to obtain a preform, and then the preform was crushed to obtain a granule. This granule was pressure-molded while applying a magnetic field to obtain a cylindrical shaped body having a height of 15 mm and a diameter of 30 mm. A magnetic field was applied at an intensity of 850 kA / m in the same direction as the pressing direction.

作製した成形体を1230℃で1時間焼成して焼結体を得た。次いで焼結体を高さ10mmに加工して磁石体を得た。   The formed body was fired at 1230 ° C. for 1 hour to obtain a sintered body. Next, the sintered body was processed to a height of 10 mm to obtain a magnet body.

この磁石体の磁気特性を調べた。その結果は、表1、図3に示すとおりである。   The magnetic properties of this magnet body were examined. The results are as shown in Table 1 and FIG.

表1、図3に示すように、オクタン酸の添加量が多いほど、磁場中成形における配向性が向上している。ここで、配向性とは、B−H曲線における、最大磁束密度Jに対する、磁場H=0のときの磁束密度Bの割合B/Jである。 As shown in Table 1 and FIG. 3, the greater the amount of octanoic acid added, the better the orientation in molding in a magnetic field. Here, the orientation is a ratio B 0 / J m of the magnetic flux density B 0 when the magnetic field H = 0 with respect to the maximum magnetic flux density J m in the BH curve.

さて、前記の実施例1と同様にして得られた乾燥粉に対して、第一の添加剤として、オクタン酸を表2に示すように添加し、第二の添加剤としてSiOを0.11wt%添加し、ヘンシェルミキサーで5分間混合した後に、アトマイザーを使用して混合粉末を2回解砕した。この時、アトマイザーには穴径が0.5mmのスクリーンを配置した。 Now, to the dry powder obtained in the same manner as in Example 1, octanoic acid was added as shown in Table 2 as the first additive, and SiO 2 as the second additive was added in an amount of 0.00. After adding 11 wt% and mixing with a Henschel mixer for 5 minutes, the mixed powder was pulverized twice using an atomizer. At this time, a screen having a hole diameter of 0.5 mm was arranged in the atomizer.

以上で得られた粉末を加圧と同一方向に磁場を印加し予備成形した。予備成形により、2.35〜2.7g/cmの成形体密度の予備成形体を得た。予備成形体の寸法はφ60mm×12mmとした。また、予備成形時に印加した磁場は800kA/mである。 The powder obtained above was preformed by applying a magnetic field in the same direction as pressing. By preforming, a preform having a compact density of 2.35 to 2.7 g / cm 3 was obtained. The dimensions of the preform were 60 mm × 12 mm. Moreover, the magnetic field applied at the time of preforming is 800 kA / m.

そして、得られた予備成形体を目開き0.345mmのスクリーンに通して解砕し、磁場顆粒材を得た。   And the obtained preform was pulverized through a screen having an aperture of 0.345 mm to obtain a magnetic granule material.

この磁場顆粒材を用いて磁場中成形を行い、高さ15mm、直径30mmの円柱状の成形体を得た。成形密度(dp)は表2に示す通りである。磁場は加圧方向と平行な方向に850kA/mの強度で印加した。   Using this magnetic granule material, molding was performed in a magnetic field to obtain a cylindrical molded body having a height of 15 mm and a diameter of 30 mm. The molding density (dp) is as shown in Table 2. A magnetic field was applied at a strength of 850 kA / m in a direction parallel to the pressing direction.

作製した成形体を1230℃で1時間焼成して焼結体を得た。焼成は、電気炉における焼成と、ガス炉における焼成の2通りを行った。次いで焼結体を高さ10mmに加工して磁石体を得た。   The formed body was fired at 1230 ° C. for 1 hour to obtain a sintered body. Firing was performed in two ways: firing in an electric furnace and firing in a gas furnace. Next, the sintered body was processed to a height of 10 mm to obtain a magnet body.

そして、この磁石体について、磁気特性を測定した。その結果を表2および図4に示す。   And the magnetic characteristic was measured about this magnet body. The results are shown in Table 2 and FIG.

Figure 0004877514
Figure 0004877514

表2および図4に示すように、第一の添加剤の添加量を0.05wt%以上とし、その添加量が多いほど、残留磁束密度Br、配向性Br/Jmが向上することが分かる。   As shown in Table 2 and FIG. 4, it can be understood that the residual magnetic flux density Br and the orientation Br / Jm are improved as the additive amount of the first additive is 0.05 wt% or more and the additive amount is increased.

実施例1と同様にして得られた乾燥粉に対して、第一の添加剤としてオクタン酸を0.11wt%、第二の添加剤としてSiOを0.11wt%添加した。また、比較のため、第一の添加剤を添加せずに、第二の添加剤としてSiOを同量だけ添加したものを用意した。
得られた混合粉末をヘンシェルミキサーで5分間混合した後に、アトマイザーを使用して2回解砕した。このとき、アトマイザーには穴径が0.5mmのスクリーンを配置した。
The dry powder obtained in the same manner as in Example 1, 0.11 wt% octanoic acid as the first additive, and the SiO 2 was added 0.11 wt% as a second additive. Further, for comparison, a material in which the same amount of SiO 2 was added as the second additive without adding the first additive was prepared.
The obtained mixed powder was mixed with a Henschel mixer for 5 minutes, and then pulverized twice using an atomizer. At this time, a screen having a hole diameter of 0.5 mm was disposed in the atomizer.

以上のようにして得られた粉末を用い、実施例1と同様の磁場中成形を行い、直径30mm、高さ15.5mm、成形体密度が2.76g/cmの円柱状の成形体を作製した。このとき、磁場成形時の材料温度を10℃、15℃、22℃、34℃の4通りとした。
磁場成形時の材料温度が10〜34℃のそれぞれの場合において、得られた成形体の強度を、錠剤試験器を用いて測定した。その結果を表3、図5に示す。
Using the powder obtained as described above, molding in a magnetic field similar to that in Example 1 was performed to obtain a cylindrical molded body having a diameter of 30 mm, a height of 15.5 mm, and a molded body density of 2.76 g / cm 3. Produced. At this time, the material temperature at the time of magnetic field forming was set to four types of 10 ° C, 15 ° C, 22 ° C, and 34 ° C.
In each case where the material temperature during magnetic field molding was 10 to 34 ° C., the strength of the obtained molded body was measured using a tablet tester. The results are shown in Table 3 and FIG.

Figure 0004877514
Figure 0004877514

表3、図5に示すように、磁場成形時の材料温度をオクタン酸の融点(16.7℃)以上にすることにより、成形体強度が25%程度増加していることがわかる。   As shown in Table 3 and FIG. 5, it can be seen that the strength of the compact is increased by about 25% by setting the material temperature at the time of magnetic field molding to the melting point (16.7 ° C.) or higher of octanoic acid.

実施例1と同様にして得られた乾燥粉に対して、第一の添加剤としてオクタン酸を、表4に示すように0.1〜0.3wt%に変化させて添加し、第二の添加剤としてSiOを0.11wt%添加した。
得られた混合粉末をヘンシェルミキサーで5分間混合した後に、アトマイザーを使用して2回解砕した。このとき、アトマイザーには穴径が0.5mmのスクリーンを配置した。
To the dry powder obtained in the same manner as in Example 1, octanoic acid was added as a first additive while being changed to 0.1 to 0.3 wt% as shown in Table 4, the SiO 2 was added 0.11 wt% as an additive.
The obtained mixed powder was mixed with a Henschel mixer for 5 minutes, and then pulverized twice using an atomizer. At this time, a screen having a hole diameter of 0.5 mm was disposed in the atomizer.

以上のようにして得られた粉末を用い、実施例3と同様の磁場中成形を行い、直径30mm、高さ15.5mm、成形体密度が2.76g/cmの円柱状の成形体を作製した。このとき、磁場成形時の材料温度は、12℃、33℃の2通りとした。
それぞれの場合において、得られた成形体の強度を錠剤試験器により測定した。
Using the powder obtained as described above, molding in a magnetic field similar to that in Example 3 was performed to obtain a cylindrical molded body having a diameter of 30 mm, a height of 15.5 mm, and a molded body density of 2.76 g / cm 3. Produced. At this time, the material temperature at the time of magnetic field shaping was set to two types of 12 ° C. and 33 ° C.
In each case, the strength of the resulting molded body was measured with a tablet tester.

さらに、得られた成形体を、実施例1と同様の条件で焼成し、焼結体を得た。そして、得られた焼結体の配向度(Br/Jm)を測定して比較した。その結果を表4、図6に示す。   Furthermore, the obtained molded body was fired under the same conditions as in Example 1 to obtain a sintered body. And the orientation degree (Br / Jm) of the obtained sintered compact was measured and compared. The results are shown in Table 4 and FIG.

Figure 0004877514
Figure 0004877514

表4、図6に示すように、磁場成形時の材料温度をオクタン酸の融点以上にすること(材料温度12℃→33℃)により、成形体強度が増加するとともに、Br/Jmも向上することがわかる。ただしいずれの場合も、オクタン酸の添加量が0.3wt%となると成形体強度が低下している。したがって、オクタン酸の添加量は0.2wt%以下とするのが好ましい。   As shown in Table 4 and FIG. 6, when the material temperature at the time of magnetic field molding is set to be equal to or higher than the melting point of octanoic acid (material temperature 12 ° C. → 33 ° C.), the strength of the compact is increased and Br / Jm is also improved. I understand that. However, in any case, when the amount of octanoic acid added becomes 0.3 wt%, the strength of the molded body decreases. Therefore, the amount of octanoic acid added is preferably 0.2 wt% or less.

本実施の形態におけるフェライト磁石を示す図である。It is a figure which shows the ferrite magnet in this Embodiment. フェライト磁石の製造工程を示す図である。It is a figure which shows the manufacturing process of a ferrite magnet. (a)は、実施例1におけるオクタン酸の添加量と残留磁束密度との関係、(b)は、オクタン酸の添加量と配向性との関係を示す図である。(A) is a figure which shows the relationship between the addition amount of octanoic acid and residual magnetic flux density in Example 1, (b) is a figure which shows the relationship between the addition amount of octanoic acid and orientation. (a)は、実施例2におけるオクタン酸の添加量、解砕粒径と、残留磁束密度との関係、(b)はオクタン酸の添加量、解砕粒径と、配向性との関係を示す図である。(A) is the relationship between the amount of octanoic acid added, the crushed particle size and the residual magnetic flux density in Example 2, and (b) is the relationship between the amount of octanoic acid added, the crushed particle size and orientation. FIG. 実施例3における第一の添加剤の温度と成形体強度との関係を示す図である。FIG. 6 is a diagram showing the relationship between the temperature of the first additive and the strength of the molded body in Example 3. 実施例4における第一の添加剤の温度と成形体強度、配向性との関係を示す図である。It is a figure which shows the relationship between the temperature of the 1st additive in Example 4, molded object strength, and orientation.

符号の説明Explanation of symbols

10…フェライト磁石(フェライト焼結磁石) 10. Ferrite magnet (ferrite sintered magnet)

Claims (5)

フェライト焼結磁石の原料粉末に、第一の添加剤としてオクタン酸および/またはヘキサン酸を添加・分散させる添加剤添加工程と、
前記第一の添加剤が分散した前記原料粉末を、磁界を印加しながら加圧成形し、予備成形体を得る予備成形工程と、
前記予備成形体を解砕し、顆粒材を得る解砕工程と、
前記顆粒材を、磁界を印加しながら加圧成形し、本成形体を得る本成形工程と、
前記本成形体を焼成して、焼成体を得る焼成工程と、を備え
前記第一の添加剤は、前記第一の添加剤の融点以上に加熱した状態で添加することを特徴とするフェライト焼結磁石の製造方法。
An additive addition step of adding and dispersing octanoic acid and / or hexanoic acid as a first additive to the raw material powder of the sintered ferrite magnet ;
The raw material powder in which the first additive is dispersed is pressure-molded while applying a magnetic field to obtain a preform, and a preforming step,
Crushing the preformed body to obtain a granule; and
The granule is pressure-molded while applying a magnetic field, and a main molding step for obtaining a main molded body,
And firing the main forming body, and a sintering step to obtain a fired body
Said 1st additive is added in the state heated more than melting | fusing point of said 1st additive , The manufacturing method of the ferrite sintered magnet characterized by the above-mentioned.
前記第一の添加剤は、前記原料粉末に対し、0.05〜0.20wt%添加することを特徴とする請求項1に記載のフェライト焼結磁石の製造方法。 The method for producing a ferrite sintered magnet according to claim 1, wherein 0.05 to 0.20 wt% of the first additive is added to the raw material powder. 前記添加剤添加工程から前記本成形工程までを、前記第一の添加剤の融点以上の温度に維持して行うことを特徴とする請求項1または2に記載のフェライト焼結磁石の製造方法。 3. The method for producing a sintered ferrite magnet according to claim 1 , wherein the steps from the additive adding step to the main forming step are performed while maintaining a temperature equal to or higher than the melting point of the first additive. 4. 前記第一の添加剤は、前記予備成形工程、前記本成形工程における前記原料粉末の配向性を高めるためのものであることを特徴とする請求項1から3のいずれか一項に記載のフェライト焼結磁石の製造方法。 The ferrite according to any one of claims 1 to 3, wherein the first additive is for increasing the orientation of the raw material powder in the preforming step and the main forming step. Manufacturing method of sintered magnet . 前記添加剤添加工程にて、前記第一の添加剤と異なる第二の添加剤を添加し、
前記第二の添加剤は、前記本成形工程において用いる金型と前記原料粉末との摩擦を低減するためのものであることを特徴とする請求項1から4のいずれか一項に記載のフェライト焼結磁石の製造方法。
In the additive addition step, a second additive different from the first additive is added,
5. The ferrite according to claim 1, wherein the second additive is for reducing friction between a mold used in the main forming step and the raw material powder. 6. Manufacturing method of sintered magnet .
JP2007079186A 2006-03-30 2007-03-26 Manufacturing method of sintered ferrite magnet Expired - Fee Related JP4877514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007079186A JP4877514B2 (en) 2006-03-30 2007-03-26 Manufacturing method of sintered ferrite magnet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006093788 2006-03-30
JP2006093788 2006-03-30
JP2007079186A JP4877514B2 (en) 2006-03-30 2007-03-26 Manufacturing method of sintered ferrite magnet

Publications (2)

Publication Number Publication Date
JP2008160052A JP2008160052A (en) 2008-07-10
JP4877514B2 true JP4877514B2 (en) 2012-02-15

Family

ID=39660599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007079186A Expired - Fee Related JP4877514B2 (en) 2006-03-30 2007-03-26 Manufacturing method of sintered ferrite magnet

Country Status (1)

Country Link
JP (1) JP4877514B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5360445B2 (en) * 2012-03-30 2013-12-04 戸田工業株式会社 Ferrite particle powder for bonded magnet, resin composition for bonded magnet, and molded body using them
CN102843002B (en) * 2012-09-24 2015-10-28 徐州通用高新磁电有限公司 A kind of manufacture method of permanent magnet machine rotor
JP6459963B2 (en) 2013-04-03 2019-01-30 戸田工業株式会社 Ferrite particle powder for bonded magnet, resin composition for bonded magnet, and molded body using them
JP6468192B2 (en) 2013-10-02 2019-02-13 戸田工業株式会社 Ferrite particle powder for bonded magnet, resin composition for bonded magnet, and molded body using them

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3103149B2 (en) * 1991-08-28 2000-10-23 ダイセル・ヒュルス株式会社 High specific gravity polyamide resin
JP3651545B2 (en) * 1997-09-19 2005-05-25 ダイセル・デグサ株式会社 Polyamide resin for metal powder composite molded products
JP4056912B2 (en) * 2003-03-19 2008-03-05 ダイセル・デグサ株式会社 Polyamide resin composition and bonded magnet
JP2005294330A (en) * 2004-03-31 2005-10-20 Tdk Corp Method of manufacturing ferrite magnet

Also Published As

Publication number Publication date
JP2008160052A (en) 2008-07-10

Similar Documents

Publication Publication Date Title
CN104230323A (en) M-type calcium-lanthanum-cobalt permanent magnetic ferrite and preparation method thereof
JP6947490B2 (en) Ferrite powder for bonded magnets, their manufacturing methods, and ferrite-based bonded magnets
CN1649039A (en) Method for producing Mn-Zn ferrite
JP4685893B2 (en) Manufacturing method of sintered magnet
JP4806798B2 (en) Ferrite magnetic powder for bonded magnet, method for producing the same, and bonded magnet
JPWO2018189967A1 (en) Rod-shaped MnZn ferrite core, method of manufacturing the same, and antenna
CN104230325A (en) Preparation method of permanent magnetic ferrite pre-sintering material and preparation method of permanent magnetic ferrite
CN104230326A (en) Preparation method of M-type calcium permanent magnetic ferrite
JP5510345B2 (en) Ferrite sintered magnet manufacturing method, magnetic powder, kneaded product and molded body
JP4877514B2 (en) Manufacturing method of sintered ferrite magnet
KR20080037521A (en) Hexagonal z type ferrite sintered material and method of fabricating the same
JP4821792B2 (en) Manufacturing method of sintered ferrite magnet
CN104230321A (en) M-type calcium permanent magnetic ferrite and preparation method thereof
CN104230322A (en) M-type calcium permanent magnetic ferrite and preparation method thereof
CN109102977B (en) High-density dry-pressed anisotropic ferrite magnet and manufacturing method thereof
JP7347296B2 (en) Ferrite sintered magnets and rotating electrical machines
JP2005294330A (en) Method of manufacturing ferrite magnet
JP4753054B2 (en) Manufacturing method of sintered ferrite magnet
JP4215992B2 (en) Oxide magnetic powder and core manufacturing method, core molding method, magnetic component and coil component
JPH0766027A (en) Manufacture of strontium ferrite magnet
CN113436822A (en) Ferrite sintered magnet
JP2006165479A (en) Ferrite core and line filter
CN113470913B (en) Ferrite sintered magnet and rotary electric machine
JP7426819B2 (en) Manufacturing method of magnetic material and coil parts including magnetic material
JP4400710B2 (en) Ferrite magnet manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111115

R150 Certificate of patent or registration of utility model

Ref document number: 4877514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees