JPH09306959A - Semiconductor thin film impurity concentrator and analysis thereof - Google Patents
Semiconductor thin film impurity concentrator and analysis thereofInfo
- Publication number
- JPH09306959A JPH09306959A JP8239307A JP23930796A JPH09306959A JP H09306959 A JPH09306959 A JP H09306959A JP 8239307 A JP8239307 A JP 8239307A JP 23930796 A JP23930796 A JP 23930796A JP H09306959 A JPH09306959 A JP H09306959A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- semiconductor thin
- sample
- impurities
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
- Sampling And Sample Adjustment (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は半導体薄膜の不純物
濃縮装置及びその不純物分析方法に関し、さらに詳しく
は、半導体薄膜中の超微量不純物分析用の試料を調製す
るための半導体薄膜の不純物濃縮装置及びその不純物分
析方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impurity concentrating device for a semiconductor thin film and an impurity analyzing method therefor, and more particularly, to an impurity concentrating device for a semiconductor thin film for preparing a sample for analysis of ultratrace impurities in a semiconductor thin film, and The present invention relates to a method for analyzing impurities.
【0002】[0002]
【従来の技術】SiO2 膜やSi3 N4 膜などの半導体
薄膜はシリコン半導体素子におけるドープ剤部分拡散マ
スクや金属蒸着膜の保護膜として使用されているが、こ
の薄膜中にNa,K,Feなどの不純物が存在すると、
たとえその量が超微量であっても、素子の電気特性は大
きな影響を受ける。このため、超LSI素子等の性能を
高めるためには、これら不純物の含有量をできる限り低
く抑える必要があるが、この目的を達成するためには、
半導体薄膜中の不純物の濃度を正確に測定する必要があ
る。かかる薄膜中の不純物を測定する手段として、薄膜
試料を酸溶液もしくは酸蒸気で溶解し、不純物を分離濃
縮した後、フームレス原子吸光分析法もしくは誘導結合
プラズマ質量分析法等で測定する湿式化学分析手段が一
般的に知られている。 2. Description of the Related Art A semiconductor thin film such as a SiO 2 film or a Si 3 N 4 film is used as a dopant partial diffusion mask or a protective film for a metal vapor deposition film in a silicon semiconductor device. If impurities such as Fe are present,
Even if the amount is extremely small, the electrical characteristics of the device are greatly affected. Therefore, in order to improve the performance of the VLSI element and the like, it is necessary to keep the content of these impurities as low as possible, but in order to achieve this purpose,
It is necessary to accurately measure the concentration of impurities in the semiconductor thin film. As a means for measuring impurities in such a thin film, a thin film sample is dissolved in an acid solution or an acid vapor, impurities are separated and concentrated, and then wet chemical analysis means for measuring by a filmless atomic absorption spectrometry or inductively coupled plasma mass spectrometry etc. Is generally known.
【0003】しかし、湿式化学分析手段では、多量の試
料が必要であると共に、試料を溶解したり、不純物の分
離濃縮操作が煩雑であるために、分析操作技術の習得に
熟練を要したり、分析に時間がかかるという問題点があ
った。さらに、酸溶液もしくは酸蒸気を用いるために、
環境や安全衛生の面から、酸専用のドラフトや排ガス処
理設備及び酸処理設備を設置しなければならないという
問題もあったため、SIMS(Secondary Ion Mass Spec
trometry) ,TRXRF(Total Reflection X-ray Fluo
rescence Spectrometry),AES(Auger Electron Spec
trometry) ,PIXE(Particle Induced X-ray Emissi
on Spectrometry)等の物理分析手段が一般的に行われて
いる。この物理分析手段では通常化学処理操作なしで直
接測定できるため、迅速性の点で優れている。また、分
析試料量や深さ方向分解能の点でも優れている。However, in the wet chemical analysis means, a large amount of sample is required, and since the sample is dissolved and the operation of separating and concentrating the impurities is complicated, it requires skill to acquire the analytical operation technique. There was a problem that analysis took time. Furthermore, in order to use an acid solution or acid vapor,
From the viewpoint of environment and health and safety, there was also a problem that a draft for acid, exhaust gas treatment equipment and acid treatment equipment had to be installed, so SIMS (Secondary Ion Mass Spec
trometry), TRXRF (Total Reflection X-ray Fluo
rescence Spectrometry), AES (Auger Electron Spec)
trometry), PIXE (Particle Induced X-ray Emissi
Physical analysis means such as on spectroscopy are commonly used. Since this physical analysis means can usually be directly measured without a chemical treatment operation, it is excellent in quickness. It is also excellent in terms of the amount of analysis sample and the resolution in the depth direction.
【0004】ここで、上述の物理分析手段においてはS
IMSを除き、10ppm〜10000ppm程度の分
析感度であり、超微量不純物成分の検出には適さない。
また、SIMSにおいてもppbレベルの検出も可能で
あるが、ppb以下の不純物分析は困難であった。従っ
て、超LSI素子等の性能を高めるためには、これら超
微量不純物成分の検出をできる限り感度を高めて測定す
る方法の開発が不可欠である。Here, in the above-mentioned physical analysis means, S
Except for IMS, it has an analytical sensitivity of about 10 ppm to 10000 ppm and is not suitable for the detection of ultratrace impurity components.
Moreover, although the ppb level can be detected by SIMS, it is difficult to analyze impurities below ppb. Therefore, in order to improve the performance of the VLSI element or the like, it is essential to develop a method for detecting these ultra-trace amount impurity components with the highest possible sensitivity.
【0005】そこで、不純物分析の感度を高めるために
は、従来、薄膜試料を酸溶液もしくは酸蒸気で溶解し、
溶媒抽出分離法やイオン交換分離法などで不純物を分離
濃縮した後、加熱乾燥させて物理分析手段にて測定する
方法、すなわち、化学処理操作等にて不純物を濃縮する
ことにより測定感度を向上させ、物理分析手段にて測定
するいわゆる併用手段が用いられていた。Therefore, in order to increase the sensitivity of impurity analysis, conventionally, a thin film sample is dissolved with an acid solution or acid vapor,
After separating and concentrating impurities by solvent extraction separation method or ion exchange separation method, etc., it is dried by heating and measured by physical analysis means, that is, the measurement sensitivity is improved by concentrating impurities by chemical treatment operation etc. A so-called combined means for measuring by a physical analysis means has been used.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、化学処
理操作により不純物を濃縮して測定感度を向上させる方
法においては上記湿式化学分析手段で述べたように、試
料を溶解したり、不純物の分離濃縮操作が煩雑であるた
めに、分析操作技術の習得に熟練を要したり、分析に時
間がかかるという問題点があった。また、酸溶液もしく
は酸蒸気を用いるために、環境や安全衛生の面から、酸
専用のドラフトや排ガス処理設備及び酸処理設備を設置
しなければならなかった。However, in the method of concentrating impurities by a chemical treatment operation to improve the measurement sensitivity, as described in the above wet chemical analysis means, the sample is dissolved or the impurities are separated and concentrated. Since it is complicated, there is a problem that it requires skill to acquire analysis operation technique and analysis takes time. Further, since the acid solution or the acid vapor is used, from the viewpoint of environment and safety and hygiene, it is necessary to install a dedicated draft for the acid, an exhaust gas treatment equipment and an acid treatment equipment.
【0007】本発明は、このような従来技術を解決する
ためになされたもので、その目的とするところは、試料
の溶解等を行う化学処理操作を行わずに、半導体薄膜中
の不純物を濃縮し、迅速、簡便かつ高感度な分析を行う
ことができる半導体薄膜の不純物濃縮装置及び不純物分
析方法を提供することにある。The present invention has been made in order to solve such a conventional technique, and its purpose is to concentrate impurities in a semiconductor thin film without performing a chemical treatment operation such as dissolution of a sample. However, it is another object of the present invention to provide a semiconductor thin film impurity concentrating device and an impurity analyzing method capable of performing a quick, simple and highly sensitive analysis.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
に、本発明者らは半導体薄膜について鋭意研究を重ねた
結果、半導体薄膜中に電位差を生じさせた場合に画期的
な度合で不純物が濃縮されることを見いだし、本発明の
半導体薄膜の不純物濃縮装置及びその不純物分析方法を
発明するに至った。In order to achieve the above object, the inventors of the present invention have conducted earnest studies on a semiconductor thin film, and as a result, when a potential difference is generated in the semiconductor thin film, impurities are epoch-making. It was found that the impurities were concentrated, and the inventors of the present invention invented the semiconductor thin film impurity concentration device and the impurity analysis method thereof.
【0009】本発明に係る半導体薄膜の不純物濃縮装置
は、半導体薄膜を溶解せずに、不純物を迅速、簡便かつ
高濃度に濃縮する装置であるが、その特徴は、半導体薄
膜中に電位差を生じさせて該半導体薄膜中のイオン性不
純物を電位差により該半導体薄膜の一部に濃縮するため
の電極と、前記半導体薄膜を外部と遮断する密閉容器
と、を備えることである。The impurity concentrating device for a semiconductor thin film according to the present invention is a device for concentrating impurities quickly, simply and at high concentration without dissolving the semiconductor thin film, which is characterized by a potential difference in the semiconductor thin film. The semiconductor thin film is provided with an electrode for concentrating the ionic impurities in the semiconductor thin film to a part of the semiconductor thin film due to a potential difference, and a closed container for blocking the semiconductor thin film from the outside.
【0010】また、第1の電位を第1の電極端子に印加
し、また、前記第1の電位と異なる第2の電位を第2の
電極端子に印加する直流電圧印加手段と、前記半導体薄
膜試料を外部と遮断する密閉容器と、前記第1の電極端
子に電気的に接続され、前記密閉容器内の前記半導体薄
膜試料を一方の面から保持する第1の電極と、前記第2
の電極端子に電気的に接続され、前記密閉容器内の前記
半導体薄膜試料の他方の面近傍もしくは他方の面に設け
られた第2の電極とを備え、前記第1及び第2の電極に
電圧を印加することで、前記不純物を前記第2の電極近
傍の半導体薄膜に集めることにより前記不純物を濃縮す
るように構成してもよい。Further, a direct current voltage applying means for applying a first potential to the first electrode terminal and a second potential different from the first potential to the second electrode terminal, and the semiconductor thin film. A closed container for blocking the sample from the outside; a first electrode electrically connected to the first electrode terminal for holding the semiconductor thin film sample in the closed container from one surface;
A second electrode which is electrically connected to the electrode terminal of the semiconductor thin film sample and is provided in the vicinity of or on the other surface of the semiconductor thin film sample in the closed container, and a voltage is applied to the first and second electrodes. May be applied to collect the impurities in the semiconductor thin film in the vicinity of the second electrode to concentrate the impurities.
【0011】ここで、第1の電極及び第2の電極の材料
は白金、金、パラジウム、銀、タンタル、銅などの導電
性材料で、分析目的のイオン性不純物の濃縮を直接的に
も間接的にも妨害しないものであればいかなるものでも
よく、望ましくは白金、金、タンタルである。また、上
記の電極は、分析目的の不純物が電極から薄膜試料に、
及び薄膜試料から電極に移動しない状態で任意の電圧を
印加できるものであればいかなるものであってもよい。Here, the material of the first electrode and the second electrode is a conductive material such as platinum, gold, palladium, silver, tantalum, copper or the like, which directly or indirectly concentrates the ionic impurities for the purpose of analysis. Any material may be used as long as it does not interfere, and platinum, gold and tantalum are preferable. Further, in the above electrode, impurities for the purpose of analysis from the electrode to the thin film sample,
Also, any material may be used as long as it can apply an arbitrary voltage without moving from the thin film sample to the electrode.
【0012】また、第1の電極は半導体薄膜試料の一部
を保持し、この半導体試料に上記2つの電極を通して直
流高電圧が印加されて、半導体薄膜の不純物が表面近傍
で局所的に濃縮され得るような位置関係で該密閉容器内
に設けられたものである。また、1個の薄膜試料(例え
ば、薄膜の付いた試料ウェハ)を保持するだけのもので
もよく、複数個の薄膜試料を保持するものであってもよ
い。ここで、「保持」するとは、固定するという概念を
含むが、単におくだけの動作をも含むものとする。複数
個の薄膜試料を保持し、これらを同時に直流高電圧を印
加するためには、各試料を隔てることで他の試料に影響
を与えないようにするため、間仕切りを設けることが好
ましく、これらに対応して一対の電極も複数個の薄膜試
料ごとに設けられていることが好ましい。また、第1及
び第2の電極は、脱着自在であることが好ましい。これ
は、半導体試料の位置決めを容易にし、また、汚染時に
電極交換を容易にするためである。The first electrode holds a part of the semiconductor thin film sample, and a high DC voltage is applied to the semiconductor sample through the above two electrodes to locally concentrate impurities in the semiconductor thin film near the surface. It is provided in the closed container in such a positional relationship as to obtain it. Further, it may be one that holds only one thin film sample (for example, a sample wafer with a thin film), or one that holds a plurality of thin film samples. Here, “holding” includes the concept of fixing, but also includes the operation of simply putting. In order to hold a plurality of thin film samples and simultaneously apply a high DC voltage to them, it is preferable to provide a partition in order to prevent the influence of other samples by separating each sample. Correspondingly, a pair of electrodes is preferably provided for each of the plurality of thin film samples. Moreover, it is preferable that the first and second electrodes are detachable. This is for facilitating the positioning of the semiconductor sample and facilitating the electrode exchange at the time of contamination.
【0013】次に、第2の電極の形状は、その先端部を
尖らせるようにすることが好ましい。これは、半導体薄
膜の特定部分により高い電界をかけて、その特定部分の
不純物濃度を上げるためである。また、第2の電極は半
導体薄膜試料に接触していても接触していなくてもよ
い。しかし、分析目的の不純物がこの第2の電極に付着
してしまう可能性があるため、半導体薄膜試料と任意の
距離を保つような位置関係が好ましい。さらに、第2の
電極は、半導体薄膜試料の所定の部分について正確に濃
縮を行うために上下、前後、及び左右に移動する移動手
段を設けても良い。Next, the shape of the second electrode is preferably such that the tip portion thereof is sharpened. This is because a higher electric field is applied to a specific portion of the semiconductor thin film to increase the impurity concentration of the specific portion. Further, the second electrode may or may not be in contact with the semiconductor thin film sample. However, since impurities for the purpose of analysis may adhere to the second electrode, it is preferable to have a positional relationship that keeps an arbitrary distance from the semiconductor thin film sample. Further, the second electrode may be provided with a moving means that moves up and down, back and forth, and left and right to accurately concentrate a predetermined portion of the semiconductor thin film sample.
【0014】次に、直流電圧印加手段は、半導体薄膜の
イオン性不純物を局所的に濃縮するために、交流電圧を
直流電圧に変換する等により所定の直流電圧を印加でき
るものであればいかなるものであってもよい。イオン性
不純物を高濃度に濃縮するためには、直流電圧はできる
限り高いほうが望ましい。しかし、電圧が高すぎる場
合、電極と半導体薄膜試料の間で強い放電が生じて、半
導体薄膜試料のイオン性不純物が蒸発したり、電極から
の不純物蒸発による二次汚染が起こるために、半導体薄
膜の不純物分析の精度および感度は著しく低下する。直
流電圧は実用的には、20〜1000Vが望ましい。ま
た、この直流電圧印加手段は半導体薄膜試料に存在する
陽イオン及び陰イオンのイオン性不純物を別々に濃縮可
能とするため、第1の電位と第2の電位の大小を反転さ
せる機能を有することが好ましい。Next, the DC voltage applying means may be any one that can apply a predetermined DC voltage by converting the AC voltage into a DC voltage or the like in order to locally concentrate the ionic impurities in the semiconductor thin film. May be In order to concentrate the ionic impurities to a high concentration, it is desirable that the DC voltage be as high as possible. However, if the voltage is too high, a strong discharge occurs between the electrode and the semiconductor thin film sample, the ionic impurities in the semiconductor thin film sample evaporate, and the secondary contamination due to the evaporation of impurities from the electrode occurs. The accuracy and sensitivity of the impurity analysis of is significantly reduced. Practically, the DC voltage is preferably 20 to 1000V. Further, the DC voltage applying means has a function of reversing the magnitude of the first potential and the second potential in order to separately concentrate the ionic impurities of the cation and the anion present in the semiconductor thin film sample. Is preferred.
【0015】次に、密閉容器は環境からの二次汚染を低
減したり、有機物蒸気等を高濃度に保つためのものであ
る。また、加熱手段は、直流電圧による半導体薄膜のイ
オン性不純物を加速度的に濃縮するために、半導体薄膜
試料を加熱して試料温度を高めるものである。また、有
機物溶液貯蔵容器を加熱して有機物溶液温度を高めて所
定の膜を形成するためのものである。従って、それぞれ
別々に加熱できるものが好ましい。ここで、加熱手段は
電気抵抗加熱、赤外線加熱、レーザ加熱など、その種類
は問わないが、加熱速度や効率の点では電気抵抗加熱が
望ましい。また、濃縮操作後の冷却効率、装置の耐熱性
などの点からは、電圧を印加する部分のみを加熱するこ
とが好ましい。従って、加熱の制御や局所的加熱が正確
且つ容易に行える点では光を用いた加熱が好ましい。こ
こで、光による加熱とは、赤外線、可視光線、レーザ
光、マイクロ波等による加熱を含む。また、これら加熱
手段は汚染防止の観点から密閉容器の外部に配設される
ことが好ましい。Next, the closed container is for reducing secondary pollution from the environment and for maintaining high concentration of organic vapor and the like. Further, the heating means heats the semiconductor thin film sample to raise the sample temperature in order to accelerate the concentration of ionic impurities in the semiconductor thin film by the DC voltage. In addition, the organic substance solution storage container is heated to raise the temperature of the organic substance solution to form a predetermined film. Therefore, those which can be heated separately are preferable. Here, the heating means may be of any type such as electric resistance heating, infrared heating, laser heating, etc., but electric resistance heating is preferable in terms of heating rate and efficiency. Further, from the viewpoints of cooling efficiency after the concentration operation, heat resistance of the apparatus, etc., it is preferable to heat only the portion to which a voltage is applied. Therefore, heating using light is preferable in that heating control and local heating can be performed accurately and easily. Here, heating with light includes heating with infrared rays, visible light, laser light, microwaves, and the like. Further, it is preferable that these heating means are arranged outside the closed container from the viewpoint of preventing contamination.
【0016】また、加熱温度はイオン性不純物の濃度速
度を高める観点からは、できる限り高い温度に設定する
ことが望ましい。しかしながら、あまり高温にすると濃
縮装置材質からの不純物の混入の恐れがあるため、半導
体薄膜試料の加熱温度は300℃以下、特に50〜20
0℃の範囲が好ましい。また、加熱した後、半導体薄膜
を冷却して薄膜中不純物の濃縮状態を固定するために、
密閉容器側面にガス導入/排気手段を設けても良い。From the viewpoint of increasing the concentration rate of ionic impurities, it is desirable that the heating temperature be set as high as possible. However, if the temperature is too high, impurities from the material of the concentrator may be mixed. Therefore, the heating temperature of the semiconductor thin film sample is 300 ° C. or less, particularly 50 to 20 ° C.
The range of 0 ° C is preferred. In addition, in order to fix the concentration state of impurities in the thin film by cooling the semiconductor thin film after heating,
A gas introducing / exhausting means may be provided on the side surface of the closed container.
【0017】本発明の装置を構成する部材の材質には、
それが半導体薄膜試料中の不純物の正確な測定を直接的
にも間接的にも妨害するものでない限り、いかなるもの
であっても良い。また、半導体薄膜試料の直流高電圧印
加状況を監視できるように密閉容器には少なくとも一部
を透明材料で構成する半導体薄膜試料監視手段を設ける
ことが好ましい。このような構成をとることにより、高
電圧印加状況に応じて高電圧印加処理を停止することが
できるため、高電圧印加処理に要する時間を短縮するこ
とができる。さらに、高電圧印加処理中に密閉容器を開
けて、高電圧印加状況を確認する必要がないため、大気
中からの不純物の混入を防止することができる。極めて
微量の分析を行うため、このような不純物の混入はでき
る限り避けることが好ましく、その効果は大なるもので
ある。その透明材料としては、耐熱性及び耐酸性材料で
あることが好ましく、例えば石英やサファイア、四弗化
エチレンと六弗化エチレンとの共重合体、四弗化エチレ
ンとエチレンとの共重合体、ポリエチレンやアクリル、
ポリカーボネート、ポリスチレン、アクリルニトリルス
チレン樹脂等が好ましい。なお、アクリル樹脂やポリカ
ーボネート樹脂等の透明樹脂に耐弗化水素酸フィルムで
ラミネートした板材でもよい。The materials of the members constituting the device of the present invention include:
It may be anything as long as it does not directly or indirectly interfere with the accurate measurement of impurities in the semiconductor thin film sample. Further, it is preferable that the closed container is provided with a semiconductor thin film sample monitoring means at least a part of which is made of a transparent material so that the DC high voltage application state of the semiconductor thin film sample can be monitored. With such a configuration, the high voltage application process can be stopped according to the high voltage application state, and thus the time required for the high voltage application process can be shortened. Furthermore, since it is not necessary to open the closed container during the high voltage application process to check the high voltage application status, it is possible to prevent impurities from entering from the atmosphere. Since an extremely minute amount of analysis is performed, it is preferable to avoid such contamination of impurities as much as possible, and the effect is great. The transparent material is preferably a heat-resistant and acid-resistant material, for example, quartz or sapphire, a copolymer of ethylene tetrafluoride and ethylene hexafluoride, a copolymer of ethylene tetrafluoride and ethylene, Polyethylene, acrylic,
Polycarbonate, polystyrene, acrylonitrile styrene resin and the like are preferable. A plate material laminated with a transparent resin such as an acrylic resin or a polycarbonate resin with a hydrofluoric acid resistant film may be used.
【0018】ここで、半導体薄膜試料の前記他方の面に
予め所定の膜を形成することが好ましい。ここで、膜と
は、シリコン膜の他、有機物膜、もしくは炭素膜やシリ
コン炭化物膜が含まれる。これらの膜を予め形成してお
くことにより、半導体薄膜試料に対する環境からの二次
汚染を抑制すると共に、薄膜中の目的不純物が蒸発損失
するのを抑制することができる。また、これらの薄膜は
二次汚染抑制等の観点からはできる限り厚い膜厚に設定
することが望ましい。しかしながら、あまり厚くすると
分析に長時間がかかるため、膜厚は、シリコン膜にあっ
ては、3000Å以下、特に100〜2000Åの範
囲、また、有機物膜にあっては、2000Å以下、特に
20〜1000Åの範囲が好ましい。Here, it is preferable to previously form a predetermined film on the other surface of the semiconductor thin film sample. Here, the film includes an organic film, a carbon film, or a silicon carbide film in addition to the silicon film. By preliminarily forming these films, it is possible to suppress the secondary contamination of the semiconductor thin film sample from the environment and also to suppress the evaporation loss of the target impurities in the thin film. Further, it is desirable that these thin films are set as thick as possible from the viewpoint of suppressing secondary pollution. However, if it is too thick, it takes a long time to analyze, so the film thickness is 3000 Å or less, particularly 100 to 2000 Å for a silicon film, and 2000 Å or less, especially 20 to 1000 Å for an organic film. Is preferred.
【0019】有機物膜の種類としては、ポリイミド樹
脂、エポキシ樹脂、ポリカーボネート、ポリエチレン、
ポリプロピレン、ポリスチレン、ナフタレン、ショウノ
ウ等の有機物膜、もしくは炭素膜やシリコン炭化物膜な
ど、分析目的のイオン性不純物の濃縮を直接的にも間接
的にも妨害しないものであれば、いかなるものでも良
く、望ましくはポリエチレン、ポリプロピレン、ポリス
チレン、ナフタレン、ショウノウ、炭素膜である。薄膜
の形成方法は塗布乾燥法や蒸着法等いかなるものでも良
いが、二次汚染抑制の観点から、蒸着法が望ましい。The types of organic film include polyimide resin, epoxy resin, polycarbonate, polyethylene,
Polypropylene, polystyrene, naphthalene, organic film such as camphor, or carbon film or silicon carbide film, as long as it does not interfere with the concentration of ionic impurities for analysis directly or indirectly, any may be used, Preferred are polyethylene, polypropylene, polystyrene, naphthalene, camphor, and carbon film. The thin film may be formed by any method such as a coating and drying method or a vapor deposition method, but the vapor deposition method is preferable from the viewpoint of suppressing secondary contamination.
【0020】また、上記膜を濃縮前に予め形成するので
はなく、密閉容器内に所定の膜を形成する膜形成手段を
具備するようにしてもよい。このように構成すること
で、半導体薄膜試料の脱着等を不要とするため、効率の
よい濃縮を可能とする。Further, instead of preliminarily forming the above-mentioned membrane before the concentration, a membrane forming means for forming a predetermined membrane may be provided in the closed container. With such a configuration, desorption and the like of the semiconductor thin film sample is unnecessary, and efficient concentration is possible.
【0021】半導体薄膜試料表面の分析範囲すなわち不
純物濃縮範囲を明記確定しておくために、前もって半導
体薄膜の蒸発気化を開始できるエネルギー強度のレーザ
光を半導体薄膜表面の所定位置外部周辺に照射しマーキ
ングしておくことが好ましい。In order to clearly specify the analysis range of the semiconductor thin film sample surface, that is, the impurity concentration range, a laser beam having an energy intensity capable of starting the evaporation and vaporization of the semiconductor thin film is irradiated in advance to the periphery of a predetermined position on the semiconductor thin film surface for marking. Preferably.
【0022】次に、本発明に係る半導体薄膜の不純物分
析方法は、半導体薄膜を溶解せずに、不純物を濃縮した
後、迅速、簡便かつ高感度に分析する方法であるが、そ
の特徴は、半導体薄膜試料に電圧を印加することで、前
記不純物を局所的に集めて濃縮し、この濃縮された半導
体薄膜試料の不純物を分析することである。Next, the method for analyzing impurities in a semiconductor thin film according to the present invention is a method for analyzing impurities quickly, simply and with high sensitivity after concentrating impurities without dissolving the semiconductor thin film. By applying a voltage to the semiconductor thin film sample, the impurities are locally collected and concentrated, and the concentrated semiconductor thin film sample is analyzed for impurities.
【0023】ここで、前記半導体薄膜試料の不純物分析
には二次イオン質量分析法、全反射蛍光X線分析法、P
IXE法、若しくはAES法で測定することが好まし
い。Here, in the impurity analysis of the semiconductor thin film sample, secondary ion mass spectrometry, total reflection X-ray fluorescence analysis, P
It is preferable to measure by the IXE method or the AES method.
【0024】次に、本発明に係る半導体薄膜の不純物濃
縮装置及びその分析方法の要旨を説明する。半導体薄膜
のイオン性不純物は、主にナトリウム、カリウム、マグ
ネシウム、カルシウム、弗素、塩素等であり、通常は全
体にほぼ均一に存在している。この半導体薄膜に直流電
圧を印加して電位差を生じさせると、このようなイオン
性不純物は静電引力あるいは斥力によって移動するた
め、濃縮することができる。例えば、図2のグラフの線
Aで示すように均一に分布する陽イオン不純物ナトリウ
ムは、半導体薄膜に直流電圧を印加して電位差を生じさ
せると、負電圧側つまり低電位に印加された表面の方へ
移動し、所定時間後には、線Bで示すように負電圧側の
表面からの距離が減少するに従って陽イオン不純物ナト
リウムの濃度が増加するような局部濃縮された分布に変
化する。すなわち、イオン性不純物の濃度を高くするこ
とができるので、従来から用いられているSIMS等の
分析装置を用いてもさらに高感度な分析を行うことがで
きるのである。イオン性不純物の局部濃縮は、電位差
(印加電圧)が大きく電位差の生じる時間(直流電圧の
印加時間)が長いほど顕著になる。一方、弗素、塩素等
の陰イオン不純物は正電圧側(高電位側)へ濃縮され
る。Next, the gist of the semiconductor thin film impurity concentrating apparatus and its analyzing method according to the present invention will be described. The ionic impurities of the semiconductor thin film are mainly sodium, potassium, magnesium, calcium, fluorine, chlorine, etc., and they are usually present almost uniformly throughout. When a DC voltage is applied to this semiconductor thin film to generate a potential difference, such ionic impurities move due to electrostatic attraction or repulsion, so that they can be concentrated. For example, when the cation impurity sodium uniformly distributed as shown by the line A in the graph of FIG. 2 is applied with a direct current voltage to the semiconductor thin film to generate a potential difference, the surface of the surface applied with a negative potential, that is, a low potential After a certain period of time, the concentration of the cation impurity sodium increases as the distance from the surface on the negative voltage side decreases, and the distribution changes to a locally concentrated distribution after a predetermined time. That is, since the concentration of the ionic impurities can be increased, it is possible to perform the analysis with higher sensitivity even by using a conventionally used analyzer such as SIMS. The local concentration of ionic impurities becomes more remarkable as the potential difference (applied voltage) is large and the time for which the potential difference occurs (DC voltage application time) is longer. On the other hand, anionic impurities such as fluorine and chlorine are concentrated on the positive voltage side (high potential side).
【0025】また、上述の直流電圧印加によるイオン性
不純物の局部濃縮において、半導体薄膜の温度を上げる
と濃縮の度合が飛躍的に高まる。これは、温度が高いと
イオンの拡散係数が増大することによるもので、半導体
薄膜を加熱することによって、イオン性不純物を効率よ
く移動させて濃縮するのに必要な印加直流電圧及び電圧
印加時間を減少させることができる。Further, in the above-mentioned local concentration of ionic impurities by applying a DC voltage, the degree of concentration is dramatically increased by raising the temperature of the semiconductor thin film. This is because the diffusion coefficient of ions increases when the temperature is high. Therefore, by heating the semiconductor thin film, the applied DC voltage and the voltage application time required for efficiently moving and concentrating the ionic impurities are set. Can be reduced.
【0026】[0026]
【発明の実施の形態】本発明に係る半導体薄膜の不純物
濃縮装置及び分析方法の実施形態を図面を参照しながら
さらに詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a semiconductor thin film impurity concentrating apparatus and an analyzing method according to the present invention will be described in more detail with reference to the drawings.
【0027】第1の実施の形態本実施形態の不純物濃縮
装置1は、図1にその構成を示すように、第1の電位を
電極端子13に印加し、また、第2の電位を電極端子1
7に印加する直流電圧印加手段11と、半導体薄膜試料
Sを外部と遮断する密閉容器3と、電極端子13に電気
的に接続され、密閉容器3内の前記半導体薄膜試料Sの
裏面から保持する電極(試料保持部材)5と、電極端子
17に電気的に接続され、密閉容器3内の前記半導体薄
膜試料Sの表面近傍もしくは表面に設けられており、半
導体薄膜試料の表面近傍部が尖った形状を有する電極7
とを備え、電極5及び電極7に電圧を印加することで、
不純物を電極7近傍の半導体薄膜試料Sの表面近傍に集
めることにより前記不純物を濃縮するようにしてある。
また、半導体薄膜試料Sの直流電圧印加状況を監視でき
るように、密閉容器3には半導体薄膜試料監視窓19,
21が設けてある。First Embodiment As shown in FIG. 1, the impurity concentrating device 1 of the present embodiment applies a first potential to an electrode terminal 13 and a second potential to an electrode terminal. 1
DC voltage applying means 11 to be applied to the semiconductor thin film sample 7, a closed container 3 for shutting off the semiconductor thin film sample S from the outside, and an electrode terminal 13 are electrically connected and held from the back surface of the semiconductor thin film sample S in the closed container 3. It is electrically connected to the electrode (sample holding member) 5 and the electrode terminal 17, and is provided in the vicinity of or on the surface of the semiconductor thin film sample S in the closed container 3, and the vicinity of the surface of the semiconductor thin film sample is sharp. Electrode 7 having a shape
And by applying a voltage to the electrodes 5 and 7,
The impurities are concentrated by collecting the impurities near the surface of the semiconductor thin film sample S near the electrode 7.
Further, in order to monitor the DC voltage application status of the semiconductor thin film sample S, the closed container 3 has a semiconductor thin film sample monitoring window 19,
21 are provided.
【0028】さらに、高電圧印加処理に要する時間を短
縮する等の理由から半導体薄膜試料加熱手段27を密閉
容器3の下に設けてある。また、加熱した後に、半導体
薄膜試料Sを冷却して薄膜中不純物の濃縮状態を固定す
るために密閉容器3の側面にガス導入/排気手段23,
25を設けてある。また、電極7には、半導体薄膜試料
の所定の部分について正確に目的不純物の濃縮を行うた
めに上下、及び左右に移動する移動手段9を設けてあ
る。さらに、電極5を取り外しができるように、電極脱
着手段15を設けてある。Further, the semiconductor thin film sample heating means 27 is provided under the closed container 3 for the reason of shortening the time required for the high voltage application process. In addition, after heating, the semiconductor thin film sample S is cooled to fix the concentrated state of impurities in the thin film, so that the gas introducing / exhausting means 23 is provided on the side surface of the closed container 3.
25 are provided. Further, the electrode 7 is provided with a moving means 9 which moves up and down and left and right in order to accurately concentrate a target impurity on a predetermined portion of the semiconductor thin film sample. Further, an electrode attaching / detaching means 15 is provided so that the electrode 5 can be removed.
【0029】また、本実施形態では、Siウェハ上に作
製した薄膜試料を上記半導体薄膜の不純物濃縮装置で処
理した後、二次イオン質量分析装置(SIMS)を用い
て薄膜に含まれる不純物のイオン強度を測定した。ここ
で、SIMSの原理図を図3に示す。このSIMSは1
次イオン照射系と2次イオン質量分析系に分けられ、ま
ず、1次イオン照射系に備えられたイオン銃39で1次
イオンを数keV乃至10数keVのエネルギに加速
し、静電レンズで集束したO2 + やCs+ などのイオン
で試料41の表面をスパッタエッチングし、試料41か
ら発生した正負の2次イオンを引き出す。次に、2次イ
オン質量分析系にて、セクタ電場43、スリット47を
通じて、セクタ磁場45に試料41から発生した正負の
2次イオンが入射する。このセクタ磁場45では、2次
イオンの質量数の差を磁場により分離して、それを2次
電子増倍管51にて検知することで元素分析を行うこと
ができる。Further, in the present embodiment, after the thin film sample produced on the Si wafer is processed by the semiconductor thin film impurity concentrating device, the ions of the impurity contained in the thin film are measured by using the secondary ion mass spectrometer (SIMS). The strength was measured. Here, a principle diagram of SIMS is shown in FIG. This SIMS is 1
The primary ion irradiation system is divided into a secondary ion irradiation system and a secondary ion mass spectrometry system. First, an ion gun 39 provided in the primary ion irradiation system accelerates primary ions to an energy of several keV to several tens of keV, and an electrostatic lens is used. The surface of the sample 41 is sputter-etched with focused ions of O 2 + , Cs + and the like, and positive and negative secondary ions generated from the sample 41 are extracted. Next, in the secondary ion mass spectrometry system, positive and negative secondary ions generated from the sample 41 are incident on the sector magnetic field 45 through the sector electric field 43 and the slit 47. In this sector magnetic field 45, a difference in mass number of secondary ions is separated by a magnetic field, and the secondary electron multiplier 51 detects the difference, whereby elemental analysis can be performed.
【0030】ここで、上記のスパッタエッチングを連続
して行うことにより深さ方向の元素分布を測定すること
もできる。さらに、1次イオンを走査することにより所
定領域の元素面内分布も測定でき、これに深さ方向を繰
り返して3次元分布の測定もすることができる。Here, it is also possible to measure the element distribution in the depth direction by continuously performing the sputter etching described above. Further, the in-plane distribution of the element in a predetermined region can be measured by scanning the primary ions, and the depth direction can be repeated to measure the three-dimensional distribution.
【0031】ここで他の分析方法としては、X線を試料
表面に対し低角度で照射し、表面の不純物元素のみを測
定する蛍光X線分析の一種である全反射蛍光X線分析法
や、高速(MeV程度)の水素イオンを所望の測定試料
に照射することにより試料に含まれる各元素を励起状態
にし、これを基底状態に緩和する際に放出する元素固有
のX線を分析することで試料中の含有元素等を分析する
PIXE法や、超高真空中(〜10-10 Torr)で10〜
20keV に加速した電子線を固体表面に照射する際に固
体中の原子から発生するオージェ電子の固有のエネルギ
を測定することで試料中の含有元素等を分析するAES
法等を用いても良い。Here, as another analysis method, a total reflection fluorescent X-ray analysis method, which is a kind of fluorescent X-ray analysis in which X-rays are irradiated onto the sample surface at a low angle and only the impurity elements on the surface are measured, By irradiating a desired measurement sample with high-speed (about MeV) hydrogen ions to bring each element contained in the sample into an excited state and analyzing the X-ray peculiar to the element emitted when the element is relaxed to the ground state The PIXE method for analyzing the elements contained in the sample, and 10 in the ultra-high vacuum ( -10 -10 Torr)
AES that analyzes the elements contained in a sample by measuring the specific energy of Auger electrons generated from atoms in the solid when the solid surface is irradiated with an electron beam accelerated to 20 keV
A method or the like may be used.
【0032】以上のような装置を用いて本発明に係る半
導体薄膜濃縮装置の実験を行った。この結果を以下に示
す。An experiment of the semiconductor thin film concentrating apparatus according to the present invention was conducted using the above apparatus. The results are shown below.
【0033】実施例1 本実施例ではSiウェハ上に熱酸化法で作製したSiO
2 膜(2000Å)中のイオン性不純物を本発明の装置
を用いて濃縮し、二次イオン質量分析装置で調べた。Example 1 In this example, SiO formed on a Si wafer by a thermal oxidation method.
Ionic impurities in the two membranes (2000Å) were concentrated using the device of the present invention and examined by a secondary ion mass spectrometer.
【0034】濃縮および測定条件 薄膜の濃縮条件……試料ウェハ裏面の電位(電極
5):0V、電極7の電位:−500V、電極7と試料
ウェハ表面との距離:0.1mm、密閉容器の空間体
積:1800cm3 、直流電圧印加時間:30分、試料
ウェハ加熱:60℃−10分、試料ウェハ冷却:20℃
−20分 二次イオン質量分析装置の測定条件……装置:ATOMIC
A SIMS4000、一次イオンビーム:Ar+ 、加速電圧:1
0KV、ビーム径:0.05mmφ、走査範囲:0.5
mm×0.5mm、電流:0.05μA、二次イオン加
速電圧:3KV、その他:エレクトロスプレーガン使用 以上の結果、SiO2 膜表面から50ÅまでのNa,
K,Mgのイオン強度はそれぞれ710,420,23
0であった。Concentration and measurement conditions Concentration conditions of thin film: potential on back surface of sample wafer (electrode 5): 0 V, potential on electrode 7: -500 V, distance between electrode 7 and sample wafer surface: 0.1 mm, closed container Space volume: 1800 cm 3 , DC voltage application time: 30 minutes, sample wafer heating: 60 ° C.-10 minutes, sample wafer cooling: 20 ° C.
-20 minutes Measurement conditions of the secondary ion mass spectrometer ...... Device: ATOMIC
A SIMS4000, primary ion beam: Ar + , accelerating voltage: 1
0 KV, beam diameter: 0.05 mmφ, scanning range: 0.5
mm × 0.5 mm, current: 0.05 μA, secondary ion accelerating voltage: 3 KV, others: use of electrospray gun As a result, Na from the SiO 2 film surface to 50 Å,
The ionic strengths of K and Mg are 710, 420, and 23, respectively.
It was 0.
【0035】比較例1−1 濃縮操作を全く行なわずに、実施例1と同一の測定条件
(試料加熱等)で直接試料を二次イオン質量分析装置で
測定したところ、SiO2 膜表面から50ÅまでのN
a,K,Mgのイオン強度はそれぞれ20,15,8で
あった。[0035] without any Comparative Examples 1-1 concentration operation was measured directly sample by secondary ion mass spectrometer in Example 1 and the same measurement conditions (sample heating, etc.), 50 Å of SiO 2 film surface Up to N
The ionic strengths of a, K and Mg were 20, 15 and 8, respectively.
【0036】比較例1−2 直流電圧を印加せず、すなわち、電極7の電位を0Vと
した以外、実施例1と同一の条件で濃縮および測定した
ところ、SiO2 膜表面から50ÅまでのNa,K,M
gのイオン強度はそれぞれ20,16,7であった。Comparative Example 1-2 Concentration and measurement were carried out under the same conditions as in Example 1 except that no DC voltage was applied, that is, the potential of the electrode 7 was set to 0 V. As a result, Na from the SiO 2 film surface to 50 Å , K, M
The ionic strength of g was 20, 16 and 7, respectively.
【0037】実施例2 Siウェハ上にLPCVD法で作製したSiO2 膜(5
000Å)中のイオン性不純物を本発明の装置を用いて
濃縮し二次イオン質量分析装置で調べた。Example 2 A SiO 2 film (5 formed by LPCVD on a Si wafer)
The ionic impurities in 000Å) were concentrated using the apparatus of the present invention and examined by a secondary ion mass spectrometer.
【0038】濃縮および測定条件 薄膜の濃縮条件……試料ウェハ裏面の電位(電極
5):0V、電極7の電位:−500V、電極7と試料
ウェハ表面との距離:0.1mm、密閉容器の空間体
積:1800cm3 、直流電圧印加時間:30分、試料
ウェハ加熱温度:60℃−10分、試料ウェハ冷却:2
0℃−20分 二次イオン質量分析装置の測定条件……装置:ATOMIC
A SIMS4000、一次イオンビームAr+ 、加速電圧:10
KV、ビーム径:0.05mmφ、走査範囲:0.5m
m×0.5mm、電流:0.05μA、二次イオン加速
電圧:3KV、その他:エレクトロスプレーガン使用 以上の結果、SiO2 膜表面から50ÅまでのNa,
K,Mgのイオン強度はそれぞれ830,610,17
0であった。Concentration and measurement conditions Concentration conditions of thin film: potential of back surface of sample wafer (electrode 5): 0 V, potential of electrode 7: -500 V, distance between electrode 7 and sample wafer surface: 0.1 mm, sealed container Space volume: 1800 cm 3 , DC voltage application time: 30 minutes, sample wafer heating temperature: 60 ° C.-10 minutes, sample wafer cooling: 2
0 ℃ -20 minutes Measurement condition of secondary ion mass spectrometer ...... Device: ATOMIC
A SIMS4000, primary ion beam Ar + , accelerating voltage: 10
KV, beam diameter: 0.05 mmφ, scanning range: 0.5 m
m × 0.5 mm, current: 0.05 μA, secondary ion accelerating voltage: 3 KV, others: use of electrospray gun As a result, Na from the SiO 2 film surface to 50 Å,
The ionic strengths of K and Mg are 830, 610 and 17, respectively.
It was 0.
【0039】比較例2−1 濃縮操作を全く行なわずに、実施例2と同一の測定条件
で直接試料を二次イオン質量分析装置で測定したとこ
ろ、SiO2 膜表面から50ÅまでのNa,K,Mgの
イオン強度はそれぞれ12,9,4であった。Comparative Example 2-1 A sample was directly measured with a secondary ion mass spectrometer under the same measurement conditions as in Example 2 without performing any concentration operation. Na, K from the SiO 2 film surface to 50 Å , Mg had ionic strengths of 12, 9, and 4, respectively.
【0040】比較例2−2 直流電圧を印加せず、すなわち、電極7の電位を0Vと
した以外、実施例2と同一の条件で濃縮および測定した
ところ、SiO2 膜表面から50ÅまでのNa,K,M
gのイオン強度はそれぞれ11,9,4であった。Comparative Example 2-2 Concentration and measurement were carried out under the same conditions as in Example 2 except that no DC voltage was applied, that is, the potential of the electrode 7 was set to 0 V. Na of the SiO 2 film surface up to 50 Å was measured. , K, M
The ionic strength of g was 11, 9, and 4, respectively.
【0041】実施例3Siウェハ上にプラズマCVD法
で作製したSi3 N4 膜(4000Å)中のイオン性不
純物を本発明の装置を用いて濃縮し二次イオン質量分析
装置で調べた。Example 3 Ionic impurities in a Si 3 N 4 film (4000 Å) formed on a Si wafer by a plasma CVD method were concentrated by using the apparatus of the present invention and examined by a secondary ion mass spectrometer.
【0042】濃縮および測定条件 薄膜の濃縮条件……試料ウェハ裏面の電位(電極
5):0V、電極7の電位:−800V、電極7と試料
ウェハ表面との距離:0.1mm、密閉容器の空間体
積:1800cm3 、直流電圧印加時間:30分、試料
ウェハ加熱温度:90℃−10分、試料ウェハ冷却:2
0℃−20分 二次イオン質量分析装置の測定条件……装置:ATOMIC
A SIMS4000、一次イオンビーム:Ar+ 、加速電圧:1
0KV、ビーム径:0.05mmφ、走査範囲:0.5
mm×0.5mm、電流:0.05μA、二次イオン加
速電圧;3KV、その他:エレクトロスプレーガン使用 以上の結果、SiO2 膜表面から50ÅまでのNa,
K,Mgのイオン強度はそれぞれ1200,850,5
70であった。Concentration and measurement conditions Concentration conditions for thin film: potential on back surface of sample wafer (electrode 5): 0 V, potential on electrode 7: -800 V, distance between electrode 7 and sample wafer surface: 0.1 mm, sealed container Spatial volume: 1800 cm 3 , DC voltage application time: 30 minutes, sample wafer heating temperature: 90 ° C.-10 minutes, sample wafer cooling: 2
0 ℃ -20 minutes Measurement condition of secondary ion mass spectrometer ...... Device: ATOMIC
A SIMS4000, primary ion beam: Ar + , accelerating voltage: 1
0 KV, beam diameter: 0.05 mmφ, scanning range: 0.5
mm × 0.5 mm, current: 0.05 μA, secondary ion accelerating voltage; 3 KV, others: use of electrospray gun As a result, Na from the SiO 2 film surface to 50 Å,
The ionic strengths of K and Mg are 1200, 850 and 5, respectively.
It was 70.
【0043】比較例3−1 濃縮操作を全く行なわずに、実施例3と同一の測定条件
で直接試料を二次イオン質量分析装置で測定したとこ
ろ、SiO2 膜表面から50ÅまでのNa,K,Mgの
イオン強度はそれぞれ22,17,10であった。Comparative Example 3-1 A sample was directly measured with a secondary ion mass spectrometer under the same measurement conditions as in Example 3 without performing any concentration operation. Na, K from the SiO 2 film surface to 50 Å , Mg had ionic strengths of 22, 17, and 10, respectively.
【0044】比較例3−2 直流電圧を印加せず、すなわち、電極7の電位を0Vと
した以外、実施例3と同一の条件で濃縮および測定した
ところ、SiO2 膜表面から50ÅまでのNa,K,M
gのイオン強度はそれぞれ21,17,10であった。Comparative Example 3-2 Concentration and measurement were carried out under the same conditions as in Example 3 except that no DC voltage was applied, that is, the potential of the electrode 7 was set to 0 V. Na of the SiO 2 film surface to 50 Å was measured. , K, M
The ionic strengths of g were 21, 17, and 10, respectively.
【0045】実施例4 Siウェハ上に熱酸化法で作製したSiO2 膜(250
0Å)中のイオン性不純物を本発明の装置を用いて濃縮
し二次イオン質量分析装置で調べた。Example 4 A SiO 2 film (250 formed on a Si wafer by a thermal oxidation method)
The ionic impurities in 0Å) were concentrated using the apparatus of the present invention and examined with a secondary ion mass spectrometer.
【0046】濃縮および測定条件 薄膜の濃縮条件……試料ウェハ裏面の電位(電極
5):0V、電極7の電位:+500V、電極7と試料
ウェハ表面との距離:0.1mm、密閉容器の空間体
積:1800cm3 、直流電圧印加時間:30分、試料
ウェハ加熱:60℃−10分、試料ウェハ冷却:20℃
−20分 二次イオン質量分析装置の測定条件……装置:ATOMIC
A SIMS4000、一次イオンビーム:Ar+ 、加速電圧:1
0KV、ビーム径:0.05mmφ、走査範囲:0.5
mm×0.5mm、電流:0.05μA、二次イオン加
速電圧:3KV、その他:エレクトロスプレーガン使用 以上の結果、SiO2 膜表面から50ÅまでのF,Cl
のイオン強度はそれぞれ110,230であった。Concentration and measurement conditions Thin film concentration conditions: potential of the backside of the sample wafer (electrode 5): 0 V, potential of the electrode 7: +500 V, distance between electrode 7 and sample wafer surface: 0.1 mm, space of closed container Volume: 1800 cm 3 , DC voltage application time: 30 minutes, sample wafer heating: 60 ° C.-10 minutes, sample wafer cooling: 20 ° C.
-20 minutes Measurement conditions of the secondary ion mass spectrometer ...... Device: ATOMIC
A SIMS4000, primary ion beam: Ar + , accelerating voltage: 1
0 KV, beam diameter: 0.05 mmφ, scanning range: 0.5
mm × 0.5 mm, current: 0.05 μA, secondary ion accelerating voltage: 3 KV, others: using electrospray gun As a result, F, Cl from the SiO 2 film surface to 50 Å
Had an ionic strength of 110 and 230, respectively.
【0047】比較例4−1 濃縮操作を全く行なわずに、実施例4と同一の測定条件
で直接試料を二次イオン質量分析装置で測定したとこ
ろ、SiO2 膜表面から50ÅまでのF,Clのイオン
強度はそれぞれ3,8であった。Comparative Example 4-1 When a sample was directly measured by a secondary ion mass spectrometer under the same measurement conditions as in Example 4 without performing any concentration operation, F, Cl from the SiO 2 film surface to 50 Å. Had an ionic strength of 3 and 8, respectively.
【0048】比較例4−2 直流電圧を印加せず、すなわち、電極7の電位を0Vと
した以外、実施例4と同一の条件で濃縮および測定した
ところ、SiO2 膜表面から50ÅまでのF,Clのイ
オン強度はそれぞれ3,8であった。Comparative Example 4-2 Concentration and measurement were carried out under the same conditions as in Example 4 except that no DC voltage was applied, that is, the potential of the electrode 7 was set to 0 V, and F from the SiO 2 film surface to 50 Å was measured. , Cl had ionic strengths of 3 and 8, respectively.
【0049】以上の実施例により、本実施形態の半導体
濃縮装置によれば、不純物を約30倍濃縮することがで
きた。従って、30倍分析感度が良くなると同時に、精
度も相当量向上すると考えられる。また、薄膜の種類や
作製方法によらずに濃縮効果がある。According to the above examples, according to the semiconductor concentrator of this embodiment, the impurities could be concentrated about 30 times. Therefore, it is considered that the analysis sensitivity is improved 30 times and the accuracy is improved considerably. Further, there is a concentration effect regardless of the type of thin film and the manufacturing method.
【0050】このように試料を酸溶解し不純物を分離濃
縮するのではなく、直流高電圧を印加してイオン性不純
物を非接触で局所的に濃縮するため、試薬や器具からの
汚染を大幅に低減することができる。また、密閉容器内
で不純物を濃縮するため、環境からの汚染も低減するこ
とができる。以上のことから、本発明によって局所薄膜
中のNa,K,F,Clなどのイオン性不純物分析を従
来よりも大幅に高感度化を可能にした。しかも、薄膜試
料の不純物濃縮のための操作は簡単であり、その工業的
価値は大である。As described above, the sample is not acid-dissolved and the impurities are not separated and concentrated, but the direct current high voltage is applied to locally concentrate the ionic impurities in a non-contact manner, so that the contamination from the reagents and instruments is significantly increased. It can be reduced. Further, since the impurities are concentrated in the closed container, pollution from the environment can be reduced. From the above, according to the present invention, the sensitivity of ionic impurities such as Na, K, F, and Cl in the local thin film can be significantly improved as compared with the conventional method. Moreover, the operation for concentrating impurities in the thin film sample is simple, and its industrial value is great.
【0051】第2の実施の形態 次に、第2の実施形態の半導体薄膜試料の不純物濃縮装
置について図面を参照しながら説明する。Second Embodiment Next, an impurity concentrating device for a semiconductor thin film sample according to a second embodiment will be described with reference to the drawings.
【0052】本実施形態の半導体薄膜試料の不純物濃縮
装置を図4に示す。この不純物濃縮装置1は、半導体薄
膜試料Sを外部と遮断するための密閉容器3を備え、半
導体薄膜試料Sは導電性材料で形成された電極(保持部
材)5に載置して密閉容器3内に設置される。密閉容器
3内には更に先端の尖った電極7が設けられており、電
極7を密閉容器3内で上下、前後、左右に移動させて所
望の位置に固定させるために電極移動手段9が付設され
ている。不純物濃縮装置1は、更に半導体薄膜試料Sに
電位差を生じさせるための手段として、直流電圧電源1
1を備えており、直流電圧電源11の正極端子13は、
密閉容器3に設けられた電極脱着手段15及びモニター
用の電流計29を介して電極(保持部材)5と接続され
る。従って、この電極(保持部材)5は正電極として作
用する。他方、負極端子17は、密閉容器3内の電極7
と接続される。密閉容器3は監視窓19,21及び透光
窓31を有し、レーザ照射装置33が透光窓31に付設
される。レーザ照射装置33から照射されたレーザ光は
透光窓31を介して電極(保持部材)5上の半導体薄膜
試料Sに達し、半導体薄膜試料Sの電極7下方の部分を
加熱する。FIG. 4 shows an impurity concentrating device for a semiconductor thin film sample according to this embodiment. The impurity concentrating device 1 includes a closed container 3 for shutting off the semiconductor thin film sample S from the outside, and the semiconductor thin film sample S is placed on an electrode (holding member) 5 formed of a conductive material and the closed container 3 is placed. It is installed inside. Further, an electrode 7 having a sharp tip is provided in the closed container 3, and an electrode moving means 9 is attached to move the electrode 7 up, down, front and back, left and right in the closed container 3 and fix it at a desired position. Has been done. The impurity concentrating device 1 further includes a DC voltage power supply 1 as a means for generating a potential difference in the semiconductor thin film sample S.
1, and the positive electrode terminal 13 of the DC voltage power supply 11 is
It is connected to the electrode (holding member) 5 through the electrode attaching / detaching means 15 provided in the closed container 3 and the ammeter 29 for monitoring. Therefore, this electrode (holding member) 5 acts as a positive electrode. On the other hand, the negative electrode terminal 17 is the electrode 7 in the closed container 3.
Connected to The closed container 3 has monitoring windows 19 and 21 and a transparent window 31, and a laser irradiation device 33 is attached to the transparent window 31. Laser light emitted from the laser irradiation device 33 reaches the semiconductor thin film sample S on the electrode (holding member) 5 through the transparent window 31 and heats the portion of the semiconductor thin film sample S below the electrode 7.
【0053】不純物濃縮装置1は、半導体薄膜試料Sを
冷却する冷却ガスを導入・排気するためのガス供給手段
23及び排気手段25を備えている。The impurity concentrating device 1 is equipped with a gas supply means 23 and an exhaust means 25 for introducing and exhausting a cooling gas for cooling the semiconductor thin film sample S.
【0054】上記構成において、半導体薄膜試料Sは必
要に応じて表面にシリコン膜を形成した後に電極(保持
部材)5に載せて密閉容器3内の適切な位置に固定し、
接続端子15と接続する。次に、電極7を半導体薄膜試
料S上方の適切な位置に配置して、電極として作用する
電極(保持部材)5及び電極7に直流電圧電源11によ
り直流電圧を印加し、レーザ照射装置33によりレーザ
光を半導体薄膜試料Sに照射して電極7下方の半導体薄
膜試料Sを加熱する。これにより、半導体薄膜試料Sの
イオン性不純物が電極7の近くに濃縮される。所定時間
の加熱が終了したら、ガス供給手段23から冷却用ガス
を密閉容器3内に供給して半導体薄膜試料Sを冷却する
と同時に、冷却後のガスを排気手段25によって外部へ
排出する。半導体薄膜試料Sの温度が室温程度まで下が
った後に、電圧の印加を解除し、半導体薄膜試料Sを密
閉容器3から取り出し、半導体薄膜試料Sの表面近傍に
濃縮したイオン性不純物を物理分析手段により測定す
る。In the above-mentioned structure, the semiconductor thin film sample S has a silicon film formed on the surface, if necessary, and then placed on the electrode (holding member) 5 and fixed at an appropriate position in the closed container 3,
Connect with the connection terminal 15. Next, the electrode 7 is arranged at an appropriate position above the semiconductor thin film sample S, a DC voltage is applied to the electrode (holding member) 5 and the electrode 7 acting as electrodes by the DC voltage power supply 11, and the laser irradiation device 33 is used. The semiconductor thin film sample S is irradiated with laser light to heat the semiconductor thin film sample S below the electrode 7. As a result, the ionic impurities of the semiconductor thin film sample S are concentrated near the electrode 7. When the heating for a predetermined time is completed, the cooling gas is supplied from the gas supply means 23 into the closed container 3 to cool the semiconductor thin film sample S, and at the same time, the cooled gas is discharged to the outside by the exhaust means 25. After the temperature of the semiconductor thin film sample S has dropped to about room temperature, the voltage application is released, the semiconductor thin film sample S is taken out of the closed container 3, and the ionic impurities concentrated near the surface of the semiconductor thin film sample S are analyzed by physical analysis means. taking measurement.
【0055】更に、上記構成において、直流電圧電源1
1の正極端子13及び負極端子17の電極(保持部材)
5及び電極7との接続を逆にすれば、電極7が正電極と
なり、ハロゲン等の陰イオン不純物が電極7の近くに濃
縮される。尚、直流電圧電源11内に、電圧切換えスイ
ッチを設けて接続の切換えを簡便に行うようにしてもよ
い。Further, in the above configuration, the DC voltage power source 1
Electrodes (holding members) of the positive electrode terminal 13 and the negative electrode terminal 17 of 1
5 and the connection with the electrode 7 are reversed, the electrode 7 becomes a positive electrode, and anionic impurities such as halogen are concentrated near the electrode 7. A voltage changeover switch may be provided in the DC voltage power supply 11 to easily switch the connection.
【0056】前述から明かなように、本実施形態の半導
体薄膜の濃縮装置によれば、半導体薄膜の化学的処理操
作を行わずに半導体薄膜中の不純物を半導体薄膜の一部
分に局部的に濃縮することができ、濃縮に要する時間も
短く、簡便に行うことができる。従って、半導体薄膜の
濃縮された不純物を測定することによって、極微量の不
純物も検出可能となるので、迅速、簡便且つ高感度な不
純物の測定が可能となる。As is apparent from the above, according to the semiconductor thin film concentrating device of this embodiment, the impurities in the semiconductor thin film are locally concentrated in a part of the semiconductor thin film without performing the chemical treatment operation of the semiconductor thin film. In addition, the time required for concentration is short, and the concentration can be performed easily. Therefore, by measuring the impurities that are concentrated in the semiconductor thin film, it is possible to detect a very small amount of impurities, and thus it is possible to measure impurities quickly, easily and with high sensitivity.
【0057】[試料1]6インチのシリコンウェハに熱
酸化法で厚さ3000Åの二酸化ケイ素膜を形成し、試
料1を得た。[Sample 1] A sample 1 was obtained by forming a 3000 Å thick silicon dioxide film on a 6-inch silicon wafer by a thermal oxidation method.
【0058】(操作例1)試料1の二酸化ケイ素膜上に
CVD法により厚さ500Åのシリコン膜を形成し、1
5mm×15mmの正方形に切り出し、図4の装置を用いて
下記の条件に従って二酸化ケイ素膜中のイオン性不純物
を濃縮し、二次イオン質量分析法により二酸化ケイ素膜
表面から50Åまでの範囲のナトリウム、カリウム、マ
グネシウムのイオン強度を測定した。結果を表1に示
す。(Operation Example 1) A silicon film having a thickness of 500 Å was formed on the silicon dioxide film of Sample 1 by the CVD method, and 1
Cut out into a square of 5 mm × 15 mm, condense the ionic impurities in the silicon dioxide film according to the following conditions using the apparatus of FIG. 4, and measure the sodium ion ranging from the surface of the silicon dioxide film to 50 Å by secondary ion mass spectrometry. The ionic strength of potassium and magnesium was measured. The results are shown in Table 1.
【0059】[濃縮条件]電極(保持部材)5の電位:
0V、電極7の電位:−500V、電極7と試料1表面
との距離:0.05mm、密閉容器3の容積:1800cm
3 、電圧印加時間:15分、レーザ光による試料1の加
熱:60℃−10分、試料1の冷却:20℃−5分 [イオン強度測定条件]装置:ATOMICA SIMS4000、一次
イオンビーム:Ar+、加速電圧:10KV、ビーム
径:0.05mmφ、走査範囲:0.5mm×0.5mm、電
流:0.05μA、二次イオン加速電圧:3KV、その
他:エレクトロスプレーガン使用 (操作例2)試料1にシリコン膜を形成しなかった点以
外は操作例1と同様の操作を行い、イオン強度の測定を
行った結果を表1に示す。[Concentration conditions] Potential of the electrode (holding member) 5:
0 V, potential of electrode 7: -500 V, distance between electrode 7 and sample 1 surface: 0.05 mm, volume of closed container 3: 1800 cm
3 , voltage application time: 15 minutes, heating of sample 1 by laser light: 60 ° C-10 minutes, cooling of sample 1: 20 ° C-5 minutes [Ion strength measurement conditions] Device: ATOMICA SIMS4000, primary ion beam: Ar + , Accelerating voltage: 10KV, beam diameter: 0.05mmφ, scanning range: 0.5mm × 0.5mm, current: 0.05μA, secondary ion accelerating voltage: 3KV, others: using electrospray gun (Operation example 2) sample Table 1 shows the results of measuring the ionic strength by performing the same operation as in Operation Example 1 except that the silicon film was not formed on No. 1.
【0060】(操作例3)試料1を用いて、不純物の濃
縮操作におけるレーザでの加熱を行わなかった点以外は
操作例1と同様の操作を行い、イオン強度の測定を行っ
た結果を表1に示す。(Operation Example 3) Using sample 1, the same operation as in operation example 1 was carried out except that heating with a laser was not performed in the operation of concentrating impurities. Shown in 1.
【0061】(操作例4)試料1を用いて、不純物の濃
縮操作を直流電圧を印加せずに行った点以外は操作例1
と同様の操作を行い、イオン強度の測定を行った結果を
表1に示す (標準例1)試料1を用いて、操作例1から不純物の濃
縮操作を省いた操作を行い、イオン強度の測定を行った
結果を表1に示す。(Operational Example 4) Operational Example 1 using Sample 1 except that the impurity concentration operation was performed without applying a DC voltage.
The measurement results of the ionic strength are shown in Table 1 by performing the same operation as in (Standard Example 1) Sample 1 is used, and the operation of concentrating impurities is omitted from Operation Example 1 to measure the ionic strength. The results obtained are shown in Table 1.
【0062】[試料2]6インチのシリコンウェハにL
PCVD法で厚さ4000Åの二酸化ケイ素膜を形成
し、試料2を得た。[Sample 2] L on a 6 inch silicon wafer
A 4000 Å thick silicon dioxide film was formed by the PCVD method to obtain Sample 2.
【0063】(操作例5)試料2の二酸化ケイ素膜上に
CVD法により厚さ500Åのシリコン膜を形成し、1
5mm×15mmの正方形に切り出し、図4の装置を用いて
下記の条件に従って二酸化ケイ素膜中のイオン性不純物
を濃縮し、二次イオン質量分析法により二酸化ケイ素膜
表面から50Åまでの範囲のナトリウム、カリウム、マ
グネシウムのイオン強度を測定した。結果を表1に示
す。(Operation Example 5) A silicon film having a thickness of 500 Å was formed on the silicon dioxide film of Sample 2 by the CVD method, and 1
Cut out into a square of 5 mm × 15 mm, condense the ionic impurities in the silicon dioxide film according to the following conditions using the apparatus of FIG. 4, and measure the sodium ion ranging from the surface of the silicon dioxide film to 50 Å by secondary ion mass spectrometry. The ionic strength of potassium and magnesium was measured. The results are shown in Table 1.
【0064】[濃縮条件]電極(保持部材)5の電位:
0V、電極7の電位:−500V、電極7と試料1表面
との距離:0.05mm、密閉容器3の容積:1800cm
3 、電圧印加時間:15分、レーザ光による試料1の加
熱:60℃−10分、試料2の冷却:20℃−5分 [イオン強度測定条件]操作例1における測定条件に同
じ (操作例6)試料2にシリコン膜を形成しなかった点以
外は操作例5と同様の操作を行い、イオン強度の測定を
行った結果を表1に示す。[Concentration conditions] Potential of the electrode (holding member) 5:
0 V, potential of electrode 7: -500 V, distance between electrode 7 and sample 1 surface: 0.05 mm, volume of closed container 3: 1800 cm
3 , voltage application time: 15 minutes, heating of sample 1 by laser light: 60 ° C-10 minutes, cooling of sample 2: 20 ° C-5 minutes [Ion strength measurement conditions] Same as measurement conditions in operation example 1 (operation example 6) The same operation as in Operation Example 5 was carried out except that the silicon film was not formed on Sample 2, and the results of measuring the ionic strength are shown in Table 1.
【0065】(操作例7)試料2を用いて、不純物の濃
縮操作におけるレーザでの加熱を行わなかった点以外は
操作例5と同様の操作を行い、イオン強度の測定を行っ
た結果を表1に示す。(Operational Example 7) Using Sample 2, the same operation as in Operational Example 5 was carried out except that the heating with the laser was not performed in the operation of concentrating the impurities. Shown in 1.
【0066】(操作例8)試料2を用いて、不純物の濃
縮操作を直流電圧を印加せずに行った点以外は操作例5
と同様の操作を行い、イオン強度の測定を行った結果を
表1に示す (標準例2)試料2を用いて、操作例5から不純物の濃
縮操作を省いた操作を行い、イオン強度の測定を行った
結果を表1に示す。(Operation Example 8) Operation Example 5 except that the concentration operation of impurities was performed using Sample 2 without applying a DC voltage.
The results of ionic strength measurement performed in the same manner as in (1) are shown in Table 1. (Standard example 2) Sample 2 is used to perform the same procedure as in operation example 5 except that the concentration of impurities is omitted, and the ionic strength is measured. The results obtained are shown in Table 1.
【0067】[試料3]6インチのシリコンウェハにプ
ラズマCVD法で厚さ5000Åの四窒化三ケイ素膜を
形成し、試料3を得た。[Sample 3] A sample 3 was obtained by forming a 5000 Å trisilicon tetranitride film on a 6-inch silicon wafer by plasma CVD.
【0068】(操作例9)試料3の四窒化三ケイ素膜上
にCVD法により厚さ500Åのシリコン膜を形成し、
15mm×15mmの正方形に切り出し、図4の装置を用い
て下記の条件に従って四窒化三ケイ素膜中のイオン性不
純物を濃縮し、二次イオン質量分析法により四窒化三ケ
イ素膜表面から50Åまでの範囲のナトリウム、カリウ
ム、マグネシウムのイオン強度を測定した。結果を表1
に示す。(Operation Example 9) A silicon film having a thickness of 500 Å was formed on the trisilicon tetranitride film of Sample 3 by the CVD method,
Cut out into a 15 mm × 15 mm square, and use the device of FIG. 4 to concentrate the ionic impurities in the trisilicon tetranitride film according to the following conditions, and measure up to 50 Å from the surface of the trisilicon tetranitride film by secondary ion mass spectrometry. The ionic strength of sodium, potassium and magnesium in the range was measured. Table 1 shows the results
Shown in
【0069】[濃縮条件]電極(保持部材)5の電位:
0V、電極7の電位:−800V、電極7と試料1表面
との距離:0.05mm、密閉容器3の容積:1800cm
3 、電圧印加時間:15分、レーザ光による試料1の加
熱:90℃−10分、試料3の冷却:20℃−5分 [イオン強度測定条件]操作例1における測定条件に同
じ (操作例10)試料3にシリコン膜を形成しなかった点
以外は操作例9と同様の操作を行い、イオン強度の測定
を行った結果を表1に示す。[Concentration conditions] Potential of the electrode (holding member) 5:
0 V, potential of electrode 7: -800 V, distance between electrode 7 and sample 1 surface: 0.05 mm, volume of closed container 3: 1800 cm
3 , voltage application time: 15 minutes, heating of sample 1 by laser light: 90 ° C.-10 minutes, cooling of sample 3: 20 ° C.-5 minutes [Ion strength measurement conditions] Same as measurement conditions in operation example 1 (operation example 10) The same operation as in Operation Example 9 was carried out except that the silicon film was not formed on Sample 3, and the results of measuring the ionic strength are shown in Table 1.
【0070】(操作例11)試料3を用いて、不純物の
濃縮操作におけるレーザでの加熱を行わなかった点以外
は操作例9と同様の操作を行い、イオン強度の測定を行
った結果を表1に示す。(Operation Example 11) Using Sample 3, the same operation as in Operation Example 9 was performed except that the heating with the laser in the operation of concentrating the impurities was not performed, and the results of measuring the ionic strength are shown. Shown in 1.
【0071】(操作例12)試料3を用いて、不純物の
濃縮操作を直流電圧を印加せずに行った点以外は操作例
9と同様の操作を行い、イオン強度の測定を行った結果
を表1に示す。(Operation Example 12) Using sample 3, the same operation as in operation example 9 was carried out except that the impurity concentration operation was performed without applying a DC voltage. It shows in Table 1.
【0072】(標準例3)試料3を用いて、操作例9か
ら不純物の濃縮操作を省いた操作を行い、イオン強度の
測定を行った結果を表1に示す。(Standard Example 3) Table 1 shows the results of measuring the ionic strength by using Sample 3 in the same manner as in Operation Example 9 except that the concentration of impurities was omitted.
【0073】[0073]
【表1】 [試料4]6インチのシリコンウェハに熱酸化法で厚さ
3000Åの二酸化ケイ素膜を形成し、試料4を得た。[Table 1] [Sample 4] A silicon dioxide film having a thickness of 3000 Å was formed on a 6-inch silicon wafer by a thermal oxidation method to obtain Sample 4.
【0074】(操作例13)試料4の二酸化ケイ素膜上
にCVD法により厚さ500Åのシリコン膜を形成し、
15mm×15mmの正方形に切り出し、図4の装置を用い
て下記の条件に従って二酸化ケイ素膜中のハロゲン不純
物を濃縮し、二次イオン質量分析法により二酸化ケイ素
膜表面から50Åまでの範囲の弗素、塩素のイオン強度
を測定した。結果を表2に示す。(Operation Example 13) A silicon film having a thickness of 500 Å is formed on the silicon dioxide film of Sample 4 by the CVD method,
Cut out into a 15 mm × 15 mm square, condense the halogen impurities in the silicon dioxide film according to the following conditions using the device of FIG. 4, and measure the fluorine and chlorine in the range from the surface of the silicon dioxide film to 50 Å by secondary ion mass spectrometry. Was measured. Table 2 shows the results.
【0075】[濃縮条件]電極(保持部材)5の電位:
0V、電極7の電位:+700V、電極7と試料1表面
との距離:0.05mm、密閉容器3の容積:1800cm
3 、電圧印加時間:15分、レーザ光による試料1の加
熱:60℃−10分、試料4の冷却:20℃−5分 [イオン強度測定条件]操作例1における測定条件に同
じ (操作例14)試料4にシリコン膜を形成しなかった点
以外は操作例13と同様の操作を行い、イオン強度の測
定を行った結果を表2に示す。[Concentration conditions] Potential of the electrode (holding member) 5:
0 V, potential of electrode 7: +700 V, distance between electrode 7 and sample 1 surface: 0.05 mm, volume of closed container 3 1800 cm
3 , voltage application time: 15 minutes, heating of sample 1 by laser light: 60 ° C.-10 minutes, cooling of sample 4: 20 ° C.-5 minutes [Ion strength measurement conditions] Same as measurement conditions in operation example 1 (operation example 14) The same operation as in Operation Example 13 was carried out except that the silicon film was not formed on Sample 4, and the results of measuring the ionic strength are shown in Table 2.
【0076】(操作例15)試料4を用いて、不純物の
濃縮操作におけるレーザでの加熱を行わなかった点以外
は操作例13と同様の操作を行い、イオン強度の測定を
行った結果を表2に示す。(Operation Example 15) Using Sample 4, the same operation as in Operation Example 13 was carried out except that heating with a laser was not performed in the operation of concentrating impurities. 2 shows.
【0077】(操作例16)試料4を用いて、不純物の
濃縮操作を直流電圧を印加せずに行った点以外は操作例
13と同様の操作を行い、イオン強度の測定を行った結
果を表2に示す。(Operation Example 16) Using sample 4, the same operation as in operation example 13 was performed except that the impurity concentration operation was performed without applying a DC voltage. It shows in Table 2.
【0078】(標準例4)試料4を用いて、操作例13
から不純物の濃縮操作を省いた操作を行い、イオン強度
の測定を行った結果を表2に示す。(Standard example 4) Operation example 13 using sample 4
Table 2 shows the results of the ionic strength measurement performed by omitting the concentration operation of impurities.
【0079】[0079]
【表2】 上述から明らかなように、半導体薄膜試料に直接電圧を
印加することによる不純物の濃縮効果は、半導体薄膜試
料を加熱することによって飛躍的に増大する。更に、半
導体薄膜試料の表面にシリコン膜を形成することにより
加熱効率が良くなり、これにより不純物の濃縮効率が更
に上がる。[Table 2] As is clear from the above, the effect of concentrating impurities by directly applying a voltage to the semiconductor thin film sample is dramatically increased by heating the semiconductor thin film sample. Furthermore, by forming a silicon film on the surface of the semiconductor thin film sample, the heating efficiency is improved, which further increases the impurity concentration efficiency.
【0080】第3の実施の形態次に、第3の実施形態の
半導体薄膜の不純物濃縮装置について図面を参照しなが
ら説明する。Third Embodiment Next, a semiconductor thin film impurity concentrating apparatus according to a third embodiment will be described with reference to the drawings.
【0081】本実施形態の半導体薄膜の不純物濃縮装置
を図5に示す。この濃縮装置は、第1の電位を電極端子
13に印加し、また、第2の電位を電極端子17に印加
する直流電圧印加手段11と、半導体薄膜試料Sを外部
と遮断する密閉容器3と、電極端子13に接続され、密
閉容器3内の前記半導体薄膜試料Sを裏面から保持する
電極5と、電極端子17に接続され、密閉容器3内の前
記半導体薄膜試料Sの表面近傍もしくは表面に設けられ
ており尖った形状を有する電極7とを備え、電極5及び
電極7に直流電圧を印加することで、不純物を電極7近
傍の半導体薄膜試料Sの表面近傍に集めることにより前
記不純物を濃縮するようにしてある。FIG. 5 shows the semiconductor thin film impurity concentrating apparatus of this embodiment. This concentrator comprises a DC voltage applying means 11 for applying a first potential to the electrode terminal 13 and a second potential to the electrode terminal 17, and a closed container 3 for shutting off the semiconductor thin film sample S from the outside. , An electrode 5 which is connected to the electrode terminal 13 and holds the semiconductor thin film sample S in the closed container 3 from the back surface, and an electrode terminal 17, which is connected to the surface near or on the surface of the semiconductor thin film sample S in the closed container 3. And an electrode 7 having a pointed shape is provided, and by applying a DC voltage to the electrode 5 and the electrode 7, the impurities are concentrated near the surface of the semiconductor thin film sample S in the vicinity of the electrode 7 to concentrate the impurities. I am doing it.
【0082】ここで、本実施形態においては、半導体薄
膜試料Sの表面に所定の膜を形成するための膜形成手段
として、有機物37の貯蔵容器35が設けてある。この
貯蔵容器35は、容器内に貯蔵された有機物37を加熱
等により密閉容器3内部に有機物蒸気を発生させること
により半導体薄膜試料Sの表面に有機物膜を形成する。
このように半導体薄膜試料Sの表面に所定の膜を形成す
ることで、半導体薄膜試料に対する環境からの二次汚染
を抑制すると共に、薄膜中の目的不純物が蒸発損失する
のを抑制することができる。また、これらの薄膜は二次
汚染抑制等の観点からはできる限り厚い膜厚に設定する
ことが望ましいが、あまり厚くすると分析に長時間がか
かるため、膜厚は、シリコン膜にあっては、3000Å
以下、特に100〜2000Åの範囲、また、有機物膜
にあっては、2000Å以下、特に20〜1000Åの
範囲が好ましい。Here, in this embodiment, a storage container 35 for the organic substance 37 is provided as a film forming means for forming a predetermined film on the surface of the semiconductor thin film sample S. The storage container 35 forms an organic material film on the surface of the semiconductor thin film sample S by generating an organic material vapor inside the closed container 3 by heating the organic material 37 stored in the container.
By thus forming the predetermined film on the surface of the semiconductor thin film sample S, it is possible to suppress the secondary contamination of the semiconductor thin film sample from the environment and to suppress the evaporation loss of the target impurities in the thin film. . Further, it is desirable to set these thin films as thick as possible from the viewpoint of suppressing secondary pollution, but if they are too thick, it takes a long time to analyze. 3000Å
In the following, the range of 100 to 2000Å is preferable, and the range of 2000Å or less, particularly 20 to 1000Å is preferable for the organic film.
【0083】半導体薄膜試料Sの直流電圧印加状況を監
視できるように、密閉容器3には半導体薄膜試料監視手
段19,21が設けてある。さらに、直流電圧印加処理
に要する時間を短縮する理由から半導体薄膜試料Sを加
熱する加熱手段27が設けてある。In order to monitor the DC voltage application state of the semiconductor thin film sample S, the closed container 3 is provided with semiconductor thin film sample monitoring means 19 and 21. Further, heating means 27 for heating the semiconductor thin film sample S is provided for the purpose of shortening the time required for the DC voltage application process.
【0084】なお、半導体薄膜試料Sと電極5及び電極
7の間の電流量をモニタするために、密閉容器3外の電
気回路に電流計を設けるようにしてもよい(図示せ
ず)。An ammeter may be provided in an electric circuit outside the closed container 3 in order to monitor the amount of current between the semiconductor thin film sample S and the electrodes 5 and 7 (not shown).
【0085】加熱した後に半導体薄膜試料Sを冷却して
薄膜中の不純物を固定したり、あるいは、有機物を冷却
して有機物蒸気の発生を抑制するために、密閉容器側面
にガス導入/排気手段23,25が設けてある。また、
電極7には半導体薄膜試料の所定部分について正確に濃
縮を行うために上下、前後及び左右に移動する移動手段
9を設けてある。さらに、電極5の取り外しができるよ
うに、電極脱着手段15を設けてある。After heating, the semiconductor thin film sample S is cooled to fix impurities in the thin film, or in order to suppress the generation of organic vapor by cooling the organic substance, gas introducing / exhausting means 23 is provided on the side surface of the closed container. , 25 are provided. Also,
The electrode 7 is provided with a moving means 9 that moves vertically, forward and backward, and left and right in order to accurately concentrate a predetermined portion of the semiconductor thin film sample. Further, an electrode attaching / detaching means 15 is provided so that the electrode 5 can be removed.
【0086】以上のような装置を用いて、半導体薄膜の
不純物濃縮の実験を行った。それらの結果を以下に示
す。An experiment for concentrating impurities in a semiconductor thin film was conducted using the above-mentioned apparatus. The results are shown below.
【0087】[試料1]6インチのSiウェハ上に熱酸
化法で厚さ2500Åの二酸化ケイ素膜を形成し、試料
1を得た。[Sample 1] Sample 1 was obtained by forming a 2500 Å thick silicon dioxide film on a 6-inch Si wafer by a thermal oxidation method.
【0088】(操作例1)試料1の二酸化ケイ素膜上に
蒸着法により厚さ500Åのナフタレン膜を形成し、1
5mm×15mmの正方形に切り出し、図5の装置を用いて
下記の条件に従って二酸化ケイ素膜中のイオン性金属不
純物を濃縮し、二次イオン質量分析法により二酸化ケイ
素膜表面から50Åまでの範囲のNa,K,Mgのイオ
ン強度を測定した。結果を表3に示す。(Operation Example 1) A naphthalene film having a thickness of 500 Å was formed on the silicon dioxide film of Sample 1 by an evaporation method, and 1
It is cut into a square of 5 mm × 15 mm, the ionic metal impurities in the silicon dioxide film are concentrated according to the following conditions by using the device of FIG. 5, and Na in the range from the surface of the silicon dioxide film to 50 Å is measured by secondary ion mass spectrometry. , K and Mg were measured for ionic strength. The results are shown in Table 3.
【0089】[濃縮条件]電極(保持部材)5の電位:
0V、電極7の電位:−50V、電極7と試料表面との
距離:0mm、密閉容器3の容積:1800cm3 、直流電
圧印加時間:15分、レーザ光による試料1の加熱:6
0℃−10分、試料1の冷却:20℃−5分 [イオン強度測定条件]装置:ATOMICA SIMS4000、一次
イオンビーム:Ar+、加速電圧:10KV、ビーム
径:0.05mmφ、走査範囲:0.5mm×0.5mm、電
流:0.05μA、二次イオン加速電圧:3KV、その
他:エレクトロスプレーガン使用 (操作例2)試料1にナフタレン膜を形成しなかった以
外は操作例1と同様の操作を行い、イオン強度の測定を
行った結果を表3に示す。[Concentration conditions] Potential of the electrode (holding member) 5:
0 V, potential of electrode 7: -50 V, distance between electrode 7 and sample surface: 0 mm, volume of closed container 3: 1800 cm 3 , DC voltage application time: 15 minutes, heating of sample 1 by laser light: 6
0 ° C.-10 minutes, cooling of sample 1: 20 ° C.-5 minutes [Ion strength measurement conditions] Device: ATOMICA SIMS4000, primary ion beam: Ar + , accelerating voltage: 10 KV, beam diameter: 0.05 mmφ, scanning range: 0 0.5 mm × 0.5 mm, current: 0.05 μA, secondary ion accelerating voltage: 3 KV, others: using electrospray gun (Operation Example 2) Same as Operation Example 1 except that the naphthalene film was not formed on Sample 1. Table 3 shows the results of performing the operation and measuring the ionic strength.
【0090】(操作例3)試料1を用いて、不純物の濃
縮操作におけるレーザでの加熱を行なわなかった点以外
は操作例1と同様の操作を行い、イオン強度の測定を行
った結果を表3に示す。(Operation Example 3) Using sample 1, the same operation as in operation example 1 was carried out except that heating with a laser was not carried out in the operation of concentrating impurities. 3 shows.
【0091】(操作例4)試料1を用いて、不純物の濃
縮操作を直流電圧を印加せずに行った点以外は操作例1
と同様の操作を行い、イオン強度の測定を行った結果を
表3に示す (標準例1)試料1を用いて、操作例1から不純物の濃
縮操作を省いた操作を行い、イオン強度の測定を行った
結果を表3に示す。(Operation Example 4) Operation Example 1 using Sample 1 except that the impurity concentration operation was performed without applying a DC voltage.
The measurement results of the ionic strength are shown in Table 3 by performing the same operation as in (Standard Example 1) Sample 1 is used, and the operation of concentrating impurities is omitted from Operation Example 1 to measure the ionic strength. The results obtained are shown in Table 3.
【0092】[試料2]6インチのSiウェハ上にプラ
ズマCVD法で厚さ4000Åの四窒化三ケイ素膜を形
成し、試料2を得た。[Sample 2] A sample 3 was obtained by forming a 4000 Å thick trisilicon tetranitride film on a 6-inch Si wafer by a plasma CVD method.
【0093】(操作例5)試料2の四窒化三ケイ素膜上
に、蒸着法により厚さ約500Åのナフタレン膜を形成
し、15mm×15mmの正方形に切り出し、図5の装置を
用いて下記の条件に従って四窒化三ケイ素膜中のイオン
性不純物を濃縮し、二次イオン質量分析法により四窒化
三ケイ素膜表面から50Åまでの範囲のNa,K,Mg
のイオン強度を測定した。結果を表3に示す。(Operation Example 5) A naphthalene film having a thickness of about 500Å was formed on the trisilicon tetranitride film of Sample 2 by a vapor deposition method and cut into a square of 15 mm × 15 mm. The ionic impurities in the trisilicon tetranitride film were concentrated according to the conditions, and Na, K, Mg in the range from the surface of the trisilicon tetranitride film to 50 Å by secondary ion mass spectrometry.
Was measured. The results are shown in Table 3.
【0094】[濃縮条件]電極(保持部材)5の電位:
0V、電極7の電位:−80V、電極7と試料表面との
距離:0mm、密閉容器3の容積:1800cm3 、直流電
圧印加時間:15分、レーザ光による試料2の加熱:9
0℃−10分、試料2の冷却:20℃−5分 [イオン強度測定条件]操作例1における測定条件に同
じ (操作例6)試料2にナフタレン膜を形成しなかった以
外は操作例5と同様の操作を行い、イオン強度の測定を
行った結果を表3に示す。[Concentration conditions] Potential of the electrode (holding member) 5:
0 V, potential of electrode 7: -80 V, distance between electrode 7 and sample surface: 0 mm, closed container 3 volume: 1800 cm 3 , DC voltage application time: 15 minutes, heating of sample 2 by laser light: 9
0 ° C.-10 minutes, cooling of sample 2: 20 ° C.-5 minutes [Ion strength measurement conditions] Same as the measurement conditions in Operation Example 1 (Operation Example 6) Operation Example 5 except that the naphthalene film was not formed on Sample 2. Table 3 shows the results of measuring the ionic strength by performing the same operation as described above.
【0095】(操作例7)試料2を用いて、不純物の濃
縮操作におけるレーザでの加熱を行なわなかった点以外
は操作例5と同様の操作を行い、イオン強度の測定を行
った結果を表3に示す。(Operational Example 7) Using Sample 2, the same operation as in Operational Example 5 was carried out except that the heating with a laser was not carried out in the operation of concentrating the impurities. 3 shows.
【0096】(操作例8)試料2を用いて、不純物の濃
縮操作を直流電圧を印加せずに行った点以外は操作例5
と同様の操作を行い、イオン強度の測定を行った結果を
表3に示す (標準例2)試料2を用いて、操作例5から不純物の濃
縮操作を省いた操作を行い、イオン強度の測定を行った
結果を表3に示す。(Operation Example 8) Operation Example 5 using Sample 2 except that the impurity concentration operation was performed without applying a DC voltage.
The measurement results of the ionic strength are shown in Table 3 by performing the same operation as in (Standard Example 2) Sample 2 is used, and the operation of concentrating impurities is omitted from Operation Example 5 to measure the ionic strength. The results obtained are shown in Table 3.
【0097】[試料3]6インチのSiウェハにLPC
VD法で厚さ4000Åの二酸化ケイ素膜を形成し、試
料3を得た。[Sample 3] LPC on a 6-inch Si wafer
A sample 3 was obtained by forming a 4000 Å thick silicon dioxide film by the VD method.
【0098】(操作例9)試料3の二酸化ケイ素膜上
に、蒸着法により厚さ200Åの炭素膜を形成し、15
mm×15mmの正方形に切り出し、図5の装置を用いて下
記の条件に従って二酸化ケイ素膜中のハロゲン不純物を
濃縮し、二次イオン質量分析法により二酸化ケイ素膜表
面から50Åまでの範囲の弗素、塩素のイオン強度を測
定した。結果を表3に示す。(Operation Example 9) A carbon film having a thickness of 200 Å was formed on the silicon dioxide film of Sample 3 by a vapor deposition method.
Cut into squares of 15 mm × 15 mm, condense halogen impurities in the silicon dioxide film according to the following conditions using the device of FIG. 5, and measure the fluorine and chlorine in the range from the surface of the silicon dioxide film to 50 Å by secondary ion mass spectrometry. Was measured. The results are shown in Table 3.
【0099】[濃縮条件]電極(保持部材)5の電位:
0V、電極7の電位:+70V、電極7と試料表面との
距離:0mm、密閉容器3の容積:1800cm3 、直流電
圧印加時間:15分、レーザ光による試料3の加熱:6
0℃−10分、試料3の冷却:20℃−5分 [イオン強度測定条件]操作例1における測定条件に同
じ (操作例10)試料3に炭素膜を形成しなかった以外は
操作例9と同様の操作を行い、イオン強度の測定を行っ
た結果を表3に示す。[Concentration conditions] Potential of the electrode (holding member) 5:
0 V, potential of electrode 7: +70 V, distance between electrode 7 and sample surface: 0 mm, volume of closed container 3: 1800 cm 3 , DC voltage application time: 15 minutes, heating of sample 3 by laser light: 6
0 ° C.-10 minutes, cooling of sample 3: 20 ° C.-5 minutes [Ion strength measurement conditions] Same as the measurement conditions in Operation Example 1 (Operation Example 10) Operation Example 9 except that no carbon film was formed on Sample 3. Table 3 shows the results of measuring the ionic strength by performing the same operation as described above.
【0100】(操作例11)試料3を用いて、不純物の
濃縮操作におけるレーザでの加熱を行なわなかった点以
外は操作例9と同様の操作を行い、イオン強度の測定を
行った結果を表3に示す。(Operational Example 11) Using sample 3, the same operation as in operational example 9 was carried out except that heating with a laser was not carried out in the operation of concentrating impurities. 3 shows.
【0101】(操作例12)試料3を用いて、不純物の
濃縮操作を直流電圧を印加せずに行った点以外は操作例
9と同様の操作を行い、イオン強度の測定を行った結果
を表3に示す。(Operation Example 12) Using sample 3, the same operation as in operation example 9 was performed except that the impurity concentration operation was performed without applying a DC voltage. It shows in Table 3.
【0102】(標準例3)試料3を用いて、操作例9か
ら不純物の濃縮操作を省いた操作を行い、イオン強度の
測定を行った結果を表3に示す。(Standard Example 3) Table 3 shows the results obtained by measuring the ionic strength using the sample 3 except that the concentration of impurities was omitted from the operation example 9.
【0103】上述から明らかなように、半導体薄膜試料
に直流電圧を印加することによる不純物の濃縮効果は、
半導体薄膜試料を加熱することによって飛躍的に増大す
る。さらに、半導体薄膜試料表面に有機物膜を形成する
ことによって、環境からの二次汚染を抑制すると共に、
薄膜中の目的不純物の蒸発損失を抑制できるので、不純
物の分析感度及び精度を大幅に改善することができる。As is clear from the above, the effect of concentrating impurities by applying a DC voltage to the semiconductor thin film sample is
It is dramatically increased by heating the semiconductor thin film sample. Furthermore, by forming an organic film on the surface of the semiconductor thin film sample, secondary contamination from the environment is suppressed and
Since the evaporation loss of the target impurities in the thin film can be suppressed, the analytical sensitivity and accuracy of the impurities can be greatly improved.
【0104】[0104]
【表3】 [Table 3]
【0105】[0105]
【発明の効果】以上説明したように、本発明の半導体薄
膜の不純物濃縮装置及びその不純物分析方法によれば、
化学処理を行わずに簡便な操作で半導体薄膜のイオン性
不純物を表面近傍に局部的に濃縮することができ、検出
感度以下の極微量濃度の不純物の測定を簡便にし、その
工業的価値は極めて大である。As described above, according to the impurity concentrating device for a semiconductor thin film and the impurity analyzing method therefor according to the present invention,
The ionic impurities of the semiconductor thin film can be locally concentrated near the surface by a simple operation without chemical treatment, making it easy to measure impurities in trace amounts below the detection sensitivity, and its industrial value is extremely high. Is large.
【図1】本発明に係る第1の実施の形態の半導体薄膜の
不純物濃縮装置の構成を示す概念図である。FIG. 1 is a conceptual diagram showing a configuration of an impurity concentrating device for a semiconductor thin film according to a first embodiment of the present invention.
【図2】本発明に係る半導体薄膜のイオン性不純物の濃
縮を示すグラフであり、縦軸は不純物の濃度を、横軸は
負電圧が印加される半導体薄膜表面からの距離を表し、
線Aは電圧の印加前の陽イオン不純物ナトリウム濃度
を、線Bは電圧の印加後の陽イオン不純物ナトリウム濃
度を示す。FIG. 2 is a graph showing the concentration of ionic impurities in a semiconductor thin film according to the present invention, where the vertical axis represents the impurity concentration and the horizontal axis represents the distance from the semiconductor thin film surface to which a negative voltage is applied,
Line A shows the concentration of cation impurity sodium before the application of voltage, and line B shows the concentration of sodium cation impurity after the application of voltage.
【図3】SIMSの原理を説明するための図である。FIG. 3 is a diagram for explaining the principle of SIMS.
【図4】本発明に係る第2の実施形態の半導体薄膜の不
純物濃縮装置の構成を示す概念図である。FIG. 4 is a conceptual diagram showing a configuration of an impurity concentrating device for a semiconductor thin film according to a second embodiment of the present invention.
【図5】本発明に係る第3の実施形態の半導体薄膜の不
純物濃縮装置の構成を示す概念図である。FIG. 5 is a conceptual diagram showing a configuration of an impurity concentrating device for a semiconductor thin film according to a third embodiment of the present invention.
S 半導体薄膜試料 1 不純物濃縮装置 3 密閉容器 5 電極(保持部材) 7 電極 9 電極移動手段 11 直流電圧電源 13 電極端子(正極端子) 15 電極脱着手段 17 電極端子(負極端子) 19 半導体薄膜試料監視窓 21 半導体薄膜試料監視窓 23 ガス導入手段 25 ガス排出手段 27 加熱手段 29 電流計 31 透光窓 33 レーザ照射装置 35 有機物貯蔵容器 37 有機物 39 イオン銃 41 試料 43 セクタ電場 45 セクタ磁場 47 スリット 49 偏向電極 51 2次電子増倍管 S Semiconductor thin film sample 1 Impurity concentrator 3 Sealed container 5 Electrode (holding member) 7 Electrode 9 Electrode moving means 11 DC voltage power supply 13 Electrode terminal (positive electrode terminal) 15 Electrode attaching / detaching means 17 Electrode terminal (negative electrode terminal) 19 Semiconductor thin film sample monitoring Window 21 Semiconductor thin film sample monitoring window 23 Gas introduction means 25 Gas discharge means 27 Heating means 29 Ammeter 31 Transparent window 33 Laser irradiation device 35 Organic substance storage container 37 Organic substance 39 Ion gun 41 Sample 43 Sector electric field 45 Sector magnetic field 47 Slit 49 Deflection Electrode 51 Secondary electron multiplier
───────────────────────────────────────────────────── フロントページの続き (72)発明者 富田 充裕 神奈川県川崎市幸区小向東芝町1 株式会 社東芝研究開発センター内 (72)発明者 吉田 孝 神奈川県川崎市幸区小向東芝町1 株式会 社東芝研究開発センター内 (72)発明者 鈴木 功 神奈川県川崎市幸区小向東芝町1 株式会 社東芝研究開発センター内 (72)発明者 森田 正明 神奈川県川崎市幸区小向東芝町1 東芝リ サーチコンサルティング株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsuhiro Tomita 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Toshiba Research & Development Center (72) Inventor Takashi Yoshida Komukai-shi, Kawasaki-shi, Kanagawa 1 Incorporated Toshiba Research and Development Center (72) Inventor Isao Suzuki Komukai Toshiba Town, Kouki-ku, Kawasaki City, Kanagawa Prefecture 1 Incorporated Toshiba Research and Development Center (72) Inventor Masaaki Morita Komukai, Saiwai-ku, Kawasaki City, Kanagawa Prefecture Toshiba Town 1 Toshiba Research Consulting Co., Ltd.
Claims (10)
導体薄膜中のイオン性不純物を電位差により該半導体薄
膜の一部に濃縮するための電極と、 前記半導体薄膜を外部と遮断する密閉容器と、 を備えることを特徴とする半導体薄膜の不純物濃縮装
置。1. An electrode for causing a potential difference in a semiconductor thin film to concentrate ionic impurities in the semiconductor thin film to a part of the semiconductor thin film due to the potential difference, and a sealed container for shielding the semiconductor thin film from the outside. An impurity concentrating device for a semiconductor thin film, comprising:
装置において、 第1の電位を第1の電極端子に印加し、また、前記第1
の電位と異なる第2の電位を第2の電極端子に印加する
直流電圧印加手段と、 前記半導体薄膜を外部と遮断する密閉容器と、 前記第1の電極端子に電気的に接続され、前記密閉容器
内の前記半導体薄膜試料を一方の面から保持する第1の
電極と、 前記第2の電極端子に電気的に接続され、前記密閉容器
内の前記半導体薄膜試料の他方の面近傍もしくは他方の
面に設けられた第2の電極と、 を備え、前記第1及び第2の電極に電圧を印加して、前
記不純物を前記第2の電極近傍の半導体薄膜試料の他方
の表面近傍に集めることにより前記不純物を濃縮するこ
とを特徴とする半導体薄膜の不純物濃縮装置。2. An apparatus for concentrating impurities contained in a semiconductor thin film, wherein a first electric potential is applied to a first electrode terminal, and the first electric potential is applied to the first electrode terminal.
DC voltage applying means for applying a second electric potential different from the electric potential of the first electrode terminal to the second electrode terminal, a closed container for blocking the semiconductor thin film from the outside, and an electrical connection to the first electrode terminal, A first electrode for holding the semiconductor thin film sample in the container from one surface and an electrode electrically connected to the second electrode terminal, in the vicinity of the other surface of the semiconductor thin film sample in the closed container or on the other surface. A second electrode provided on the surface, and applying a voltage to the first and second electrodes to collect the impurities near the other surface of the semiconductor thin film sample near the second electrode. An impurity concentrating device for a semiconductor thin film, wherein the impurities are concentrated by means of:
あることを特徴とする請求項2記載の半導体薄膜の不純
物濃縮装置。3. The impurity concentration device for a semiconductor thin film according to claim 2, wherein the first and second electrodes are detachable.
試料を加熱する加熱手段を具備することを特徴とする請
求項2又は3記載の半導体薄膜の不純物濃縮装置。4. The impurity concentrating device for a semiconductor thin film according to claim 2, further comprising heating means for heating the semiconductor thin film sample held by the first electrode.
形成手段を具備することを特徴とする請求項1乃至4記
載の半導体薄膜の不純物濃縮装置。5. The semiconductor thin film impurity concentrating device according to claim 1, further comprising film forming means for forming a predetermined film in the closed container.
とする請求項4記載の半導体薄膜の不純物濃縮装置。6. The impurity concentration device for a semiconductor thin film according to claim 4, wherein the heating means irradiates the surface of the semiconductor thin film with light to heat it.
れた不純物を検出する物理分析手段を具備することを特
徴とする請求項1乃至6記載の半導体薄膜の不純物濃縮
装置。7. The semiconductor thin film impurity concentrating device according to claim 1, further comprising a physical analysis means for detecting the concentrated impurities after the impurities are concentrated.
り前記不純物を分析する方法において、 この半導体薄膜試料に電圧を印加することで、前記不純
物を局所的に集めて濃縮し、 この濃縮された半導体薄膜試料の不純物を分析すること
を特徴とする半導体薄膜の不純物分析方法。8. A method for analyzing impurities by concentrating impurities in a semiconductor thin film, wherein a voltage is applied to the semiconductor thin film sample to locally collect and concentrate the impurities, and the concentrated semiconductor is condensed. A method for analyzing impurities in a semiconductor thin film, which comprises analyzing impurities in a thin film sample.
め所定の膜を形成することを特徴とする請求項8記載の
半導体薄膜の不純物分析方法。9. The method for analyzing impurities in a semiconductor thin film according to claim 8, wherein a predetermined film is formed in advance on the other surface of the semiconductor thin film sample.
二次イオン質量分析法、全反射蛍光X線分析法、PIX
E法、若しくはAES法で測定することを特徴とする請
求項8又は9記載の半導体薄膜の不純物分析方法。10. A secondary ion mass spectrometry method, a total reflection X-ray fluorescence analysis method, and a PIX method for impurity analysis of the semiconductor thin film sample.
The method for analyzing impurities in a semiconductor thin film according to claim 8 or 9, wherein the method is an E method or an AES method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23930796A JP3769080B2 (en) | 1995-09-13 | 1996-09-10 | Thin film impurity concentration apparatus composed of SiO 2 or Si 3 N 4 and its analysis method |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23565595 | 1995-09-13 | ||
JP5889596 | 1996-03-15 | ||
JP8-58895 | 1996-03-15 | ||
JP7-235655 | 1996-03-15 | ||
JP23930796A JP3769080B2 (en) | 1995-09-13 | 1996-09-10 | Thin film impurity concentration apparatus composed of SiO 2 or Si 3 N 4 and its analysis method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09306959A true JPH09306959A (en) | 1997-11-28 |
JP3769080B2 JP3769080B2 (en) | 2006-04-19 |
Family
ID=27296721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23930796A Expired - Fee Related JP3769080B2 (en) | 1995-09-13 | 1996-09-10 | Thin film impurity concentration apparatus composed of SiO 2 or Si 3 N 4 and its analysis method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3769080B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007263670A (en) * | 2006-03-28 | 2007-10-11 | Central Res Inst Of Electric Power Ind | Concentration separator and concentration/separation method |
-
1996
- 1996-09-10 JP JP23930796A patent/JP3769080B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007263670A (en) * | 2006-03-28 | 2007-10-11 | Central Res Inst Of Electric Power Ind | Concentration separator and concentration/separation method |
Also Published As
Publication number | Publication date |
---|---|
JP3769080B2 (en) | 2006-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6328700B2 (en) | Elemental analysis of organic samples | |
Pisonero et al. | Critical revision of GD-MS, LA-ICP-MS and SIMS as inorganic mass spectrometric techniques for direct solid analysis | |
US4442354A (en) | Sputter initiated resonance ionization spectrometry | |
Becker et al. | State-of-the-art in inorganic mass spectrometry for analysis of high-purity materials | |
US20030080292A1 (en) | System and method for depth profiling | |
JP2008116363A (en) | Surface analyzing method | |
Held et al. | Molecular Cesium Component in Multiphoton Ionization of a Cesium Atomic Beam by a Q-Switched Neodymium-Glass Laser at 1.06 μm | |
JP3769080B2 (en) | Thin film impurity concentration apparatus composed of SiO 2 or Si 3 N 4 and its analysis method | |
JPS60114753A (en) | Quantitative analysis method of constituent and device thereof | |
JP2000046770A (en) | Element analyzing method | |
JP3541573B2 (en) | Laser desorption ionization mass spectrometer | |
JPH0542101B2 (en) | ||
JP2006242664A (en) | Analyzing system of three-dimensional structure | |
JP3441333B2 (en) | Impurity concentration device and impurity analysis method | |
JPS62113052A (en) | Element analysis | |
Van Oostrom | Characterization of semiconductor materials and devices by surface analysis techniques | |
JPH0351253B2 (en) | ||
Bernius et al. | Pulsed, high‐current, in‐line reversal electron attachment detector | |
JPH09250993A (en) | Secondary ion mass spectrograph | |
JP2004212215A (en) | Laser ablation polymer analyzing apparatus | |
Nakamura et al. | Detection of SiO2-Ions from SiO2-Si Interface by Means of SIMS | |
JP2000329716A (en) | Auger electron spectral apparatus and analytical method for depth direction | |
JP3055159B2 (en) | Neutral particle mass spectrometer | |
JP2021173655A (en) | Method for analyzing structure of organic compound | |
JP3055160B2 (en) | Neutral particle mass spectrometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20031121 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20031204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040315 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040514 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20040528 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050510 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050711 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050920 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051118 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060131 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060203 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100210 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100210 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110210 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120210 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120210 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130210 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |