JPH09306636A - Spark plug - Google Patents

Spark plug

Info

Publication number
JPH09306636A
JPH09306636A JP14356696A JP14356696A JPH09306636A JP H09306636 A JPH09306636 A JP H09306636A JP 14356696 A JP14356696 A JP 14356696A JP 14356696 A JP14356696 A JP 14356696A JP H09306636 A JPH09306636 A JP H09306636A
Authority
JP
Japan
Prior art keywords
glass
powder
particles
particle size
coarse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14356696A
Other languages
Japanese (ja)
Inventor
Toshitaka Honda
稔貴 本田
Minoru Tanaka
穣 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP14356696A priority Critical patent/JPH09306636A/en
Publication of JPH09306636A publication Critical patent/JPH09306636A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spark Plugs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spark plug with small dispersion of resistance values of a resistor and stable load life characteristics after assembled to prevent the generation of electric wave noise. SOLUTION: In a spark plug 100, a resistor 15 is constituted as a sintered body formed by sintering a mixture of glass powder and conductive material powder. The glass powder contains fine glass having a particle size of 100μm or less and coarse glass having a particle size of 100-800μm, and the ratio Wf/Wc of the weight Wf of the fine glass to the weight Wc of the coarse glass is set in the range of 2/98-50/50. The particle distribution of the coarse glass is specified such that when the total weight of the coarse glass is 100wt.%, the content ratio of particles having a particle size of 100-248μm is 10-60wt.%, that of particles having a particle size of 248-352μm is 10-60wt.%, and that of particles having a particle size of 352-800μm is 10-50wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関に使用され
るスパークプラグに関し、特に電波ノイズ発生防止用の
抵抗体を組み込んだスパークプラグに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spark plug used in an internal combustion engine, and more particularly to a spark plug incorporating a resistor for preventing generation of radio noise.

【0002】[0002]

【従来の技術】従来、上述のようなスパークプラグとし
て、絶縁体の軸方向に形成された貫通孔に対し、その一
方の端部側に端子金具を固定し、同じく他方の端部側に
中心電極を固定するとともに、該貫通孔内において端子
金具と中心電極との間に抵抗体を配置する構造のものが
知られている。この抵抗体は、例えば特開昭61−10
4580号公報、特開昭61−253786号公報ある
いは特開平2−126584号公報に開示されているよ
うに、ガラス粉末及び/又は絶縁性セラミック粉末にカ
ーボンブラック等の導電性材料粉末を混合した後ホット
プレス等により焼結したものが使用されている。このよ
うな抵抗体においては、粗粒ガラス粉末と微粒ガラス粉
末との混合物が使用され、微粒ガラス粉末中に導電性材
料粉末が分散した構造の導電路が形成されるとともに、
粗粒ガラス粉末粒子の介在によりこの導電路を至る所で
迂回させて、その実行長を長くすることにより電波ノイ
ズ発生防止効果を高めることが図られている。
2. Description of the Related Art Conventionally, as a spark plug as described above, a terminal fitting is fixed to one end of a through hole formed in the axial direction of an insulator and the other end is also centered. There is known a structure in which an electrode is fixed and a resistor is arranged between the terminal fitting and the center electrode in the through hole. This resistor is disclosed, for example, in Japanese Patent Laid-Open No. 61-10.
After mixing a conductive material powder such as carbon black with glass powder and / or insulating ceramic powder, as disclosed in Japanese Patent No. 4580, Japanese Patent Application Laid-Open No. 61-253786, and Japanese Patent Application Laid-Open No. 2-126584. What is sintered by hot pressing or the like is used. In such a resistor, a mixture of coarse glass powder and fine glass powder is used, and a conductive path having a structure in which conductive material powder is dispersed in fine glass powder is formed,
The effect of preventing radio noise is enhanced by circumventing this conductive path everywhere by interposing coarse glass powder particles and lengthening its execution length.

【0003】[0003]

【発明が解決しようとする課題】上述のプラグの抵抗体
を製造する場合、その原料粉末に含まれるガラス粉末が
粗粒ガラス粉末と微粒ガラス粉末との混合物になってい
る関係上、流動性が低くなりがちであり、例えばホット
プレス用の予備成形体を金型プレスにより作成する際
に、金型への粉末の充填密度、ひいては得られる予備成
形体の密度に不均一やばらつきが生じやすい。そして、
このような成形体を使用してホットプレスを行うと、得
られる抵抗体の抵抗値がばらついたり、あるいはプラグ
の負荷寿命特性が不安定になる問題がある。
In the case of manufacturing the above-mentioned resistor of the plug, since the glass powder contained in the raw material powder is a mixture of coarse glass powder and fine glass powder, the fluidity is not good. When the preform for hot pressing is produced by a die press, for example, the packing density of the powder in the die, and consequently the density of the preform obtained, tends to be nonuniform or uneven. And
When hot pressing is performed using such a molded body, there is a problem that the resistance value of the obtained resistor varies or the load life characteristic of the plug becomes unstable.

【0004】本発明の課題は、抵抗体の抵抗値がばらつ
いたり、負荷寿命特性が不安定になりにくいスパークプ
ラグを提供することにある。
An object of the present invention is to provide a spark plug in which the resistance value of a resistor does not fluctuate and load life characteristics are not unstable.

【0005】[0005]

【課題を解決するための手段及び作用・効果】上述の課
題を解決するために本発明のスパークプラグは、下記の
ように構成されることを特徴とする。すなわち、絶縁体
の軸方向に形成された貫通孔に対し、その一方の端部側
に端子金具が固定され、同じく他方の端部側に中心電極
が固定されるとともに、該貫通孔内において上記端子金
具と中心電極との間に抵抗体が配置される。その抵抗体
は、ガラス粉末と導電材料粉末とを混合して焼結した焼
結体として構成される。また、ガラス粉末は、粒径10
0μm以下の微粒ガラスと、粒径100〜800μmの
粗粒ガラスとを含有し、それら微粒ガラスの重量Wfと
粗粒ガラスの重量Wcとの比Wf/Wcが2/98〜50
/50の範囲で設定される。そして、その粗粒ガラスの
粒度分布が、該粗粒ガラスの全量を100重量%とした
場合に、粒径範囲100〜248μmに属する粉末粒子
の含有比率が10〜60重量%、粒径範囲248〜35
2μmに属する粉末粒子の含有比率が10〜60重量
%、粒径範囲352〜800μmに属する粉末粒子の含
有比率が10〜50重量%とされる。
Means for Solving the Problems and Actions / Effects In order to solve the above problems, the spark plug of the present invention is characterized in that it is constructed as follows. That is, with respect to the through hole formed in the axial direction of the insulator, the terminal metal fitting is fixed to one end side of the through hole, and the center electrode is fixed to the other end side of the through hole. A resistor is arranged between the terminal fitting and the center electrode. The resistor is configured as a sintered body obtained by mixing and sintering glass powder and conductive material powder. Further, the glass powder has a particle size of 10
It contains fine glass of 0 μm or less and coarse glass having a particle diameter of 100 to 800 μm, and the ratio Wf / Wc of the weight Wf of the fine glass and the weight Wc of the coarse glass is 2/98 to 50.
It is set in the range of / 50. When the particle size distribution of the coarse glass is 100% by weight, the content ratio of the powder particles belonging to the particle size range 100 to 248 μm is 10 to 60% by weight and the particle size range is 248. ~ 35
The content ratio of the powder particles belonging to 2 μm is 10 to 60% by weight, and the content ratio of the powder particles belonging to the particle size range 352 to 800 μm is 10 to 50% by weight.

【0006】図2は、上記抵抗体の構造を模式的に示し
たものであり、微粒ガラスの少なくとも一部が溶融後凝
固することにより形成され、かつ導電性材料粉末の粒子
を分散させたガラス相(結合ガラス相)が、粗粒ガラス
粉末に由来するガラス粒子(ブロック粒子)を取り囲ん
だ構造を有するものとなる(以下、このような構造をブ
ロック構造という)。この場合、結合ガラス相の少なく
と一部は、端子金具側の端部から中心電極側の端部に至
る連続部を形成してなり、この連続部が、導電性材料粉
末の粒子同士の電気的な接触に基づき、抵抗体の導電路
を形成することとなる。そして、この連続部、すなわち
導電路がブロック粒子の介在により至る所で迂回させら
れてその実行長が長くなり、良好な電波ノイズ発生防止
効果が達成される。
FIG. 2 schematically shows the structure of the resistor, which is formed by melting and solidifying at least a part of fine glass particles and in which particles of conductive material powder are dispersed. The phase (bonded glass phase) has a structure surrounding glass particles (block particles) derived from coarse glass powder (hereinafter, such a structure is referred to as a block structure). In this case, at least a part of the bonded glass phase forms a continuous portion extending from the end portion on the terminal metal fitting side to the end portion on the center electrode side, and this continuous portion forms an electric field between particles of the conductive material powder. The conductive path of the resistor is formed based on the physical contact. Then, the continuous portion, that is, the conductive path is diverted everywhere due to the interposition of the block particles, the execution length becomes long, and a good effect of preventing radio wave noise is achieved.

【0007】そして、本発明者らは鋭意検討の結果、抵
抗体に使用される粗粒ガラス及び微粒ガラスの粒径及び
混合比率を上述の範囲で設定することで、電波ノイズ発
生防止効果が特に良好となり、さらに粗粒ガラスの粒度
分布を前述のように定めることで、原料粉末の流動性及
び充填性が高められて成形体の密度に不均一やばらつき
が生じにくくなることを見い出したのである。これによ
り、抵抗体の抵抗値がばらついたり、プラグの負荷寿命
特性が不安定になる等の問題が回避ないし抑制される。
As a result of earnest studies, the present inventors set the particle size and the mixing ratio of the coarse-grained glass and the fine-grained glass used for the resistor within the above-mentioned ranges, and thus the effect of preventing the generation of radio noise is particularly improved. It has been found that, by setting the particle size distribution of the coarse glass as described above, the fluidity and the filling property of the raw material powder are enhanced and the density of the molded product is less likely to be nonuniform or uneven. . As a result, problems such as variations in the resistance value of the resistor and instability in the load life characteristic of the plug can be avoided or suppressed.

【0008】微粒ガラスは、ホットプレス等の焼結処理
時に少なくともその一部が溶融して、粗粒ガラスの粒子
同士に形成された隙間を充填する役割を果たす。しかし
ながら、その粒径が100μmを超えると溶融が不十分
となって導電路に空隙が生じやすくなり、プラグの負荷
寿命特性が損なわれることにつながる。なお、微粒ガラ
スの粒径は、望ましくは70〜100μmの範囲で設定
するのがよい。一方、粗粒ガラスは、粒径が100μm
未満になるとホットプレス時に粒子が軟化ないし溶融し
やすくなり、前述のブロック構造が損なわれて良好な電
波ノイズ発生防止効果が達成されなくなる。また、粒径
が800μmを超えるとガラス粒子間に空隙が残存しや
すくなり、プラグの負荷寿命特性が損なわれることにつ
ながる。
At least a part of the fine glass melts during the sintering process such as hot pressing, and fills the gaps formed between the coarse glass particles. However, if the particle size exceeds 100 μm, the melting is insufficient and voids are easily generated in the conductive path, which leads to impaired load life characteristics of the plug. The particle size of the fine glass is preferably set in the range of 70 to 100 μm. On the other hand, the coarse glass has a particle size of 100 μm.
If it is less than the above range, the particles are likely to be softened or melted during hot pressing, and the above-mentioned block structure is impaired, so that a good effect of preventing radio wave noise is not achieved. If the particle size exceeds 800 μm, voids are likely to remain between the glass particles, which leads to impaired load life characteristics of the plug.

【0009】また、微粒ガラスの重量Wfと粗粒ガラス
の重量Wcとの比Wf/Wcが2/98未満になると、ホ
ットプレス時にガラスがほとんど溶融しなくなり、ガラ
ス粒子間に多量の空隙が形成されて、プラグの負荷寿命
特性が損なわれる。一方、Wf/Wcが50/50を超え
ると、ブロック粒子の含有比率が減少し、ブロック構造
の形成が不十分となって良好な電波ノイズ発生防止効果
が達成されなくなる。なお、Wf/Wcは、望ましくは2
/98〜10/90の範囲で設定するのがよい。
If the ratio Wf / Wc of the weight Wf of fine glass to the weight Wc of coarse glass is less than 2/98, the glass hardly melts during hot pressing and a large amount of voids are formed between the glass particles. As a result, the load life characteristic of the plug is impaired. On the other hand, when Wf / Wc exceeds 50/50, the content ratio of the block particles decreases, the formation of the block structure becomes insufficient, and the good effect of preventing radio wave noise cannot be achieved. Note that Wf / Wc is preferably 2
It is preferable to set it in the range of / 98 to 10/90.

【0010】次に、粒度分布が前述のものから逸脱した
粗粒ガラスを使用すると、原料粉末の流動性及び充填性
が低下し、成形体の密度に不均一やばらつきが生じやす
くなり、得られる抵抗体の抵抗値がばらついたり、ある
いはプラグの負荷寿命特性が不安定になる問題が生ず
る。粒度分布は、より望ましくは、粒径範囲100〜2
48μmに属する粉末粒子の含有比率が20〜40重量
%、粒径範囲248〜352μmに属する粉末粒子の含
有比率が15〜25重量%、粒径範囲352〜800μ
mに属する粉末粒子の含有比率が45〜55重量%とな
るように設定するのがよい。
Next, when coarse-grained glass having a particle size distribution deviating from the above-mentioned one is used, the fluidity and filling property of the raw material powder are deteriorated, and the density of the molded product is apt to be nonuniform or uneven. There arises a problem that the resistance value of the resistor varies or the load life characteristic of the plug becomes unstable. The particle size distribution is more preferably 100 to 2 in the particle size range.
The content ratio of powder particles belonging to 48 μm is 20 to 40% by weight, the content ratio of powder particles belonging to particle size range 248 to 352 μm is 15 to 25% by weight, particle size range 352 to 800 μm.
It is preferable to set the content ratio of the powder particles belonging to m to be 45 to 55% by weight.

【0011】ガラス粉末は、具体的にはB23−SiO
2系、BaO−B23系、SiO2−B23−CaO−B
aO系、及びSiO2−ZnO−B23系の各ガラス粉
末のうちの1種以上を含有するものを使用することがで
きる。この場合、その軟化温度が800℃以下のものを
使用することで、溶融時のガラスの流動性が高められ、
ブロック粒子間の隙間に結合ガラス相が十分ゆき渡って
隙間等が形成されにくくなる。その結果、プラグの負荷
寿命特性が改善される。ここで、ガラスの軟化温度は、
その粘性率が4.5×107ポアズとなる温度を意味す
るものとする。該軟化温度が300℃未満になると、抵
抗体の耐熱性が損なわれるので、軟化温度が300〜8
00℃、より望ましくは600〜800℃のガラスを使
用するのがよい。なお、粗粒ガラスと微粒ガラスとで、
ガラスの材質を異ならせてもよい。
The glass powder is specifically B 2 O 3 --SiO 2.
2 system, BaO-B 2 O 3 based, SiO 2 -B 2 O 3 -CaO -B
It is possible to use one containing at least one of aO-based and SiO 2 —ZnO—B 2 O 3 -based glass powders. In this case, by using a material having a softening temperature of 800 ° C. or lower, the fluidity of the glass at the time of melting is increased,
The bonded glass phase spreads sufficiently into the gaps between the block particles, making it difficult to form gaps or the like. As a result, the load life characteristics of the plug are improved. Here, the softening temperature of the glass is
It means the temperature at which the viscosity is 4.5 × 10 7 poise. If the softening temperature is lower than 300 ° C., the heat resistance of the resistor is impaired, so the softening temperature is 300 to 8
It is preferable to use glass at 00 ° C, more preferably 600 to 800 ° C. In addition, with coarse grain glass and fine grain glass,
The glass material may be different.

【0012】また、さらに具体的にはガラス粉末は、微
粒ガラスの軟化温度と、粗粒ガラスの軟化温度との差が
100℃以下のものを使用することが望ましい。すなわ
ち、微粒ガラス及び粗粒ガラスの各軟化温度を、それぞ
れTC及びTFとした場合に、|TC−TF|≦100℃で
あることが望ましい。この場合、TC>TFであってもT
C<TFであってもいずれでもよい。その理由を以下に説
明する。まず、微粒ガラスと粗粒ガラスとでは、その粘
性率が同じであっても前者の方が後者よりもホットプレ
ス時に変形を起こしやすい性質を有している。そして、
TC>TFの場合は|TC−TF|≦100℃であれば、微
粒ガラスの軟化温度が粗粒ガラスよりも多少高くとも、
微粒ガラスはホットプレス時の圧力で十分に変形し、粗
粒ガラス間の隙間を埋めるのでプラグの負荷寿命特性が
良好に維持される。しかしながら、|TC−TF|>10
0℃になると微粒ガラスの変形が不十分となり、粗粒ガ
ラス間に隙間が形成されて負荷寿命特性の低下を招く。
一方、TC<TFの場合は、微粒ガラスはさらに変形しや
すくなり、隙間等はより形成されにくくなるが、|TC
−TF|>100℃になるとガラスの粘性率が低くなり
過ぎ、例えば中心電極と絶縁体の隙間など、不必要な部
分にもガラスが流れ込んでしまう心配が生ずる。|TC
−TF|は、望ましくは50℃以下とするのがよい。
Further, more specifically, it is desirable to use a glass powder having a difference between the softening temperature of fine glass and the softening temperature of coarse glass of 100 ° C. or less. That is, it is desirable that | TC−TF | ≦ 100 ° C. when the softening temperatures of the fine glass and the coarse glass are respectively TC and TF. In this case, even if TC> TF, T
Either C <TF or both may be used. The reason will be described below. First, the fine-grained glass and the coarse-grained glass have the property that the former is more likely to be deformed during hot pressing than the latter, even if the viscosity is the same. And
In the case of TC> TF, if | TC−TF | ≦ 100 ° C., even if the softening temperature of the fine glass is slightly higher than that of the coarse glass,
The fine glass is sufficiently deformed by the pressure at the time of hot pressing and fills the gaps between the coarse glass, so that the load life characteristics of the plug are maintained good. However, | TC-TF |> 10
When it reaches 0 ° C., the deformation of the fine glass particles becomes insufficient, a gap is formed between the coarse glass particles, and the load life characteristics deteriorate.
On the other hand, in the case of TC <TF, the fine glass particles are more likely to be deformed and gaps are less likely to be formed.
If −TF│> 100 ° C., the viscosity of the glass becomes too low, and there is a concern that the glass may flow into unnecessary portions such as the gap between the center electrode and the insulator. | TC
−TF | is preferably 50 ° C. or lower.

【0013】次に、導電性材料粉末は、カーボンブラッ
ク又はグラファイト粉末の少なくともいずれかを含有す
るものを使用できる。導電性材料粉末は、微粒ガラスよ
りも小さい粒径を有するものを使用でき、抵抗体の製造
に当たっては、微粒ガラス粒子が該導電性材料粉末の粒
子により覆われた複合粉体の形で使用することができ
る。この場合、抵抗体に占める上記複合粉体の配合比率
は、10〜40重量%の範囲で調整するのがよい。複合
粉体の含有量が10重量%未満になると、導電性材料粉
末の絶対量が不足する結果、結合ガラス相の連続部、す
なわち導電路が粗粒ガラス同士の溶着により分断されて
抵抗体の電気比抵抗が増大し、プラグが正常に作動しな
くなる。一方、40重量%を超えると結合ガラス相が不
足し、ブロック粒子間に隙間が形成されやすくなってプ
ラグの負荷寿命特性が低下する。
Next, as the conductive material powder, one containing at least either carbon black or graphite powder can be used. As the conductive material powder, one having a particle diameter smaller than that of fine glass can be used, and in the production of the resistor, fine glass particles are used in the form of a composite powder covered with particles of the conductive material powder. be able to. In this case, the compounding ratio of the composite powder in the resistor is preferably adjusted in the range of 10 to 40% by weight. When the content of the composite powder is less than 10% by weight, the absolute amount of the conductive material powder becomes insufficient, and as a result, the continuous portion of the bonded glass phase, that is, the conductive path is divided by the welding of the coarse-grained glasses to each other, and The electrical resistivity increases and the plug does not work properly. On the other hand, if it exceeds 40% by weight, the bound glass phase becomes insufficient, and a gap is apt to be formed between the block particles, so that the load life characteristic of the plug is deteriorated.

【0014】[0014]

【発明の実施の形態】以下、本発明のいくつかの実施の
形態を図面を用いて説明する。図1に示す本発明の一例
たるスパークプラグ100は、筒状の主体金具1、先端
部21が突出するようにその主体金具1に嵌め込まれた
絶縁体2、発火部31を突出させた状態で絶縁体2の内
側に設けられた中心電極3、及び主体金具1に一端が結
合され、発火部31(中心電極3)の側面と対向するよ
うに配置された接地電極4等を備えている。接地電極4
は、その先端面21が発火部31の側面とほぼ平行に対
向するように曲げて形成され、発火部31の外面との間
に火花ギャップgを形成している。一方、接地電極4の
基端側は、主体金具1に対して溶接等により固着・一体
化されている。また、主体金具1は炭素鋼等で形成さ
れ、図1に示すように、発火部31側の外周面には機関
への取付け用のねじ部12が形成されている。また、中
心電極3はNi合金等で構成されている。さらに、絶縁
体2はアルミナ等のセラミックス焼成体で構成されてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Some embodiments of the present invention will be described below with reference to the drawings. A spark plug 100 as an example of the present invention shown in FIG. 1 has a tubular metal shell 1, an insulator 2 fitted in the metal shell 1 so that a tip portion 21 projects, and an ignition part 31 in a projected state. The center electrode 3 provided inside the insulator 2 and the ground electrode 4 and the like, one end of which is coupled to the metal shell 1 and arranged to face the side surface of the ignition part 31 (center electrode 3), are provided. Ground electrode 4
Is formed by bending so that its front end face 21 faces the side surface of the ignition part 31 substantially in parallel, and a spark gap g is formed between the tip surface 21 and the outer surface of the ignition part 31. On the other hand, the base end side of the ground electrode 4 is fixed and integrated with the metal shell 1 by welding or the like. Further, the metal shell 1 is formed of carbon steel or the like, and as shown in FIG. 1, a screw portion 12 for attachment to an engine is formed on the outer peripheral surface of the ignition portion 31 side. The center electrode 3 is made of Ni alloy or the like. Furthermore, the insulator 2 is made of a ceramics sintered body such as alumina.

【0015】また、絶縁体2の軸方向には貫通孔2aが
形成されており、該貫通孔2a内にはその一方の端部側
に端子金具13が固定され、同じく他方の端部側には中
心電極3が固定されている。また、該貫通孔2a内にお
いて端子金具13と中心電極3との間には抵抗体15が
配置されている。この抵抗体15の両端部は、導電ガラ
ス層16及び17を介して端子金具13と中心電極3と
にそれぞれ電気的に接続されている。
A through hole 2a is formed in the insulator 2 in the axial direction, and a terminal fitting 13 is fixed to one end of the through hole 2a and the other end is also provided. Has the center electrode 3 fixed. A resistor 15 is arranged between the terminal fitting 13 and the center electrode 3 in the through hole 2a. Both ends of the resistor 15 are electrically connected to the terminal fitting 13 and the center electrode 3 via the conductive glass layers 16 and 17, respectively.

【0016】抵抗体15は、ガラス粉末と導電材料粉末
とを混合して、ホットプレス等により焼結した焼結体と
して構成され、そのガラス粉末は、粒径100μm以下
の微粒ガラスと、粒径100〜800μmの粗粒ガラス
とを含有し、それら微粒ガラスの重量Wfと粗粒ガラス
の重量Wcとの比Wf/Wcが2/98〜50/50の範
囲で設定される。そして、その粗粒ガラスの粒度分布
が、該粗粒ガラスの全量を100重量%とした場合に、
粒径範囲100〜248μmに属する粉末粒子の含有比
率が10〜60重量%、粒径範囲248〜352μmに
属する粉末粒子の含有比率が10〜60重量%、粒径範
囲352〜800μmに属する粉末粒子の含有比率が1
0〜50重量%とされている。ガラス粉末は、例えばB
23−SiO2系、BaO−B23系、SiO2−B23
−CaO−BaO系、及びSiO2−ZnO−B23
の各ガラス粉末のうちの1種以上を含有し、軟化温度が
300〜800℃の範囲にあるものが使用される。ま
た、導電性材料粉末は、例えばカーボンブラックで構成
される。抵抗体15の構造については、図2ですでに説
明した通りである。
The resistor 15 is formed as a sintered body obtained by mixing glass powder and conductive material powder and sintering by hot pressing or the like. The glass powder is composed of fine glass particles having a particle diameter of 100 μm or less and a particle diameter. 100 to 800 μm of coarse glass is contained, and the ratio Wf / Wc between the weight Wf of the fine glass and the weight Wc of the coarse glass is set in the range of 2/98 to 50/50. And, when the particle size distribution of the coarse glass is 100% by weight of the total amount of the coarse glass,
The content ratio of the powder particles belonging to the particle size range 100 to 248 μm is 10 to 60% by weight, the content ratio of the powder particles belonging to the particle size range 248 to 352 μm is 10 to 60% by weight, and the powder particles belonging to the particle size range 352 to 800 μm Content ratio is 1
It is set to 0 to 50% by weight. The glass powder is, for example, B
2 O 3 -SiO 2 system, BaO-B 2 O 3 based, SiO 2 -B 2 O 3
One containing at least one of each of —CaO—BaO based and SiO 2 —ZnO—B 2 O 3 based glass powders and having a softening temperature in the range of 300 to 800 ° C. is used. The conductive material powder is composed of, for example, carbon black. The structure of the resistor 15 is as already described in FIG.

【0017】[0017]

【実施例】ガラス粉末と導電材としてのカーボンブラッ
クとを所定量配合して湿式混合し、その後これを乾燥し
てして原料粉末を調整した。次いで、これを所定形状に
ホットプレス成形して抵抗体とし、これを用いて図1に
示すプラグを各種作成した。ガラス粉末は、微粒ガラス
粉末と粗粒ガラス粉末とを各種割合で混合したものを使
用した。このうち微粒ガラス粉末は、粒度100μm以
下のものを使用し、粗粒ガラス粉末は、表1に示すA、
B、C、Dの各粒度分布を有するものを使用した(図3
は、それら粒度分布をグラフ化したものである)。表3
に、各プラグの抵抗体における微粒ガラス粉末と粗粒ガ
ラス粉末との混合比率、及び採用した粗粒ガラス粉末の
粒度分布を示している(ただし、番号に*を付したもの
は、本発明の範囲外であることを示している)。また、
表2は使用したガラス粉末の組成と軟化点を示している
(〜)。このうち、表3の試料番号1〜10及び1
3〜16のプラグにおいては、微粒ガラス及び粗粒ガラ
スともにのガラスとした。また、11のプラグにおい
ては微粒ガラスをのガラス、粗粒ガラスをのガラス
とした。さらに、12のプラグにおいては、微粒ガラス
をのガラス、粗粒ガラスをのガラスとした。
EXAMPLE A glass powder and carbon black as a conductive material were blended in a predetermined amount and wet mixed, and then dried to prepare a raw material powder. Next, this was hot-press molded into a predetermined shape to form a resistor, and various plugs shown in FIG. 1 were prepared using this resistor. The glass powder used was a mixture of fine glass powder and coarse glass powder in various proportions. Among them, the fine glass powder has a particle size of 100 μm or less, and the coarse glass powder is A shown in Table 1,
Those having particle size distributions of B, C and D were used (Fig. 3
Is a graph of those particle size distributions). Table 3
Shows the mixing ratio of the fine glass powder and the coarse glass powder in the resistor of each plug, and the particle size distribution of the adopted coarse glass powder (however, those marked with * are those of the present invention. It is out of range). Also,
Table 2 shows the composition and softening point of the glass powder used (~). Of these, sample numbers 1 to 10 and 1 in Table 3
In the plugs 3 to 16, both fine-grain glass and coarse-grain glass were used. Further, in the 11 plug, fine glass was used as glass and coarse glass was used as glass. Further, in the 12 plugs, fine glass was used as glass and coarse glass was used as glass.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】以上の各プラグについて、下記の評価を行
った。 (1)充填性 各プラグの抵抗体を軸方向に切断し、その断面を走査電
子顕微鏡を用いて観察し、下記の4段階で判定した。 ◎:結合ガラス相に孔(隙間)が全く観察されない。 ○:結合ガラス相に孔がほとんど観察されない。 △:結合ガラス相に孔が少し観察される。 ×:結合ガラス相に多数の孔が観察される。
The following evaluations were made for each of the above plugs. (1) Fillability The resistor of each plug was cut in the axial direction, the cross section was observed using a scanning electron microscope, and the judgment was made according to the following four stages. ⊚: No holes (gaps) are observed in the bonded glass phase. ◯: Porosity is hardly observed in the bonded glass phase. Δ: A few holes are observed in the bonded glass phase. X: Many pores are observed in the bonded glass phase.

【0022】(2)抵抗値ばらつき 各プラグを50個ずつ作成し、それぞれ端子金具と主体
金具との間の抵抗値(すなわち、導通方向における抵抗
体の抵抗値)を測定し、その測定値の標準偏差をσとし
た場合の3σの値により、下記の4段階で判定した。 ◎:3σ<0.6(非常に抵抗値が揃っている)。 ○:0.6≦3σ<1.2(抵抗値が揃っている)。 △:1.2≦3σ<1.8(抵抗値がややばらついてい
る)。 ×:3σ≧1.8(抵抗値のばらつきが大きい)。
(2) Variation in resistance value Each of 50 plugs is prepared, the resistance value between the terminal metal fitting and the metal shell (that is, the resistance value of the resistor in the conduction direction) is measured, and the measured value Judgment was carried out in the following four stages according to the value of 3σ where the standard deviation is σ. ⊚: 3σ <0.6 (very uniform resistance values). Good: 0.6 ≦ 3σ <1.2 (resistance values are uniform). Δ: 1.2 ≦ 3σ <1.8 (resistance value is slightly varied). X: 3σ ≧ 1.8 (large variation in resistance value).

【0023】(3)負荷寿命 各プラグの負荷寿命試験を、日本工業規格B8031の
6.10に規定された方法により行い、試験前の抵抗値
に対する試験後の抵抗変化率ΔRにより、下記の4段階
で評価した。 ◎:ΔRが±15%以内。 ○:ΔRが±25%以内。 △:ΔRが±30%以内。 ×:ΔRが±30%を超過。
(3) Load life A load life test of each plug was conducted by the method specified in 6.10 of Japanese Industrial Standard B8031, and the following 4 was obtained according to the resistance change rate ΔR after the test with respect to the resistance value before the test. The grade was evaluated. ⊚: ΔR is within ± 15%. ◯: ΔR is within ± 25%. Δ: ΔR is within ± 30%. X: ΔR exceeds ± 30%.

【0024】以上の評価結果を表3に示す。すなわち、
本発明の条件を満たす抵抗体を使用したプラグについて
は、充填性、抵抗値ばらつき及び負荷寿命のいずれの評
価項目についても、良好な結果が得られていることがわ
かる。
Table 3 shows the above evaluation results. That is,
It can be seen that, with regard to the plug using the resistor satisfying the conditions of the present invention, good results are obtained with respect to all evaluation items such as filling property, resistance value variation and load life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のスパークプラグの一例を示す正面部分
断面図。
FIG. 1 is a front partial cross-sectional view showing an example of a spark plug of the present invention.

【図2】抵抗体の構造を示す模式図。FIG. 2 is a schematic diagram showing the structure of a resistor.

【図3】実施例で使用した粗粒ガラスの粒度分布を表す
グラフ。
FIG. 3 is a graph showing a particle size distribution of coarse glass used in Examples.

【符号の説明】[Explanation of symbols]

1 主体金具 2 絶縁体 2a 貫通孔 3 中心電極 4 接地電極 15 抵抗体 100 スパークプラグ 1 metal shell 2 insulator 2a through hole 3 center electrode 4 ground electrode 15 resistor 100 spark plug

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 絶縁体の軸方向に形成された貫通孔に対
し、その一方の端部側に端子金具が固定され、同じく他
方の端部側に中心電極が固定されるとともに、該貫通孔
内において前記端子金具と前記中心電極との間に抵抗体
が配置され、 その抵抗体は、ガラス粉末と導電材料粉末とを混合して
焼結した焼結体として構成され、 前記ガラス粉末は、粒径100μm以下の微粒ガラス
と、粒径100〜800μmの粗粒ガラスとを含有し、 それら微粒ガラスの重量Wfと粗粒ガラスの重量Wcとの
比Wf/Wcが2/98〜50/50の範囲で設定され、 さらに前記粗粒ガラスの粒度分布が、該粗粒ガラスの全
量を100重量%とした場合に、粒径範囲100〜24
8μmに属する粉末粒子の含有比率が10〜60重量
%、粒径範囲248〜352μmに属する粉末粒子の含
有比率が10〜60重量%、粒径範囲352〜800μ
mに属する粉末粒子の含有比率が10〜50重量%とさ
れたことを特徴とするスパークプラグ。
1. A terminal metal fitting is fixed to one end of the through hole formed in the axial direction of the insulator, and a center electrode is fixed to the other end of the through hole. A resistor is disposed between the terminal metal fitting and the center electrode, and the resistor is configured as a sintered body obtained by mixing and sintering glass powder and a conductive material powder, and the glass powder is It contains fine glass having a particle size of 100 μm or less and coarse glass having a particle size of 100 to 800 μm, and the ratio Wf / Wc of the weight Wf of the fine glass and the weight Wc of the coarse glass is 2/98 to 50/50. And the particle size distribution of the coarse glass is 100 to 24% when the total amount of the coarse glass is 100% by weight.
The content ratio of the powder particles belonging to 8 μm is 10 to 60% by weight, the content ratio of the powder particles belonging to particle size range 248 to 352 μm is 10 to 60% by weight, the particle size range 352 to 800 μm.
A spark plug characterized in that the content ratio of the powder particles belonging to m is 10 to 50% by weight.
【請求項2】 前記抵抗体は、前記微粒ガラスの少なく
とも一部が溶融後凝固することにより形成され、かつ前
記導電性材料粉末の粒子を分散させたガラス相(以下、
結合ガラス相という)が、前記粗粒ガラス粉末に由来す
るガラス粒子(以下、ブロック粒子という)を取り囲ん
だ構造を有し、 前記結合ガラス相の少なくと一部は、前記ブロック粒子
の介在により至る所で迂回させられつつ前記端子金具側
の端部側から前記中心電極側の端部に至る連続部を形成
してなり、この連続部が、前記導電性材料粉末の粒子同
士の電気的な接触に基づき、前記抵抗体の導電路を形成
している請求項1記載のスパークプラグ。
2. A glass phase (hereinafter, referred to as a resistor) formed by melting and solidifying at least a part of the fine glass particles and dispersing the particles of the conductive material powder.
The bonded glass phase) has a structure surrounding glass particles (hereinafter, referred to as block particles) derived from the coarse glass powder, and at least a part of the bonded glass phase is reached by the interposition of the block particles. While forming a detour, a continuous portion is formed from the end portion side on the terminal metal fitting side to the end portion on the center electrode side, and this continuous portion makes electrical contact between particles of the conductive material powder. The spark plug according to claim 1, wherein a conductive path of the resistor is formed based on the above.
【請求項3】 前記ガラス粉末は、B23−SiO
2系、BaO−B23系、SiO2−B23−CaO−B
aO系、及びSiO2−ZnO−B23系の各ガラス粉
末のうちの1種以上を含有するものである請求項1又は
2に記載のスパークプラグ。
3. The glass powder is B 2 O 3 —SiO 2.
2 system, BaO-B 2 O 3 based, SiO 2 -B 2 O 3 -CaO -B
The spark plug according to claim 1 or 2, containing at least one of aO-based and SiO 2 -ZnO-B 2 O 3 -based glass powders.
【請求項4】 前記ガラス粉末は、その軟化温度が30
0〜800℃のものが使用される請求項3記載のスパー
クプラグ。
4. The softening temperature of the glass powder is 30.
The spark plug according to claim 3, wherein a spark plug having a temperature of 0 to 800 ° C is used.
【請求項5】 前記ガラス粉末は、前記微粒ガラスの軟
化温度と、前記粗粒ガラスの軟化温度との差が100℃
以下のものが使用される請求項4記載のスパークプラ
グ。
5. The glass powder has a difference of 100 ° C. between the softening temperature of the fine glass and the softening temperature of the coarse glass.
The spark plug according to claim 4, wherein the following is used.
【請求項6】 前記導電性材料粉末は、カーボンブラッ
ク又はグラファイト粉末の少なくともいずれかを含有す
るものである請求項1ないし5のいずれかに記載のスパ
ークプラグ。
6. The spark plug according to claim 1, wherein the conductive material powder contains at least one of carbon black and graphite powder.
JP14356696A 1996-05-13 1996-05-13 Spark plug Pending JPH09306636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14356696A JPH09306636A (en) 1996-05-13 1996-05-13 Spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14356696A JPH09306636A (en) 1996-05-13 1996-05-13 Spark plug

Publications (1)

Publication Number Publication Date
JPH09306636A true JPH09306636A (en) 1997-11-28

Family

ID=15341740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14356696A Pending JPH09306636A (en) 1996-05-13 1996-05-13 Spark plug

Country Status (1)

Country Link
JP (1) JPH09306636A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1326215C (en) * 2004-08-17 2007-07-11 中国电子科技集团公司第五十五研究所 Glass passivating process of silicon semiconductor device
WO2010074115A1 (en) 2008-12-24 2010-07-01 日本特殊陶業株式会社 Spark plug for internal combustion engine
JP2011079734A (en) * 2009-09-09 2011-04-21 Ngk Spark Plug Co Ltd Ignition plug
JP2011084461A (en) * 2009-09-15 2011-04-28 Nippon Electric Glass Co Ltd Glass composition for forming resistor
JP5276742B1 (en) * 2012-08-09 2013-08-28 日本特殊陶業株式会社 Spark plug

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1326215C (en) * 2004-08-17 2007-07-11 中国电子科技集团公司第五十五研究所 Glass passivating process of silicon semiconductor device
WO2010074115A1 (en) 2008-12-24 2010-07-01 日本特殊陶業株式会社 Spark plug for internal combustion engine
US8492962B2 (en) 2008-12-24 2013-07-23 Ngk Spark Plug Co., Ltd. Spark plug for internal combustion engine
JP2011079734A (en) * 2009-09-09 2011-04-21 Ngk Spark Plug Co Ltd Ignition plug
JP2011084461A (en) * 2009-09-15 2011-04-28 Nippon Electric Glass Co Ltd Glass composition for forming resistor
JP5276742B1 (en) * 2012-08-09 2013-08-28 日本特殊陶業株式会社 Spark plug
WO2014024345A1 (en) * 2012-08-09 2014-02-13 日本特殊陶業株式会社 Spark plug
CN104508924A (en) * 2012-08-09 2015-04-08 日本特殊陶业株式会社 Spark plug
US9312664B2 (en) 2012-08-09 2016-04-12 Ngk Spark Plug Co., Ltd. Spark plug

Similar Documents

Publication Publication Date Title
US4427915A (en) Spark plug and the process for production thereof
JP3819586B2 (en) Spark plug with resistor, resistor composition for spark plug, and method of manufacturing spark plug with resistor
US7388323B2 (en) Spark plug
US6583537B1 (en) Spark plug with built-in resistor
JP4249161B2 (en) Spark plug with resistor
JP4693112B2 (en) Spark plug
KR19990008486A (en) Ceramic heater
US4601848A (en) Resistor compositions for producing a resistor in resistor-incorporated spark plugs
CN102648556A (en) Spark plug
KR20020019922A (en) Glass cermic material, method for producing the same and spark plug containing such a glass cremic material
JP2800279B2 (en) Spark plug
US2459282A (en) Resistor and spabk plug embodying
JP5276742B1 (en) Spark plug
JPH09306636A (en) Spark plug
JP2015216029A (en) Spark plug
JP2015225793A (en) Spark plug
EP1003351B1 (en) Heating resistor for ceramic heaters, ceramic heaters and method of manufacturing ceramic heaters
EP2996118B1 (en) Ptc thermistor member
JPS61135079A (en) Resistance-contained ignition plug
JP2014099431A (en) Composite ptc thermistor member
JP2018073778A (en) Resistor and spark plug including the same
JP6885815B2 (en) Resistor and spark plug with it
JPH07282959A (en) Heater element
JP7087741B2 (en) A method for manufacturing a resistor material, a sputtering target for forming a resistance thin film, a resistance thin film and a thin film resistor, and a method for manufacturing a sputtering target for forming a resistance thin film and a method for manufacturing a resistance thin film.
WO2008074319A2 (en) Ceramic electric heating element