JPH09307141A - Group iii nitride semiconductor light emitting element - Google Patents

Group iii nitride semiconductor light emitting element

Info

Publication number
JPH09307141A
JPH09307141A JP14835096A JP14835096A JPH09307141A JP H09307141 A JPH09307141 A JP H09307141A JP 14835096 A JP14835096 A JP 14835096A JP 14835096 A JP14835096 A JP 14835096A JP H09307141 A JPH09307141 A JP H09307141A
Authority
JP
Japan
Prior art keywords
layer
protective film
light emitting
nitride semiconductor
group iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14835096A
Other languages
Japanese (ja)
Other versions
JP3596171B2 (en
Inventor
Toshiya Kamimura
俊也 上村
Naoki Shibata
直樹 柴田
Junichi Umezaki
潤一 梅崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP14835096A priority Critical patent/JP3596171B2/en
Publication of JPH09307141A publication Critical patent/JPH09307141A/en
Application granted granted Critical
Publication of JP3596171B2 publication Critical patent/JP3596171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To facilitate manufacturing without deteriorating element characteristics, and improve electrostatic withstand voltage. SOLUTION: In a light emitting element 100, at least a P-type layer and an N-type layer which are composed of group III nitride semiconductor are laminated, parts of upper layers 72, 71, 6 5, 4 are eliminated, a part of a current supply layer 3 as a lower layer is exposed, and electrodes 8, 10 are formed on the uppermost layer 71 and the exposed part of the current supply layer 3. In this case, a protective film 11 whose resistivity is 0.1-1×10<5> Ωcm is formed on the surface of the light emitting element. The protective film 11 can be obtained by heating and drying, after solution wherein metal alcoholate (M-OR) or silicon compound is dissolved in organic solvent or water is spread. Formation is enabled at a low temperature, and manufacture is easy. The resistivity is sufficiently lower than that of perfect insulator, so that the electrostatic withstand voltage can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、製造が簡単で静電
耐圧を向上させた3族窒化物半導体を用いた発光素子に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device using a group III nitride semiconductor which is easy to manufacture and has improved electrostatic breakdown voltage.

【0002】[0002]

【従来技術】従来、3族窒化物半導体を用いた青色発光
の発光素子が知られている。この発光素子では、素子の
表面上にSiO2から成る保護膜が形成されている。そし
て、この保護膜の形成においては、完全な絶縁性を得る
ために、PVD法やCVD法との煩雑で時間のかかる方
法が採用されている。
2. Description of the Related Art Conventionally, a blue light emitting device using a group III nitride semiconductor has been known. In this light emitting device, a protective film made of SiO 2 is formed on the surface of the device. In forming this protective film, a complicated and time-consuming method, which is different from the PVD method or the CVD method, is adopted in order to obtain perfect insulation.

【0003】[0003]

【発明が解決しようとする課題】よって、発光素子の製
造が煩雑となり、製造に時間がかかるという問題があ
る。又、高温で保護膜を形成する場合には、発光素子の
エピタキャル成長層に悪影響を与え、素子特性が劣化し
たり、素子寿命が短くなるという問題がある。さらに、
半導体発光素子に関しては、静電耐圧の向上が必要な課
題となっている。
Therefore, there is a problem that the manufacturing of the light emitting device becomes complicated and the manufacturing takes time. Further, when the protective film is formed at a high temperature, it has a bad influence on the epitaxy growth layer of the light emitting device, resulting in deterioration of device characteristics and shortening of device life. further,
With respect to semiconductor light emitting elements, there is a need to improve electrostatic breakdown voltage.

【0004】本発明は、上記の課題を解決するために成
されたものであり、その目的は、素子特性を劣化させる
ことなく、製造を容易にすると共に、静電耐圧を向上さ
せることである。
The present invention has been made to solve the above problems, and an object thereof is to facilitate manufacture and improve electrostatic breakdown voltage without deteriorating element characteristics. .

【0005】[0005]

【課題を解決するための手段】本発明は、3族窒化物半
導体から成る少なくともp層とn層とが積層され、上層
の一部を除去して、下層の電流供給層の一部を露出さ
せ、最上層及び前記電流供給層の露出部分に電極を形成
した発光素子において、発光素子の表面上に、比抵抗0.
1 Ωcm〜1 ×105 Ωcmの保護膜を形成したことを特徴と
する。0.1 Ωcmより小さいと、p層とn層間の絶縁効果
が低下するので望ましくなく、1 ×105 Ωcmより大きい
場合には、高温で形成したり、PVD、CVD法等の煩
雑な方法で形成する必要があると共に、逆方向の静電耐
圧の向上の効果がなくなるので望ましくない。
According to the present invention, at least a p-layer and an n-layer made of a group 3 nitride semiconductor are laminated, a part of an upper layer is removed, and a part of a lower current supply layer is exposed. Then, in the light emitting element in which electrodes are formed on the exposed portion of the uppermost layer and the current supply layer, a specific resistance of 0.
A protective film having a thickness of 1 Ωcm to 1 × 10 5 Ωcm is formed. If it is smaller than 0.1 Ωcm, the insulating effect between the p layer and the n layer is deteriorated, which is not desirable, and if it is larger than 1 × 10 5 Ωcm, it is formed at a high temperature, or is formed by a complicated method such as PVD or CVD. This is not desirable because it is necessary and the effect of improving the electrostatic withstand voltage in the opposite direction is lost.

【0006】ここで、保護膜は、望ましくは、金属アル
コレート(M−OR)又は珪素化合物を有機溶剤又は水
に溶かした溶液を塗布後、加熱乾燥して得られる膜であ
り、その厚さは、300 Å〜3 μmである。さらに、望ま
しくは、保護膜は、電極間の保護膜を通る経路の保護膜
抵抗と電極間のp層とn層を通る駆動電流経路の素子抵
抗との関係において、順方向電圧に対して、保護膜抵抗
は素子抵抗よりも十分に大きく、逆方向電圧に対して、
保護膜抵抗は素子抵抗よりも十分に小さくなるように形
成されている。
Here, the protective film is preferably a film obtained by applying a solution of a metal alcoholate (M-OR) or a silicon compound in an organic solvent or water, followed by heating and drying, and its thickness. Is 300 Å to 3 μm. Further preferably, the protective film has a relationship between a protective film resistance of a path passing through the protective film between the electrodes and a device resistance of a drive current path passing through the p layer and the n layer between the electrodes, with respect to a forward voltage, The protective film resistance is sufficiently larger than the element resistance, and for the reverse voltage,
The protective film resistance is formed to be sufficiently smaller than the element resistance.

【0007】[0007]

【発明の作用及び効果】保護膜を比抵抗0.1 Ωcm〜1 ×
105 Ωcmの範囲で形成している。このため、この保護膜
は、PVD、CVD法等の煩雑な方法を用いずに、例え
ば、金属アルコレート(M−OR)又は珪素化合物を有
機溶剤又は水に溶かした溶液を塗布後、加熱乾燥するこ
とで得られる。よって、製造が簡単となる。又、高温加
熱が必要でないので、素子特性を劣化させ、素子寿命を
短くすることが防止される。又、保護膜を比抵抗が0.1
Ωcm〜1 ×105 Ωcmの範囲となるように形成すること
で、順方向電圧に対して、保護膜抵抗は素子抵抗よりも
十分に大きく、逆方向電圧に対して、保護膜抵抗は素子
抵抗よりも十分に小さくなるように形成できる。従っ
て、この発光素子の逆方向の静電耐圧を向上させること
ができる。
[Advantages and effects of the invention] The protective film has a specific resistance of 0.1 Ωcm to 1 ×.
It is formed in the range of 10 5 Ωcm. Therefore, this protective film is applied with a solution in which a metal alcoholate (M-OR) or a silicon compound is dissolved in an organic solvent or water without applying a complicated method such as PVD or CVD method, and then dried by heating. It is obtained by doing. Therefore, manufacturing becomes simple. Further, since high temperature heating is not necessary, deterioration of element characteristics and shortening of element life can be prevented. Also, the protective film has a specific resistance of 0.1.
By forming it in the range of Ωcm to 1 × 10 5 Ωcm, the protective film resistance is sufficiently larger than the element resistance with respect to the forward voltage and the protective film resistance with respect to the reverse voltage. Can be formed to be sufficiently smaller than Therefore, the electrostatic breakdown voltage of the light emitting element in the reverse direction can be improved.

【0008】[0008]

【実施例】以下、本発明を具体的な実施例に基づいて説
明する。なお本発明は下記実施例に限定されるものでは
ない。図1は本願実施例の発光素子100 全体図を示す。
発光素子100 は、サファイア基板1を有しており、その
サファイア基板1上に0.05μmのAlN バッファ層2が形
成されている。
EXAMPLES The present invention will be described below based on specific examples. The present invention is not limited to the following examples. FIG. 1 shows an overall view of the light emitting device 100 according to the embodiment of the present invention.
The light emitting device 100 has a sapphire substrate 1, and a 0.05 μm AlN buffer layer 2 is formed on the sapphire substrate 1.

【0009】そのバッファ層2の上には、順に、膜厚約
4.0 μm、電子濃度2 ×1018/cm3のシリコン(Si)ドープ
GaN から成る高キャリア濃度n+ 層3、膜厚約0.5 μm
の電子濃度5 ×1017/cm3のシリコン(Si)ドープのGaN か
ら成るn層4、膜厚約100 nm,亜鉛(Zn)とシリコン(S
i)がそれぞれ、 5×1018/cm3にドープされたIn0.20Ga
0.80N から成る発光層5,膜厚約100 nm,ホール濃度
2×1017/cm3, マグネシウム(Mg) 濃度 5×1019/cm3
ープのAl0.09Ga0.92N から成るp伝導型のクラッド層
6、膜厚約200 nm,ホール濃度 3×1017/cm3のマグネ
シウム(Mg) 濃度 5×1019/cm3ドープのGaN から成る第
1コンタクト層71、膜厚約50nm,ホール濃度 6×10
17/cm3のマグネシウム(Mg) 濃度 1×1020/cm3ドープの
GaN から成るp+ の第2コンタクト層72が形成されて
いる。
On the buffer layer 2, a film thickness of about
4.0 μm, silicon (Si) doped with 2 × 10 18 / cm 3 electron concentration
High carrier concentration n + layer 3 made of GaN, thickness about 0.5 μm
N layer 4 of GaN doped with silicon (Si) having an electron concentration of 5 × 10 17 / cm 3 , a film thickness of about 100 nm, zinc (Zn) and silicon (S
i) are each doped with 5 × 10 18 / cm 3 of In 0.20 Ga
Emitting layer composed of 0.80 N, thickness about 100 nm, hole concentration
2 × 10 17 / cm 3 , magnesium (Mg) concentration 5 × 10 19 / cm 3 p-conductivity type clad layer 6 made of Al 0.09 Ga 0.92 N, film thickness about 200 nm, hole concentration 3 × 10 17 / cm 3 magnesium (Mg) concentration 5 × 10 19 / cm 3 first contact layer 71 made of GaN, film thickness about 50 nm, hole concentration 6 × 10
17 / cm 3 magnesium (Mg) concentration 1 × 10 20 / cm 3 doped
A p + second contact layer 72 of GaN is formed.

【0010】そして、第2コンタクト層72の上面全体
にNiから成る厚さ25Åの第1電極層81が形成され、そ
の第1電極層81の上にAuから成る厚さ60Åの第2電極
層82が形成されている。この第1電極層81と第2電
極層82とでp型GaN に対する電極層8が構成される。
この電極層8は透明である。又、第2電極層82の上面
の隅の部分にNiから成る厚さ1000Åの第1金属層91、
Auから成る厚さ1.5 μmの第2金属層92、Alから成る
厚さ300 Åの第3金属層93が形成されている。この3
重層により、電極パッド9が形成されている。一方、n
+ 層3上にはAlから成る電極パッド10が形成されてい
る。そして、電極パッド9と電極パッド10のワイヤボ
ンディングされる領域に窓9Aと窓10Aが形成された
SiO2から成る保護膜11が基板1の最上層上に形成され
ている。
A first electrode layer 81 made of Ni and having a thickness of 25 Å is formed on the entire upper surface of the second contact layer 72, and a second electrode layer made of Au and having a thickness of 60 Å is formed on the first electrode layer 81. 82 is formed. The first electrode layer 81 and the second electrode layer 82 form the electrode layer 8 for p-type GaN.
This electrode layer 8 is transparent. In addition, the first metal layer 91 made of Ni and having a thickness of 1000 Å is formed on the corner of the upper surface of the second electrode layer 82
A second metal layer 92 made of Au and having a thickness of 1.5 μm, and a third metal layer 93 made of Al and having a thickness of 300 Å are formed. This 3
The electrode pad 9 is formed of multiple layers. On the other hand, n
An electrode pad 10 made of Al is formed on the + layer 3. Then, the window 9A and the window 10A were formed in the area of the electrode pad 9 and the electrode pad 10 to be wire-bonded.
A protective film 11 made of SiO 2 is formed on the uppermost layer of the substrate 1.

【0011】次に、この構造の半導体素子の製造方法に
ついて説明する。上記発光素子100 は、有機金属気相成
長法(以下MOVPE)による気相成長により製造され
た。用いられたガスは、アンモニア(NH3) 、キャリアガ
ス(H2)、トリメチルガリウム(Ga(CH3)3)(以下「TMG
」と記す) 、トリメチルアルミニウム(Al(CH3)3)(以
下「TMA 」と記す) 、トリメチルインジウム(In(CH3)3)
(以下「TMI 」と記す) 、シラン(SiH4)、ジエチル亜鉛
(Zn(C2H5)2)(以下、「DEZ 」と記す) とシクロペンタジ
エニルマグネシウム(Mg(C5H5)2)(以下「CP2Mg 」と記
す)である。
Next, a method of manufacturing a semiconductor device having this structure will be described. The light emitting device 100 was manufactured by vapor phase growth using metal organic chemical vapor deposition (hereinafter, MOVPE). The gases used were ammonia (NH 3 ), carrier gas (H 2 ), and trimethylgallium (Ga (CH 3 ) 3 ) (hereinafter “TMG
), Trimethyl aluminum (Al (CH 3 ) 3 ) (hereinafter referred to as “TMA”), trimethyl indium (In (CH 3 ) 3 )
(Hereinafter referred to as “TMI”), silane (SiH 4 ), diethylzinc
(Zn (C 2 H 5 ) 2 ) (hereinafter referred to as “DEZ”) and cyclopentadienyl magnesium (Mg (C 5 H 5 ) 2 ) (hereinafter referred to as “CP 2 Mg”).

【0012】まず、有機洗浄及び熱処理により洗浄した
a面を主面とし、単結晶のサファイア基板1をM0VPE 装
置の反応室に載置されたサセプタに装着する。次に、常
圧でH2を流速2 liter/分で約30分間反応室に流しながら
温度1100℃でサファイア基板1をベーキングした。
First, a single-crystal sapphire substrate 1 is mounted on a susceptor placed in a reaction chamber of an MOVPE apparatus, with the a-plane cleaned by organic cleaning and heat treatment as a main surface. Next, the sapphire substrate 1 was baked at a temperature of 1100 ° C. while flowing H 2 into the reaction chamber at a flow rate of 2 liter / min at normal pressure for about 30 minutes.

【0013】次に、温度を 400℃まで低下させて、H2
20 liter/分、NH3 を10 liter/分、TMA を 1.8×10-5
モル/分で約90秒間供給してAlN のバッファ層2を約0.
05μmの厚さに形成した。次に、サファイア基板1の温
度を1150℃に保持し、H2を20liter/分、NH3 を10 lite
r/分、TMG を 1.7×10-4モル/分、H2ガスにより0.86p
pm に希釈されたシランを20×10-8モル/分で40分導入
し、膜厚約4.0 μm、電子濃度 1×1018/cm3、シリコン
濃度 4×1018/cm3のシリコン(Si)ドープGaN から成る高
キャリア濃度n+ 層3を形成した。
[0013] Next, by lowering the temperature to 400 ° C., and H 2
20 liter / min, NH 3 10 liter / min, TMA 1.8 × 10 -5
The AlN buffer layer 2 was supplied at about 0.1 mol / min for about 90 seconds.
It was formed to a thickness of 05 μm. Next, the temperature of the sapphire substrate 1 was maintained at 1150 ° C., H 2 was 20 liter / min, and NH 3 was 10 lite.
r / min, TMG 1.7 × 10 -4 mol / min, 0.86p by H 2 gas
Silane diluted at 20 × 10 −8 mol / min was introduced for 40 minutes at a film thickness of about 4.0 μm, an electron concentration of 1 × 10 18 / cm 3 , and a silicon concentration of 4 × 10 18 / cm 3 (Si). 3.) A high carrier concentration n + layer 3 made of doped GaN was formed.

【0014】上記の高キャリア濃度n+ 層3を形成した
後、続いて温度を1100°C に保持し、H2を20 liter/
分、NH3 を10 liter/分、TMG を 1.12 ×10-4モル/
分、H2ガスにより0.86ppm に希釈されたシランを10×10
-9モル/分で30分導入し、膜厚約5.0 μm、電子濃度 5
×1017/cm3、シリコン濃度 1×1018/cm3のシリコン(Si)
ドープGaN から成るn層4を形成した。
After forming the high carrier concentration n + layer 3, the temperature is maintained at 1100 ° C. and H 2 is reduced to 20 liter / hour.
Min, NH 3 at 10 liter / min, TMG at 1.12 × 10 -4 mol / min
Min, silane to 10 × 10 diluted to 0.86ppm with H 2 gas
Introduced at -9 mol / min for 30 minutes, film thickness about 5.0 μm, electron concentration 5
× 10 17 / cm 3 , silicon (Si) with a silicon concentration of 1 × 10 18 / cm 3
An n layer 4 made of doped GaN was formed.

【0015】続いて、温度を800 ℃に保持し、N2又はH2
を20 liter/分、NH3 を10 liter/分、TMG を0.2 ×10
-4モル/分、TMI を1.6 ×10-4モル/分、H2ガスにより
0.86ppm に希釈されたシランを10×10-8mol/分で、DEZ
を 2×10-4モル/ 分で、30分間供給して厚さ100nm のシ
リコンと亜鉛が、それぞれ、 5×1018/cm3にドープさた
In0.20Ga0.80N から成る発光層5を形成した。
Subsequently, the temperature was kept at 800 ° C. and N 2 or H 2 was added.
20 liter / min, NH 3 10 liter / min, TMG 0.2 × 10
-4 mol / min, TMI 1.6 × 10 -4 mol / min, by H 2 gas
Silane diluted to 0.86 ppm at 10 × 10 -8 mol / min, DEZ
Was supplied at a rate of 2 × 10 −4 mol / min for 30 minutes, and silicon and zinc having a thickness of 100 nm were doped to 5 × 10 18 / cm 3 , respectively.
The light emitting layer 5 made of In 0.20 Ga 0.80 N was formed.

【0016】続いて、温度を1100℃に上げて、N2又はH2
を20 liter/分、NH3 を10 liter/分、TMG を1.12×10
-4モル/分、TMA を0.47×10-4モル/分、及び、CP2Mg
を2×10-5モル/分で 6分間導入し、膜厚約100 nmの
マグネシウム(Mg)ドープのAl0.08Ga0.92N から成るクラ
ッド層6を形成した。クラッド層6のマグネシウム濃度
は 5×1019/cm3である。この状態では、クラッド層6
は、まだ、抵抗率108 Ωcm以上の絶縁体である。
Subsequently, the temperature is raised to 1100 ° C. and N 2 or H 2 is added.
20 liter / min, NH 3 10 liter / min, TMG 1.12 × 10
-4 mol / min, 0.47 × 10 -4 mol / min of TMA and CP 2 Mg
Was introduced at 2 × 10 −5 mol / min for 6 minutes to form a cladding layer 6 made of magnesium (Mg) -doped Al 0.08 Ga 0.92 N and having a thickness of about 100 nm. The magnesium concentration of the cladding layer 6 is 5 × 10 19 / cm 3 . In this state, the cladding layer 6
Is an insulator having a resistivity of 10 8 Ωcm or more.

【0017】次に、温度を1100℃に保持し、N2又はH2
20 liter/分、NH3 を10 liter/分、TMG を1.12×10-4
モル/分、及び、CP2Mg を 2×10-5モル/分で 1分間導
入し、膜厚約200 nmのマグネシウム(Mg)ドープのGaN
から成る第1コンタクト層71を形成した。第1コンタ
クト層71のマグネシウム濃度は 5×1019/cm3である。
この状態では、第1コンタクト層71は、まだ、抵抗率
108 Ωcm以上の絶縁体である。
Next, the temperature is maintained at 1100 ° C., and N 2 or H 2 is added.
20 liter / min, NH 3 is 10 liter / min, TMG is 1.12 × 10 -4
Mol / min, and CP 2 Mg was introduced at 2 × 10 -5 mol / min for 1 minute, and magnesium (Mg) -doped GaN with a film thickness of about 200 nm
The first contact layer 71 made of was formed. The magnesium concentration of the first contact layer 71 is 5 × 10 19 / cm 3 .
In this state, the first contact layer 71 still has the resistivity
It is an insulator of 10 8 Ωcm or more.

【0018】次に、温度を1100℃に保持し、N2又はH2
20 liter/分、NH3 を10 liter/分、TMG を1.12×10-4
モル/分、及び、CP2Mg を 4×10-5モル/分で3 分間導
入し、膜厚約50nmのマグネシウム(Mg)ドープのGaN か
ら成るp+ の第2コンタクト層72を形成した。第2コ
ンタクト層72のマグネシウム濃度は 1×1020/cm3であ
る。この状態では、第2コンタクト層72は、まだ、抵
抗率108 Ωcm以上の絶縁体である。
Next, the temperature was maintained at 1100 ° C. and N 2 or H 2 was added.
20 liter / min, NH 3 is 10 liter / min, TMG is 1.12 × 10 -4
Mol / min and CP 2 Mg were introduced at 4 × 10 −5 mol / min for 3 minutes to form a p + second contact layer 72 of magnesium (Mg) -doped GaN having a thickness of about 50 nm. The magnesium concentration of the second contact layer 72 is 1 × 10 20 / cm 3 . In this state, the second contact layer 72 is still an insulator having a resistivity of 10 8 Ωcm or more.

【0019】次に、反射電子線回折装置を用いて、第2
コンタクト層72,第1コンタクト層71,及びクラッ
ド層6に一様に電子線を照射した。電子線の照射条件
は、加速電圧約10KV、資料電流1μA、ビームの移動速
度0.2mm/sec 、ビーム径60μmφ、真空度5.0 ×10-5To
rrである。この電子線の照射により、第2コンタクト層
72,第1コンタクト層71,クラッド層6は、それぞ
れ、ホール濃度 6×1017/cm3,3×1017/cm3,2×1017/c
m3、抵抗率 2Ωcm, 1 Ωcm,0.7Ωcmのp伝導型半導体と
なった。このようにして多層構造のウエハが得られた。
Next, using a reflection electron beam diffractometer, the second
The contact layer 72, the first contact layer 71, and the cladding layer 6 were uniformly irradiated with an electron beam. The electron beam irradiation conditions are: accelerating voltage of about 10 KV, material current of 1 μA, beam moving speed of 0.2 mm / sec, beam diameter of 60 μmφ, vacuum degree of 5.0 × 10 −5 To.
rr. By this electron beam irradiation, the second contact layer 72, the first contact layer 71, and the cladding layer 6 have hole concentrations of 6 × 10 17 / cm 3 , 3 × 10 17 / cm 3 , 2 × 10 17 / c, respectively.
It became a p-conduction type semiconductor having m 3 and resistivity of 2Ωcm, 1Ωcm, 0.7Ωcm. Thus, a wafer having a multilayer structure was obtained.

【0020】続いて、n+ 層3の電極パッド10を形成
するために、第2コンタクト層72、第1コンタクト層
71、クラッド層6、発光層5、n層4の一部を、エッ
チングにより除去した。
Subsequently, in order to form the electrode pad 10 of the n + layer 3, a part of the second contact layer 72, the first contact layer 71, the cladding layer 6, the light emitting layer 5 and the n layer 4 is etched. Removed.

【0021】次に、10-7Torr程度の高真空にて、一様
に、厚さ25ÅにNiを蒸着し、続いて、厚さ60ÅにAuを蒸
着し、フォトレジストの塗布、フォトリソグラフィー工
程、エッチング工程を経て、第2コンタクト層72の上
に第1電極層81、第2電極層82を形成した。これに
より、Ni/Au の透明な電極層8が形成された。そして、
電極パッド9を形成する領域を除いて最上層の全面にレ
ジストを塗布して、10-7Torr程度の高真空にて、Ni、A
u、Alを、順次、厚さ、1000Å、1.5 μm、300 Åに蒸
着した。その後、レジストをリフトオフすることで、必
要な箇所に第1金属層91、第2金属層92、第3金属
層93を形成した。このようにして、3層構造の電極パ
ッド9を形成した。一方、n+ 層3に対しては、Alを蒸
着して電極パッド10を形成した。
Next, Ni is vapor-deposited uniformly to a thickness of 25 Å in a high vacuum of about 10 -7 Torr, and then Au is vapor-deposited to a thickness of 60 Å to apply a photoresist and perform a photolithography process. Then, the first electrode layer 81 and the second electrode layer 82 were formed on the second contact layer 72 through the etching process. As a result, a transparent electrode layer 8 of Ni / Au was formed. And
Except for the region for forming the electrode pads 9 by coating a resist on the uppermost layer of the entire surface at a high vacuum of about 10 -7 Torr, Ni, A
u and Al were sequentially evaporated to a thickness of 1000 °, 1.5 μm, and 300 °. Thereafter, the first metal layer 91, the second metal layer 92, and the third metal layer 93 were formed at necessary places by lifting off the resist. Thus, the electrode pad 9 having a three-layer structure was formed. On the other hand, the electrode pad 10 was formed on the n + layer 3 by depositing Al.

【0022】次に、上記の基板1を加熱炉に配設し、加
熱炉の雰囲気を1m Torr以下にまで排気し、その後大気
圧までN2で封入した。そして、その状態で雰囲気温度を
400℃〜700 ℃の範囲の温度に設定して、数秒〜10分程
度、基板1を加熱した。
Next, the substrate 1 was placed in a heating furnace, the atmosphere in the heating furnace was evacuated to 1 m Torr or less, and then filled with N 2 to atmospheric pressure. And in that state, change the ambient temperature
The substrate 1 was heated at a temperature in the range of 400 ° C. to 700 ° C. for several seconds to 10 minutes.

【0023】次に、上記のように形成された基板1の最
上層の上に一様に、エチルシリケート(Si(OC2H5)4)を主
成分とする溶液を塗布した後、300 〜400 ℃の範囲で加
熱して乾燥した。これにより、SiO2から成る膜が5000Å
の厚さに形成された。その後、フォトレジストの塗布、
フォトリソグラフィー工程、エッチング工程を経て、電
極パッド9、電極パッド10のワイヤボンディング領域
に当たる部分のSiO2膜に窓9A、窓10Aをドライエッ
チングにより形成した。このようにして、SiO2から成る
保護膜11が形成された。
Next, a solution containing ethyl silicate (Si (OC 2 H 5 ) 4 ) as a main component is uniformly applied on the uppermost layer of the substrate 1 formed as described above, and then 300- It was heated and dried in the range of 400 ° C. As a result, a film made of SiO 2 will be 5000 Å
Formed to a thickness of After that, apply photoresist,
After the photolithography process and the etching process, the windows 9A and 10A were formed by dry etching on the SiO 2 film in the portions corresponding to the wire bonding regions of the electrode pads 9 and 10. Thus, the protective film 11 made of SiO 2 was formed.

【0024】第3金属層93のAlと保護膜11のSiO2
は接合度が高いので、第3金属層93と保護膜11との
間にエッチング液が浸透することが防止される。よっ
て、保護膜11のマスクされた部分はエッチングされな
いため、窓9Aの側壁は垂直となる。この結果、保護膜
11は第1金属層91、第2金属層92、第3金属層9
3の側面を完全に覆うことになり、保護膜として十分に
機能する。
Since the Al of the third metal layer 93 and the SiO 2 of the protective film 11 have a high degree of bonding, the etching solution is prevented from penetrating between the third metal layer 93 and the protective film 11. Therefore, since the masked portion of the protective film 11 is not etched, the side wall of the window 9A becomes vertical. As a result, the protective film 11 includes the first metal layer 91, the second metal layer 92, and the third metal layer 9
Since the side surface of 3 is completely covered, it functions sufficiently as a protective film.

【0025】この保護膜11の比抵抗は2 ×104 Ωcmで
あった。又、電極パッド9と電極パッド10との間の抵
抗は、順電圧に対して165 Ω、逆電圧に対して90kΩで
あった。保護膜11がない場合の逆電圧に対する抵抗が
17MΩであるので、逆電圧に対して保護膜11を介して
電流が流れるので、逆電圧に対する静電耐圧が向上する
のが分かる。又、逆方向静電圧20Vまで破壊されなかっ
た。
The specific resistance of this protective film 11 was 2 × 10 4 Ωcm. The resistance between the electrode pad 9 and the electrode pad 10 was 165 Ω for the forward voltage and 90 kΩ for the reverse voltage. Resistance to reverse voltage without protective film 11
Since it is 17 MΩ, a current flows through the protective film 11 against a reverse voltage, so that it can be seen that the electrostatic breakdown voltage against the reverse voltage is improved. Also, it was not destroyed up to a reverse static voltage of 20V.

【0026】尚、第3金属層93は、保護膜11に対す
る接合度が第2金属層92の構成元素の金よりも強いも
のであれば良い。例えば、Alの他、Ni、Tiを用いること
ができる。保護膜11は、上記のようにSiO2とする他、
TiO2, ZnS,MgF2, ZrO,Al2O3,Si3N4 等を用いることがで
きる。これらの膜は透明である。
It should be noted that the third metal layer 93 may have a degree of bonding to the protective film 11 that is stronger than the constituent element gold of the second metal layer 92. For example, in addition to Al, Ni and Ti can be used. The protective film 11 is made of SiO 2 as described above,
TiO 2, ZnS, MgF 2, ZrO, Al 2 O 3, Si 3 N 4 and the like can be used. These membranes are transparent.

【0027】尚、上記の保護膜11の厚さは、300 Å〜
3 μmが望ましい。300 Åより薄いと水分の侵入防止、
傷付き防止等の保護膜としての機能が低下し、3 μmよ
り厚いと、透明性が損なわれるので望ましくない。又、
上記実施例では、発光ダイオードについて示したが、本
発明をレーザダイオードにも応用することができる。
The protective film 11 has a thickness of 300 Å
3 μm is desirable. If it is thinner than 300Å
If it is thicker than 3 μm, the function as a protective film for preventing scratches is deteriorated, and transparency is impaired. or,
Although the light emitting diode is shown in the above embodiment, the present invention can be applied to a laser diode.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の具体的な実施例に係る発光ダイオード
の構成を示した構成図。
FIG. 1 is a configuration diagram showing a configuration of a light emitting diode according to a specific embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…発光ダイオード 1…サファイア基板 2…バッファ層 3…高キャリア濃度n+ 層 4…n層 5…発光層 61…p層 62…コンタクト層 7,8…電極10 ... Light emitting diode 1 ... Sapphire substrate 2 ... Buffer layer 3 ... High carrier concentration n + layer 4 ... N layer 5 ... Light emitting layer 61 ... P layer 62 ... Contact layer 7, 8 ... Electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】3族窒化物半導体から成る少なくともp層
とn層とが積層され、上層の一部を除去して、下層の電
流供給層の一部を露出させ、最上層及び前記電流供給層
の露出部分に電極を形成した発光素子において、 前記発光素子の表面上に形成された、比抵抗0.1 Ωcm〜
1 ×105 Ωcmの保護膜を有することを特徴とする3族窒
化物半導体発光素子。
1. At least a p-layer and an n-layer made of a Group III nitride semiconductor are laminated, a part of an upper layer is removed to expose a part of a lower current supply layer, and an uppermost layer and the current supply. In a light emitting device having an electrode formed on an exposed portion of a layer, a specific resistance formed on the surface of the light emitting device is 0.1 Ωcm to
A Group III nitride semiconductor light-emitting device having a protective film of 1 × 10 5 Ωcm.
【請求項2】前記保護膜は金属アルコレート(M−O
R)又は珪素化合物を有機溶剤又は水に溶かした溶液を
塗布後、加熱乾燥して得られる膜であることを特徴とす
る請求項1に記載の3族窒化物半導体発光素子。
2. The protective film is a metal alcoholate (MO).
2. The group III nitride semiconductor light emitting device according to claim 1, wherein the film is obtained by applying a solution of R) or a silicon compound dissolved in an organic solvent or water and then heating and drying.
【請求項3】前記保護膜の厚さは300 Å〜3 μmである
ことを特徴とする請求項1に記載の3族窒化物半導体発
光素子。
3. The Group III nitride semiconductor light emitting device according to claim 1, wherein the protective film has a thickness of 300 Å to 3 μm.
【請求項4】前記電極間の前記保護膜を通る経路の保護
膜抵抗と前記電極間の前記p層と前記n層を通る駆動電
流経路の素子抵抗との関係において、順方向電圧に対し
て、前記保護膜抵抗は前記素子抵抗よりも十分に大き
く、逆方向電圧に対して、前記保護膜抵抗は前記素子抵
抗よりも十分に小さくなるように前記保護膜が形成され
ていることを特徴とする請求項1に記載の3族窒化物半
導体発光素子。
4. A relationship between a protective film resistance of a path passing through the protective film between the electrodes and a device resistance of a drive current path passing through the p layer and the n layer between the electrodes with respect to a forward voltage. The protective film resistance is sufficiently larger than the element resistance, and the protective film is formed so that the protective film resistance is sufficiently smaller than the element resistance with respect to a reverse voltage. The Group III nitride semiconductor light emitting device according to claim 1.
JP14835096A 1996-05-16 1996-05-16 Group III nitride semiconductor light emitting device Expired - Fee Related JP3596171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14835096A JP3596171B2 (en) 1996-05-16 1996-05-16 Group III nitride semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14835096A JP3596171B2 (en) 1996-05-16 1996-05-16 Group III nitride semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH09307141A true JPH09307141A (en) 1997-11-28
JP3596171B2 JP3596171B2 (en) 2004-12-02

Family

ID=15450805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14835096A Expired - Fee Related JP3596171B2 (en) 1996-05-16 1996-05-16 Group III nitride semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3596171B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021605A1 (en) * 2000-09-04 2002-03-14 Epivalley Co., Ltd. The semiconductor led device and producing method
WO2013180204A1 (en) * 2012-06-01 2013-12-05 三菱重工業株式会社 Method and device for fabricating protective film for light emitting element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021605A1 (en) * 2000-09-04 2002-03-14 Epivalley Co., Ltd. The semiconductor led device and producing method
EP1320902A1 (en) * 2000-09-04 2003-06-25 Epivalley Co. Ltd The semiconductor led device and producing method
US7053417B2 (en) 2000-09-04 2006-05-30 Epivalley Co., Ltd. Semiconductor led device and producing method
EP1320902A4 (en) * 2000-09-04 2006-10-04 Epivalley Co Ltd The semiconductor led device and producing method
WO2013180204A1 (en) * 2012-06-01 2013-12-05 三菱重工業株式会社 Method and device for fabricating protective film for light emitting element

Also Published As

Publication number Publication date
JP3596171B2 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
EP0579897B1 (en) Light-emitting device of gallium nitride compound semiconductor
JP3292044B2 (en) P-conductivity group III nitride semiconductor electrode pad, device having the same, and device manufacturing method
JP3239774B2 (en) Substrate separation method for group III nitride semiconductor light emitting device
JPH11220168A (en) Gallium nitride compound semiconductor device and manufacture thereof
JP2000286448A (en) Iii group nitride compound semiconductor luminous element
JPH06151963A (en) Nitrogen-iii compound semiconductor luminous element and manufacture thereof
JPH104210A (en) Iii-group nitrogen compound semiconductor light emitting element
JP3557791B2 (en) Group III nitride semiconductor electrode and device having the electrode
JP3136672B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3341576B2 (en) Group III nitride compound semiconductor light emitting device
JP2658009B2 (en) Gallium nitride based compound semiconductor light emitting device
JPH11126923A (en) Method for manufacturing gallium nitride compound semiconductor element
JP2000188421A (en) Iii-group nitride-based compound semiconductor element
JP3336855B2 (en) Group III nitride compound semiconductor light emitting device
JPH08274372A (en) Group iii nitride semiconductor light emitting element
JP3836245B2 (en) Gallium nitride compound semiconductor device
JP2000091629A (en) Gallium nitride-based compound semiconductor light emitting element
JP3646502B2 (en) Method for manufacturing group 3 nitride semiconductor device
JP3596171B2 (en) Group III nitride semiconductor light emitting device
JPH0992880A (en) Group iii nitride semiconductor light emitting device
JP3637662B2 (en) Group 3 nitride semiconductor light emitting device
JP3620923B2 (en) Group 3 nitride semiconductor light emitting device
JPH10303458A (en) Gallium nitride compound semiconductor element
JPH11186605A (en) Electrode forming method of gallium nitride based compound semiconductor and manufacture of element
JPH1065214A (en) Manufacture of semiconductor light-emitting device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040830

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees