JP2011084461A - Glass composition for forming resistor - Google Patents

Glass composition for forming resistor Download PDF

Info

Publication number
JP2011084461A
JP2011084461A JP2010200963A JP2010200963A JP2011084461A JP 2011084461 A JP2011084461 A JP 2011084461A JP 2010200963 A JP2010200963 A JP 2010200963A JP 2010200963 A JP2010200963 A JP 2010200963A JP 2011084461 A JP2011084461 A JP 2011084461A
Authority
JP
Japan
Prior art keywords
glass
resistor
forming
glass composition
spark plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010200963A
Other languages
Japanese (ja)
Other versions
JP5709085B2 (en
Inventor
Kunihiko Kano
邦彦 加納
Toshitaka Honda
稔貴 本田
Haruki Yoshida
治樹 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2010200963A priority Critical patent/JP5709085B2/en
Publication of JP2011084461A publication Critical patent/JP2011084461A/en
Application granted granted Critical
Publication of JP5709085B2 publication Critical patent/JP5709085B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the reliability and the productivity of a spark plug by creating a glass composition for forming a resister sufficiently suppressing generation of high frequency noise radio waves even if the diameter of the spark plug is reduced. <P>SOLUTION: The glass composition for forming a resister contains as a glass composition, by mass, 35-60% of SiO<SB>2</SB>, 25-55% of B<SB>2</SB>O<SB>3</SB>, 0-20% of Li<SB>2</SB>O+Na<SB>2</SB>O+K<SB>2</SB>O and 0.1-25% of ZnO. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、抵抗体形成用ガラス組成物に関し、特に点火プラグの抵抗体の形成に好適な抵抗体形成用ガラス組成物及びその抵抗体を有する点火プラグに関する。なお、点火プラグの抵抗体は、高周波雑音電波等の電磁波を吸収する電磁波吸収体として作用することができる。   The present invention relates to a glass composition for forming a resistor, and more particularly to a glass composition for forming a resistor suitable for forming a resistor for a spark plug and a spark plug having the resistor. Note that the resistor of the spark plug can act as an electromagnetic wave absorber that absorbs electromagnetic waves such as high-frequency noise radio waves.

自動車等のエンジンの点火プラグとして、抵抗体入り点火プラグが広く使用されている。図1に示すように、抵抗体入り点火プラグは、絶縁碍子(図示せず)の内孔中に端子電極1と接する導電ガラス体2aと、中心電極3と接する導電ガラス体2bとの間に抵抗体4を介在させたものである。点火プラグに抵抗体を導入すると、点火プラグの点火時に発生する高周波雑音電波の漏洩を抑制することができる。   2. Description of the Related Art Resistor-containing spark plugs are widely used as spark plugs for engines such as automobiles. As shown in FIG. 1, the spark plug with a resistor is provided between a conductive glass body 2 a in contact with the terminal electrode 1 and a conductive glass body 2 b in contact with the center electrode 3 in an inner hole of an insulator (not shown). The resistor 4 is interposed. If a resistor is introduced into the spark plug, leakage of high-frequency noise radio waves generated when the spark plug is ignited can be suppressed.

一般的に、抵抗体入り点火プラグは、次のようにして作製される。絶縁碍子の内孔の下端に中心電極3を挿入し、所定量の導電ガラス体材料を絶縁碍子の内孔に充填した後、導電ガラス体材料にプレス圧力を加え、導電ガラス体材料の表面を平坦にする。次に、導電ガラス体材料上に、所定量の抵抗体材料を充填した後、抵抗体材料にプレス圧力を加え、抵抗体材料の表面を平坦にする。その後、抵抗体材料上に導電ガラス体材料を所定量充填する。ここで、導電ガラス体材料および抵抗体材料は、絶縁碍子の内孔に充填しやすくするため、顆粒に加工されている。次いで、端子電極1を絶縁碍子の内孔の上端に挿入した後、約900℃で加熱しながら端子電極1に荷重をかける、いわゆるホットプレス工程により、導電ガラス体材料および抵抗体材料を焼結させて導電ガラス体2a、2bおよび抵抗体4を形成するとともに、導電ガラス体2a中に端子電極1の先端を圧入し、導電ガラス体2b中に中心電極3の先端を圧入する。最後に、接地電極を備えたハウジングに絶縁碍子を固定し、点火プラグとする。   Generally, a spark plug with a resistor is manufactured as follows. After inserting the center electrode 3 into the lower end of the inner hole of the insulator and filling the inner hole of the insulator with a predetermined amount of the conductive glass body material, press pressure is applied to the conductive glass body material to Make it flat. Next, after filling a predetermined amount of resistor material on the conductive glass body material, a pressing pressure is applied to the resistor material to flatten the surface of the resistor material. Thereafter, a predetermined amount of conductive glass body material is filled on the resistor material. Here, the conductive glass body material and the resistor material are processed into granules in order to easily fill the inner holes of the insulator. Next, after inserting the terminal electrode 1 into the upper end of the inner hole of the insulator, the conductive glass body material and the resistor material are sintered by a so-called hot pressing process in which a load is applied to the terminal electrode 1 while heating at about 900 ° C. Then, the conductive glass bodies 2a, 2b and the resistor 4 are formed, the tip of the terminal electrode 1 is press-fitted into the conductive glass body 2a, and the tip of the center electrode 3 is press-fitted into the conductive glass body 2b. Finally, an insulator is fixed to a housing provided with a ground electrode to form a spark plug.

一般的に、抵抗体材料は、粗粒ガラス粉末、細粒ガラス粉末、セラミック粉末、導電粉末等を含む複合粉末を顆粒化したものが使用される。この抵抗体材料を用いて作製された抵抗体は、粗粒ガラス粉末やセラミック粉末がその原型を留めるとともに、これらの粒子の間隙に、細粒ガラス粉末が溶融固化した結合ガラス相が存在した状態となる。また結合ガラス相中には導電粉末が分散しており、粗粒ガラス粉末は導電パスを曲折(迂回)させるブロック粒子として機能する(例えば特許文献1、2参照)。そして、導電パスを曲折させると、抵抗体の高周波雑音電波の吸収能が高まることが知られている。   In general, the resistor material is a granulated composite powder containing coarse glass powder, fine glass powder, ceramic powder, conductive powder, and the like. Resistors made using this resistor material have a coarse glass powder or ceramic powder that retains its original shape, and a bonded glass phase in which fine glass powder melts and solidifies in the gaps between these particles. It becomes. In addition, conductive powder is dispersed in the binder glass phase, and the coarse glass powder functions as block particles that bend (detour) the conductive path (see, for example, Patent Documents 1 and 2). It is known that when the conductive path is bent, the resistance of the resistor to absorb high-frequency noise radio waves increases.

特開平9−306636号公報JP 9-306636 A 特開2005−340171号公報JP 2005-340171 A 特開2007−122879号公報JP 2007-122879 A

近年、エンジンは小型化される傾向にあり、点火プラグも小型化、特に細経化される傾向にある。点火プラグが細径化されると、絶縁碍子の内孔径も縮小されるため、抵抗体の体積が必然的に減少し、結果として、抵抗体が高周波雑音電波を吸収し難くなる。なお、点火プラグの点火時には、高周波雑音電波が発生するが、この高周波雑音電波が多量に漏洩すれば、車載用のTV、ラジオ、無線等を妨害するおそれがある。   In recent years, engines tend to be miniaturized, and spark plugs also tend to be miniaturized, especially meridian. When the spark plug is reduced in diameter, the inner diameter of the insulator is also reduced, so that the volume of the resistor is inevitably reduced, and as a result, the resistor becomes difficult to absorb high-frequency noise radio waves. Note that, when the spark plug is ignited, high-frequency noise radio waves are generated. If a large amount of this high-frequency noise radio waves leaks, there is a risk that the vehicle-mounted TV, radio, radio, etc. will be disturbed.

このような事情に鑑み、特許文献3の明細書の段落[0011]〜[0013]には、「本発明のスパークプラグは、軸方向に延びる貫通孔を有し、該貫通孔が第1貫通孔及び該第1貫通孔よりも後端側に当該第1貫通孔よりも孔径が大きい第2貫通孔となる絶縁体と、前記絶縁体の第1貫通孔内に配置される中心電極と、前記絶縁体の第2貫通孔内に配置される端子金具と、を備えるスパークプラグであって、前記第2貫通孔内に、導電性セラミック焼結体で形成されると共に、前記中心電極と前記端子金具とを電気的に接続するセラミック焼結体抵抗器が配置されてなり、前記セラミック焼結体抵抗器の軸方向長さが前記第2貫通孔の軸方向長さの40%以上であることを特徴とする。本発明では、このような抵抗体として予め焼結されたセラミック焼結体抵抗器を絶縁体の第2貫通孔に挿入するものとすることで、従来のような製造上の長さの制約を受けず、セラミック焼結体抵抗器の長さを十分に長くすることができる。これにより、中心電極と端子電極との間の実効誘電率を小さくし、点火時に発生する容量放電電流を小さくし、雑音防止効果を大きくすることができる。そして、セラミック焼結体抵抗器の長さ(LR)を第2貫通孔の長さ(LH)の40%以上とする((LR/LH)×100≧40)ことで、中心電極と端子電極との間の実効誘電率を小さくし、点火時に発生する容量放電電流を小さくし、十分な雑音防止効果を得ることが可能となる。なお、セラミック焼結体抵抗器の長さ(LR)が第2貫通孔の長さ(LH)の40%未満であると、十分な効果を得られにくい。さらに、より好ましいセラミック焼結体抵抗器の長さ(LR)は、第2貫通孔の長さ(LH)の50%以上である((LR/LH)×100≧50)。」と記載されており、点火プラグの構造を最適化することにより、端子電極と中心電極間の実効誘電率を低下させて、高周波雑音電波の漏洩を抑制することが示されている。しかし、このような最適化を行ったとしても、細径化された点火プラグの場合、高周波雑音電波の漏洩を十分に抑制することができない。   In view of such circumstances, in paragraphs [0011] to [0013] of the specification of Patent Document 3, “the spark plug of the present invention has a through hole extending in the axial direction, and the through hole is the first through hole. An insulator serving as a second through hole having a hole diameter larger than that of the first through hole on the rear end side of the hole and the first through hole; and a center electrode disposed in the first through hole of the insulator; A spark plug comprising a terminal fitting disposed in the second through hole of the insulator, and formed of a conductive ceramic sintered body in the second through hole, and the center electrode and the A ceramic sintered body resistor that is electrically connected to the terminal fitting is disposed, and an axial length of the ceramic sintered body resistor is 40% or more of an axial length of the second through hole. In the present invention, it is preliminarily sintered as such a resistor. By inserting the ceramic sintered body resistor into the second through-hole of the insulator, the length of the ceramic sintered body resistor is sufficiently long without being restricted by the length of manufacturing as in the prior art. As a result, the effective dielectric constant between the center electrode and the terminal electrode can be reduced, the capacitive discharge current generated during ignition can be reduced, and the noise prevention effect can be increased. By setting the length (LR) of the combined resistor to 40% or more of the length (LH) of the second through hole ((LR / LH) × 100 ≧ 40), the distance between the center electrode and the terminal electrode is increased. It is possible to reduce the effective dielectric constant, reduce the capacity discharge current generated at the time of ignition, and obtain a sufficient noise prevention effect.The length (LR) of the ceramic sintered body resistor is the second through hole. When the length (LH) is less than 40%, sufficient effect is obtained. Furthermore, the more preferable length (LR) of the ceramic sintered body resistor is 50% or more of the length (LH) of the second through hole ((LR / LH) × 100 ≧ 50). It has been shown that by optimizing the structure of the spark plug, the effective dielectric constant between the terminal electrode and the center electrode is reduced to suppress the leakage of high-frequency noise radio waves. However, even if such optimization is performed, leakage of high-frequency noise radio waves cannot be sufficiently suppressed in the case of a spark plug with a reduced diameter.

また、点火プラグが細径化されると、抵抗体の機械的強度が低下、或いは端子電極の圧入時の摩擦抵抗が増大することから、端子電極を圧入し難くなり、抵抗体の抵抗値がばらつきやすくなる。加えて、ホットプレス温度の変動に対しても影響を受けやすくなり、更に抵抗体の抵抗値がばらつきやすくなると考えられる。なお、点火プラグの製造工程において、ホットプレス温度を厳密に規制することは困難であり、ホットプレス温度は、ある程度の変動幅で管理せざるを得ないのが実情である。   In addition, when the spark plug is reduced in diameter, the mechanical strength of the resistor decreases or the frictional resistance at the time of press-fitting the terminal electrode increases, so that it becomes difficult to press-fit the terminal electrode, and the resistance value of the resistor increases. It tends to vary. In addition, it is considered that it is easily affected by fluctuations in the hot press temperature, and the resistance values of the resistors are likely to vary. In the spark plug manufacturing process, it is difficult to strictly regulate the hot press temperature, and the hot press temperature must be managed with a certain fluctuation range.

そこで、本発明は、点火プラグが細経化されても、高周波雑音電波の発生を十分に抑制し得る抵抗体形成用ガラス組成物を創案することにより、点火プラグの信頼性および生産性を高めることを技術的課題とする。   Therefore, the present invention improves the reliability and productivity of a spark plug by creating a glass composition for forming a resistor that can sufficiently suppress the generation of high-frequency noise radio waves even when the spark plug is made more compact. This is a technical issue.

さらに、本発明は、高周波雑音電波の発生を十分に抑制し得る抵抗体形成材料により形成される抵抗体を有する点火プラグを提供することを課題とする。   Furthermore, an object of the present invention is to provide a spark plug having a resistor formed of a resistor forming material that can sufficiently suppress the generation of high-frequency noise radio waves.

本発明者は、鋭意努力の結果、ガラスの軟化特性を維持しながら、ガラスの誘電率を低下させること、具体的にはホウ珪酸ガラスにZnOを導入することにより、上記技術的課題を解決できることを見出し、本発明として、提案するものである。すなわち、本発明の抵抗体形成用ガラス組成物は、ガラス組成として、質量%で、SiO2 35〜60%、B23 25〜55%、Li2O+Na2O+K2O(Li2O、Na2O、K2Oの合量) 0〜20%、ZnO 0.1〜25%を含有することを特徴とする。 As a result of diligent efforts, the present inventor can solve the above technical problem by reducing the dielectric constant of glass while maintaining the softening properties of glass, specifically by introducing ZnO into borosilicate glass. Are proposed as the present invention. That is, the glass composition for forming a resistor of the present invention has, as a glass composition, mass%, SiO 2 35-60%, B 2 O 3 25-55%, Li 2 O + Na 2 O + K 2 O (Li 2 O, Total amount of Na 2 O and K 2 O) 0 to 20% and ZnO 0.1 to 25%.

本発明の抵抗体形成用ガラス組成物は、上記のようにガラス組成範囲を規制している。このようにすれば、ガラスの誘電率を低下できるため、点火プラグの点火時に高周波雑音電波の発生を抑制することができ、その結果、点火プラグの細径化を容易に図ることができる。また、このようにすれば、ガラスの屈伏点を不当に上昇させずに、ガラスの熱的安定性を高めつつ、ガラスの熱膨張係数を下げることができる。   The glass composition for resistor formation of the present invention regulates the glass composition range as described above. In this way, since the dielectric constant of the glass can be reduced, the generation of high-frequency noise radio waves during ignition of the spark plug can be suppressed, and as a result, the spark plug can be easily reduced in diameter. In this way, the thermal expansion coefficient of the glass can be lowered while increasing the thermal stability of the glass without unduly increasing the yield point of the glass.

第二に、本発明の抵抗体形成用ガラス組成物は、25℃、1MHzにおける誘電率が5.5以下であることに特徴付けられる。このようにすれば、点火プラグの点火時に高周波雑音電波の発生を抑制できるため、抵抗体の体積が少なくても、抵抗体が高周波雑音電波を十分に吸収することができる。このため、点火プラグを細径化しやすくなる。ここで、「25℃、1MHzにおける誘電率」は、50×50×3mmの板状ガラス(ガラス粉末を緻密に焼結させたもの)、或いは50×50×3mmの板状のガラスインゴットを測定試料として用い、光学研磨されたガラスの表裏面に30mmφの電極を貼り付け、電極間に電圧を印加して測定した値を指す。   Secondly, the glass composition for forming a resistor of the present invention is characterized in that the dielectric constant at 25 ° C. and 1 MHz is 5.5 or less. In this way, since the generation of high-frequency noise radio waves can be suppressed when the ignition plug is ignited, the resistor can sufficiently absorb high-frequency noise radio waves even if the volume of the resistor is small. For this reason, it becomes easy to reduce the diameter of the spark plug. Here, “dielectric constant at 25 ° C. and 1 MHz” is a measurement of a plate glass of 50 × 50 × 3 mm (a glass powder densely sintered) or a plate glass ingot of 50 × 50 × 3 mm. It is used as a sample, and refers to a value measured by attaching electrodes of 30 mmφ on the front and back surfaces of optically polished glass and applying a voltage between the electrodes.

本発明者は、ガラスの誘電率を低下させると、抵抗体の誘電率を低下できる点に着目し、抵抗体の誘電率を低下させるためには、上記のようにガラス組成範囲を規制すればよいことを見出した。これにより、中心電極―端子電極間の実行誘電率が小さくなるため、点火プラグの点火時に発生する容量放電電流を小さくすることができ、結果として、高周波雑音電波の発生を抑制することができる。   The present inventor pays attention to the fact that the dielectric constant of the resistor can be reduced by reducing the dielectric constant of the glass. In order to reduce the dielectric constant of the resistor, the glass composition range is regulated as described above. I found a good thing. Thereby, since the effective dielectric constant between the center electrode and the terminal electrode is reduced, the capacity discharge current generated at the time of ignition of the spark plug can be reduced, and as a result, generation of high frequency noise radio waves can be suppressed.

第三に、本発明の抵抗体形成用ガラス組成物は、25℃、1MHzにおける誘電正接が0.0008以上であることを特徴とする。このようにすれば、ガラスの高周波雑音電波の吸収能が高まるため、点火プラグを細径化しやすくなる。ここで、「25℃、1MHzにおける誘電正接」は、50×50×3mmの板状ガラス(ガラス粉末を緻密に焼結させたもの)、或いは50×50×3mmの板状のガラスインゴットを測定試料として用い、光学研磨されたガラスの表裏面に30mmφの電極を貼り付け、電極間に電圧を印加して測定した値を指す。   Thirdly, the glass composition for forming a resistor of the present invention is characterized in that a dielectric loss tangent at 25 ° C. and 1 MHz is 0.0008 or more. If it does in this way, since the absorption capability of the high frequency noise radio wave of glass will increase, it will become easy to make a spark plug thin. Here, “dielectric loss tangent at 25 ° C. and 1 MHz” is a measurement of a plate glass of 50 × 50 × 3 mm (a glass powder densely sintered) or a plate glass ingot of 50 × 50 × 3 mm. It is used as a sample, and refers to a value measured by attaching electrodes of 30 mmφ on the front and back surfaces of optically polished glass and applying a voltage between the electrodes.

本発明者は、詳細な調査により、ガラスの誘電正接を上昇させると、ガラスの高周波雑音電波の吸収能が高まることを見出した。なお、このメカニズムの詳細は明らかではなく、現在、鋭意調査中であるが、本発明者は、ガラスの誘電正接が大きいと、点火プラグの点火時に、抵抗体に含まれる粗粒ガラス粉末の界面において、高周波雑音電波のエネルギーが熱エネルギーに変換されやすく、高周波雑音電波が減衰するものと推定している。   As a result of detailed investigation, the present inventor has found that when the dielectric loss tangent of glass is increased, the ability of glass to absorb high-frequency noise waves increases. Although the details of this mechanism are not clear and are currently under scrutiny, the present inventor has found that when the dielectric loss tangent of the glass is large, the interface of the coarse glass powder contained in the resistor when the spark plug is ignited. , It is estimated that the energy of the high frequency noise radio wave is easily converted into thermal energy, and the high frequency noise radio wave is attenuated.

第四に、本発明の抵抗体形成用ガラス組成物は、ガラス転移点が430〜570℃であることに特徴付けられる。ここで、「ガラス転移点」とは、押棒式熱膨張係数測定(TMA)装置で測定した値を指す。   Fourth, the resistor-forming glass composition of the present invention is characterized by a glass transition point of 430 to 570 ° C. Here, the “glass transition point” refers to a value measured by a push rod type thermal expansion coefficient measurement (TMA) apparatus.

第五に、本発明の抵抗体形成用ガラス組成物は、屈伏点が500〜680℃であることに特徴付けられる。ここで、「屈伏点」とは、TMA装置で測定した値を指す。   Fifth, the glass composition for forming a resistor of the present invention is characterized in that a yield point is 500 to 680 ° C. Here, the “bend point” refers to a value measured with a TMA apparatus.

第六に、本発明の抵抗体形成用ガラス組成物は、熱膨張係数が40〜60×10-7/℃であることに特徴付けられる。ここで、「熱膨張係数」とは、TMA装置で測定した値を指し、30〜380℃の温度範囲で測定した平均値を指す。 Sixth, the glass composition for forming a resistor of the present invention is characterized by a thermal expansion coefficient of 40 to 60 × 10 −7 / ° C. Here, the “thermal expansion coefficient” refers to a value measured with a TMA apparatus, and refers to an average value measured in a temperature range of 30 to 380 ° C.

第七に、本発明の抵抗体形成用ガラス組成物は、実質的にPbOを含有しないことに特徴付けられる。このようにすれば、近年の環境的要請を満たすことができる。ここで、「実質的にPbOを含有しない」とは、ガラス組成中のPbOの含有量が1000ppm以下の場合を指す。   Seventh, the glass composition for forming a resistor according to the present invention is characterized by containing substantially no PbO. In this way, environmental demands in recent years can be satisfied. Here, “substantially does not contain PbO” refers to a case where the content of PbO in the glass composition is 1000 ppm or less.

第八に、本発明の抵抗体形成用ガラス組成物は、点火プラグに用いることに特徴付けられる。   Eighth, the resistor-forming glass composition of the present invention is characterized by being used for a spark plug.

第九に、本発明の抵抗体形成用ガラス粉末は、上記の抵抗体形成用ガラス組成物からなるガラス粉末を含有することに特徴付けられる。   Ninthly, the glass powder for forming a resistor of the present invention is characterized in that it contains a glass powder made of the above glass composition for forming a resistor.

第十に、本発明の抵抗体形成用ガラス粉末は、分相性を有することに特徴付けられる。ここで、「分相性を有する」とは、600〜900℃のいずれかの温度で10分間熱処理を加えた場合にガラスが分相する場合を指し、例えば、TEM(Transmission Electron Microscope)等で観察すれば、ガラスが分相しているか否かを判定することができる。なお、抵抗体形成用ガラス粉末が、熱処理を加える前に、既に分相している場合も「分相性を有する」と判断する。   Tenth, the resistor forming glass powder of the present invention is characterized by having phase separation. Here, “having phase separation” refers to a case where glass undergoes phase separation when heat treatment is performed at any temperature of 600 to 900 ° C. for 10 minutes, and is observed with, for example, TEM (Transmission Electron Microscope) or the like. If it does, it can be determined whether glass is phase-separated. In addition, when the glass powder for forming a resistor is already phase-divided before the heat treatment is performed, it is determined as “having phase separation”.

一般的に、分相とは、ガラス成分が、SiO2を主成分とする高粘性のシリカリッチ相と、その他の成分からなる低粘性ガラス相とに分離する状態を指し、分相したガラスは、通常、シリカリッチ相が骨格をなし、その間隙に低粘性ガラス相が存在する構造となる。粗粒ガラス粉末が分相性を有すると、ホットプレス工程でカーボンブラック、炭化チタン、窒化チタン、炭化珪素等の導電粉末をガラス中に溶解し難くなる。一方、細粒ガラス粉末は、ホットプレス工程で導電粉末をガラス中に溶解する。その結果、粗粒ガラス粉末の近傍に導電粉末からなる導電パスを形成することができる。なお、ホットプレス工程で粗粒ガラス粉末が導電粉末を取り込まない理由は、ガラスの分相性に起因していると考えられるが、詳細なメカニズムは不明であり、現在、鋭意調査中である。また、粗粒ガラス粉末が分相性を有すると、ホットプレス工程で低粘性ガラス相の軟化流動に起因して塑性変形するものの、シリカリッチ相の存在によってその形状を維持し、ブロック粒子として機能することができる。 In general, the phase separation refers to a state in which the glass component is separated into a high-viscosity silica-rich phase mainly composed of SiO 2 and a low-viscosity glass phase composed of other components. In general, the silica-rich phase has a skeleton, and a low-viscosity glass phase exists in the gap. When the coarse-grained glass powder has phase separation, it becomes difficult to dissolve conductive powder such as carbon black, titanium carbide, titanium nitride, and silicon carbide in the glass in the hot pressing step. On the other hand, the fine glass powder dissolves the conductive powder in the glass in a hot pressing process. As a result, a conductive path made of conductive powder can be formed in the vicinity of the coarse glass powder. The reason why the coarse glass powder does not take in the conductive powder in the hot pressing process is thought to be due to the phase separation of the glass, but the detailed mechanism is unknown and is currently under intensive investigation. In addition, when the coarse glass powder has phase separation, it is plastically deformed due to the softening flow of the low-viscosity glass phase in the hot pressing process, but its shape is maintained by the presence of the silica-rich phase and functions as block particles. be able to.

第十一に、本発明の抵抗体形成用ガラス粉末は、ガラス粉末の粒度が150〜450μmであることに特徴付けられる。   Eleventh, the resistor forming glass powder of the present invention is characterized in that the particle size of the glass powder is 150 to 450 μm.

第十二に、本発明の点火プラグは、軸線方向に延びる軸孔を有する絶縁体と、軸孔の一端側に設けられた中心電極と、軸孔の他端側に設けられた端子電極と、中心電極と端子電極との間に配置される抵抗体とを備える点火プラグであって、抵抗体を構成する抵抗体形成用ガラス組成物のガラス組成範囲を、上記のように規制している。このようにすれば、ガラスの誘電率を低下できるため、点火プラグの点火時に高周波雑音電波の発生を抑制することができ、その結果、点火プラグの細径化を容易に図ることができる。また、このようにすれば、ガラスの屈伏点を不当に上昇させずに、ガラスの熱的安定性を高めつつ、ガラスの熱膨張係数を下げることができる。また、「抵抗体」とは、抵抗値が通常100Ω以上のものをいう。   Twelfth, the spark plug of the present invention includes an insulator having an axial hole extending in the axial direction, a center electrode provided on one end side of the axial hole, and a terminal electrode provided on the other end side of the axial hole. A spark plug including a resistor disposed between the center electrode and the terminal electrode, the glass composition range of the resistor-forming glass composition constituting the resistor is regulated as described above. . In this way, since the dielectric constant of the glass can be reduced, the generation of high-frequency noise radio waves during ignition of the spark plug can be suppressed, and as a result, the spark plug can be easily reduced in diameter. In this way, the thermal expansion coefficient of the glass can be lowered while increasing the thermal stability of the glass without unduly increasing the yield point of the glass. Further, the “resistor” means a resistor whose resistance value is usually 100Ω or more.

第十三に、本発明の点火プラグが有する抵抗体を構成する抵抗体形成用ガラス組成物は、質量%でさらに、ZnO 7.1〜12.2%、Li2O+Na2O+K2O 2.6〜12%を含有することを特徴とする。ZnO及びLi2O+Na2O+K2Oを上記範囲に規制することにより、850℃でのホットプレス時の封着性能が良好となる、すなわち、ホットプレス時に端子が浮く不具合発生を抑制することが可能となる。ただし、Li2O+Na2O+K2Oが19%以上においては、ZnO量に依存することなく封着性能は良好である。 Thirteenth, the resistor forming a glass composition constituting the resistor spark plug has the present invention, further by mass%, ZnO 7.1~12.2%, Li 2 O + Na 2 O + K 2 O 2. It contains 6 to 12%. By restricting ZnO and Li 2 O + Na 2 O + K 2 O to the above range, the sealing performance at the time of hot pressing at 850 ° C. is improved, that is, it is possible to suppress the occurrence of a problem that the terminal floats at the time of hot pressing. It becomes. However, when Li 2 O + Na 2 O + K 2 O is 19% or more, the sealing performance is good without depending on the amount of ZnO.

第十四に、本発明の点火プラグが有する抵抗体を構成する抵抗体形成用ガラス組成物は、25℃、1MHzにおける誘電率が5.5以下であることに特徴付けられる。このようにすれば、点火プラグの点火時に高周波雑音電波の発生を抑制できるため、抵抗体の体積が少なくても、抵抗体が高周波雑音電波を十分に吸収することができる。このため、点火プラグを細径化しやすくなる。ここで、「25℃、1MHzにおける誘電率」は、50×50×3mmの板状ガラス(ガラス粉末を緻密に焼結させたもの)、或いは50×50×3mmの板状のガラスインゴットを測定試料として用い、光学研磨されたガラスの表裏面に30mmφの電極を貼り付け、電極間に電圧を印加して測定した値を指す。   14thly, the glass composition for resistor formation which comprises the resistor which the spark plug of this invention has is characterized by the dielectric constant in 25 degreeC and 1 MHz being 5.5 or less. In this way, since the generation of high-frequency noise radio waves can be suppressed when the ignition plug is ignited, the resistor can sufficiently absorb high-frequency noise radio waves even if the volume of the resistor is small. For this reason, it becomes easy to reduce the diameter of the spark plug. Here, “dielectric constant at 25 ° C. and 1 MHz” is a measurement of a plate glass of 50 × 50 × 3 mm (a glass powder densely sintered) or a plate glass ingot of 50 × 50 × 3 mm. It is used as a sample, and refers to a value measured by attaching electrodes of 30 mmφ on the front and back surfaces of optically polished glass and applying a voltage between the electrodes.

本発明者は、ガラスの誘電率を低下させると、抵抗体の誘電率を低下できる点に着目し、抵抗体の誘電率を低下させるためには、上記のようにガラス組成範囲を規制すればよいことを見出した。これにより、中心電極―端子電極間の実行誘電率が小さくなるため、点火プラグの点火時に発生する容量放電電流を小さくすることができ、結果として、高周波雑音電波の発生を抑制することができる。   The present inventor pays attention to the fact that the dielectric constant of the resistor can be reduced by reducing the dielectric constant of the glass. In order to reduce the dielectric constant of the resistor, the glass composition range is regulated as described above. I found a good thing. Thereby, since the effective dielectric constant between the center electrode and the terminal electrode is reduced, the capacity discharge current generated at the time of ignition of the spark plug can be reduced, and as a result, generation of high frequency noise radio waves can be suppressed.

第十五に、本発明の点火プラグが有する抵抗体を構成する抵抗体形成用ガラス組成物は、25℃、1MHzにおける誘電正接が0.0008以上であることを特徴とする。このようにすれば、ガラスの高周波雑音電波の吸収能が高まるため、点火プラグを細径化しやすくなる。ここで、「25℃、1MHzにおける誘電正接」は、50×50×3mmの板状ガラス(ガラス粉末を緻密に焼結させたもの)、或いは50×50×3mmの板状のガラスインゴットを測定試料として用い、光学研磨されたガラスの表裏面に30mmφの電極を貼り付け、電極間に電圧を印加して測定した値を指す。   15thly, the glass composition for resistor formation which comprises the resistor which the spark plug of this invention has is characterized by the dielectric loss tangent in 25 degreeC and 1 MHz being 0.0008 or more. If it does in this way, since the absorption capability of the high frequency noise radio wave of glass will increase, it will become easy to make a spark plug thin. Here, “dielectric loss tangent at 25 ° C. and 1 MHz” is a measurement of a plate glass of 50 × 50 × 3 mm (a glass powder densely sintered) or a plate glass ingot of 50 × 50 × 3 mm. It is used as a sample, and refers to a value measured by attaching electrodes of 30 mmφ on the front and back surfaces of optically polished glass and applying a voltage between the electrodes.

本発明者は、詳細な調査により、ガラスの誘電正接を上昇させると、ガラスの高周波雑音電波の吸収能が高まることを見出した。なお、このメカニズムの詳細は明らかではなく、現在、鋭意調査中であるが、本発明者は、ガラスの誘電正接が大きいと、点火プラグの点火時に、抵抗体に含まれる粗粒ガラス粉末の界面において、高周波雑音電波のエネルギーが熱エネルギーに変換されやすく、高周波雑音電波が減衰するものと推定している。   As a result of detailed investigation, the present inventor has found that when the dielectric loss tangent of glass is increased, the ability of glass to absorb high-frequency noise waves increases. Although the details of this mechanism are not clear and are currently under scrutiny, the present inventor has found that when the dielectric loss tangent of the glass is large, the interface of the coarse glass powder contained in the resistor when the spark plug is ignited. , It is estimated that the energy of the high frequency noise radio wave is easily converted into thermal energy, and the high frequency noise radio wave is attenuated.

第十六に、本発明の点火プラグが有する抵抗体を構成する抵抗体形成用ガラス組成物は、ガラス転移点が430〜570℃であることに特徴付けられる。ここで、「ガラス転移点」とは、押棒式熱膨張係数測定(TMA)装置で測定した値を指す。   16thly, the glass composition for resistor formation which comprises the resistor which the ignition plug of this invention has is characterized by a glass transition point being 430-570 degreeC. Here, the “glass transition point” refers to a value measured by a push rod type thermal expansion coefficient measurement (TMA) apparatus.

第十七に、本発明の点火プラグが有する抵抗体を構成する抵抗体形成用ガラス組成物は、屈伏点が500〜680℃であることに特徴付けられる。ここで、「屈伏点」とは、TMA装置で測定した値を指す。   Seventeenth, the glass composition for forming a resistor constituting the resistor included in the spark plug of the present invention is characterized in that the yield point is 500 to 680 ° C. Here, the “bend point” refers to a value measured with a TMA apparatus.

第十八に、本発明の点火プラグが有する抵抗体を構成する抵抗体形成用ガラス組成物は、熱膨張係数が40〜60×10-7/℃であることに特徴付けられる。ここで、「熱膨張係数」とは、TMA装置で測定した値を指し、30〜380℃の温度範囲で測定した平均値を指す。 Eighteenth, the glass composition for forming a resistor constituting the resistor included in the spark plug of the present invention is characterized by having a thermal expansion coefficient of 40 to 60 × 10 −7 / ° C. Here, the “thermal expansion coefficient” refers to a value measured with a TMA apparatus, and refers to an average value measured in a temperature range of 30 to 380 ° C.

第十九に、本発明の点火プラグが有する抵抗体を構成する抵抗体形成用ガラス組成物は、実質的にPbOを含有しないことに特徴付けられる。このようにすれば、近年の環境的要請を満たすことができる。ここで、「実質的にPbOを含有しない」とは、ガラス組成中のPbOの含有量が1000ppm以下の場合を指す。   Nineteenth, the glass composition for forming a resistor constituting the resistor included in the spark plug of the present invention is characterized by containing substantially no PbO. In this way, environmental demands in recent years can be satisfied. Here, “substantially does not contain PbO” refers to a case where the content of PbO in the glass composition is 1000 ppm or less.

抵抗体入り点火プラグの要部を示す説明図である。It is explanatory drawing which shows the principal part of a spark plug with a resistor.

本発明の抵抗体形成用ガラス組成物において、ガラス組成範囲を上記のように限定した理由を下記に示す。   The reason why the glass composition range is limited as described above in the resistor-forming glass composition of the present invention will be described below.

SiO2は、ガラスの骨格を形成する成分であり、ガラスを熱的に安定化させるとともに、ガラスの熱膨張係数を下げる成分であり、その含有量は35〜60%、好ましくは40〜58%、より好ましくは42〜56%である。SiO2の含有量が35%より少ないと、ガラスが熱的に不安定になり、ガラスを安定生産し難くなることに加えて、ガラスの熱膨張係数が上昇し過ぎて、抵抗体と導電ガラス体または絶縁碍子の界面で剥離またはクラックが発生しやすくなる。また、SiO2の含有量が35%より少ないと、ホットプレス工程で粗粒ガラス粉末が導電粉末を溶解しやすくなる。一方、SiO2の含有量が65%より多いと、ガラスの屈伏点が不当に上昇し、ホットプレス工程でガラスが変形し難くなり、結果として、端子浮き等の不具合が発生しやすくなる。 SiO 2 is a component that forms a skeleton of the glass, is a component that thermally stabilizes the glass and lowers the thermal expansion coefficient of the glass, and its content is 35 to 60%, preferably 40 to 58%. More preferably, it is 42 to 56%. If the content of SiO 2 is less than 35%, the glass becomes thermally unstable and it becomes difficult to stably produce the glass. In addition, the coefficient of thermal expansion of the glass increases excessively, and the resistor and the conductive glass. Peeling or cracking is likely to occur at the interface of the body or insulator. On the other hand, when the content of SiO 2 is less than 35%, the coarse glass powder easily dissolves the conductive powder in the hot pressing step. On the other hand, if the content of SiO 2 is more than 65%, the yield point of the glass is unduly raised, and the glass is difficult to deform in the hot pressing process, and as a result, problems such as terminal floating are likely to occur.

23は、ガラスの骨格を形成する成分であり、ガラスを熱的に安定化させるとともに、ガラスの屈伏点を下げる成分であり、更にはガラスを分相させるための成分であり、その含有量は25〜55%、好ましくは30〜50%、より好ましくは33〜46%である。B23の含有量が25%より少ないと、ガラスが熱的に不安定になり、ガラスを安定生産し難くなることに加えて、ガラスの屈伏点が不当に上昇し、ホットプレス工程でガラスが変形し難くなり、結果として、端子浮き等の不具合が発生しやすくなる。一方、B23の含有量が55%より多いと、ガラスの熱膨張係数が上昇し過ぎて、抵抗体と導電ガラス体または絶縁碍子の界面で剥離またはクラックが発生しやすくなることに加えて、ガラスの分相性が低下するため、ホットプレス工程で粗粒ガラス粉末が導電粉末を溶解しやすくなる。 B 2 O 3 is a component that forms a skeleton of the glass, is a component that thermally stabilizes the glass and lowers the yield point of the glass, and further is a component that causes phase separation of the glass. The content is 25 to 55%, preferably 30 to 50%, more preferably 33 to 46%. If the content of B 2 O 3 is less than 25%, the glass becomes thermally unstable, and it becomes difficult to stably produce the glass. In addition, the yield point of the glass is unreasonably raised, Glass becomes difficult to be deformed, and as a result, problems such as terminal floating are likely to occur. On the other hand, if the content of B 2 O 3 is more than 55%, the thermal expansion coefficient of the glass is excessively increased, and peeling or cracking is likely to occur at the interface between the resistor and the conductive glass body or the insulator. In addition, since the phase separation property of the glass decreases, the coarse glass powder easily dissolves the conductive powder in the hot pressing step.

Li2O+Na2O+K2Oは、ガラスの屈伏点を低下させるとともに、ガラスの分相を促進させるための成分であり、その含有量は0〜20%、好ましくは0.1〜15%、より好ましくは1〜10%、更に好ましくは2〜8%である。Li2O+Na2O+K2Oの含有量が20%より多いと、ガラスの熱膨張係数が上昇し過ぎて、抵抗体と導電ガラス体または絶縁碍子の界面で剥離またはクラックが発生しやすくなることに加えて、ホットプレス工程で粗粒ガラス粉末が導電粉末を溶解しやすくなる。 Li 2 O + Na 2 O + K 2 O is a component for lowering the yield point of glass and promoting phase separation of glass, and its content is 0 to 20%, preferably 0.1 to 15%. Preferably it is 1 to 10%, more preferably 2 to 8%. If the content of Li 2 O + Na 2 O + K 2 O is more than 20%, the coefficient of thermal expansion of the glass is excessively increased, and peeling or cracking is likely to occur at the interface between the resistor and the conductive glass body or the insulator. In addition, the coarse glass powder easily dissolves the conductive powder in the hot pressing process.

Li2Oは、ガラスの屈伏点を低下させるとともに、ガラスの分相を顕著に促進させるための成分であり、その含有量は0〜20%、0.1〜10%、1〜7%、特に2〜5%が好ましい。Li2Oの含有量が20%より多いと、ガラスの熱膨張係数が上昇し過ぎて、抵抗体と導電ガラス体または絶縁碍子の界面で剥離またはクラックが発生しやすくなる。なお、ガラスの分相を促進させる観点から、ガラス組成中にLi2Oを必須成分として1%以上、好ましくは2%以上含有させることが好ましい。 Li 2 O is a component for reducing the yield point of the glass and remarkably promoting the phase separation of the glass, and its content is 0 to 20%, 0.1 to 10%, 1 to 7%, 2 to 5% is particularly preferable. When the content of Li 2 O is more than 20%, the thermal expansion coefficient of the glass is excessively increased, and peeling or cracking is likely to occur at the interface between the resistor and the conductive glass body or the insulator. In addition, from the viewpoint of promoting the phase separation of the glass, it is preferable to contain Li 2 O as an essential component in the glass composition at 1% or more, preferably 2% or more.

Na2Oは、ガラスの屈伏点を低下させるとともに、ガラスの分相を促進させるための成分であり、その含有量は0〜20%、0〜10%、特に0〜2%が好ましい。Na2Oの含有量が20%より多いと、ガラスの熱膨張係数が上昇し過ぎて、抵抗体と導電ガラス体または絶縁碍子の界面で剥離またはクラックが発生しやすくなる。 Na 2 O is a component for reducing the yield point of the glass and promoting phase separation of the glass, and its content is preferably 0 to 20%, 0 to 10%, particularly preferably 0 to 2%. When the content of Na 2 O is more than 20%, the thermal expansion coefficient of the glass is excessively increased, and peeling or cracking is likely to occur at the interface between the resistor and the conductive glass body or the insulator.

2Oは、ガラスの屈伏点を低下させるとともに、ガラスの分相を促進させるための成分であり、その含有量は0〜20%、0〜15%、0〜5%、特に0〜2%が好ましい。K2Oの含有量が20%より多いと、ガラスの熱膨張係数が上昇し過ぎて、抵抗体と導電ガラス体または絶縁碍子の界面で剥離またはクラックが発生しやすくなる。 K 2 O is a component for reducing the yield point of the glass and promoting the phase separation of the glass, and its content is 0 to 20%, 0 to 15%, 0 to 5%, particularly 0 to 2. % Is preferred. When the content of K 2 O is more than 20%, the thermal expansion coefficient of the glass is excessively increased, and peeling or cracking is likely to occur at the interface between the resistor and the conductive glass body or the insulator.

ZnOは、ガラスの誘電率を顕著に低下させるとともに、ガラスの分相を顕著に促進させるための成分であり、またガラスの熱膨張係数を低下させるための成分であり、その含有量は0.1〜25%、好ましくは1〜15%、より好ましくは3〜12.5%、更に好ましくは5〜11%である。ZnOの含有量が0.1%より少ないと、ガラスが高周波雑音電波の発生を防止し難くなり、点火プラグを細径化することが困難になる。また、ZnOの含有量が0.1%より少ないと、ガラスの分相性が低下し、粗粒ガラス粉末がブロック粒子として機能せず、結果として、抵抗体の高周波雑音電波の吸収能が低下しやすくなる。一方、ZnOの含有量が25%より多くても、ガラスの分相性が低下し、粗粒ガラス粉末がブロック粒子として機能せず、結果として、抵抗体の高周波雑音電波の吸収能が低下しやすくなる。   ZnO is a component for remarkably reducing the dielectric constant of the glass and remarkably promoting the phase separation of the glass, and is a component for reducing the thermal expansion coefficient of the glass. It is 1 to 25%, preferably 1 to 15%, more preferably 3 to 12.5%, still more preferably 5 to 11%. When the content of ZnO is less than 0.1%, it becomes difficult for the glass to prevent generation of high-frequency noise radio waves, and it is difficult to reduce the diameter of the spark plug. In addition, if the ZnO content is less than 0.1%, the phase separation of the glass decreases, and the coarse glass powder does not function as block particles, resulting in a decrease in the high frequency noise radio wave absorption capability of the resistor. It becomes easy. On the other hand, even if the ZnO content is more than 25%, the phase separation of the glass is lowered, and the coarse glass powder does not function as block particles. As a result, the high frequency noise radio wave absorption ability of the resistor tends to be lowered. Become.

上記成分以外にも、例えば、以下の成分をガラス組成中に添加することができる。   In addition to the above components, for example, the following components can be added to the glass composition.

Al23は、ガラスの耐水性を高めるとともに、ガラスの熱膨張係数を下げる成分であり、その含有量は0〜10%、特に0〜5%が好ましい。Al23の含有量が10%より多いと、ガラスの屈伏点が不当に上昇し、ホットプレス工程でガラスが変形し難くなり、結果として、端子浮き等の不具合が発生しやすくなる。 Al 2 O 3 is a component that increases the water resistance of the glass and lowers the thermal expansion coefficient of the glass, and its content is preferably 0 to 10%, particularly preferably 0 to 5%. When the content of Al 2 O 3 is more than 10%, the yield point of the glass is unreasonably raised, and the glass is difficult to be deformed in the hot pressing process, and as a result, problems such as terminal floating tend to occur.

アルカリ土類金属酸化物(MgO、CaO、SrO、BaO)は、ガラスの分相を促進させるための成分であると同時に、ガラスの誘電率に影響を与える成分である。イオン半径が小さい程、ガラスが分相しやすくなり、具体的にはBaO、SrO、CaO、MgOの順でイオン半径が小さくなるに従い、ガラスの分相傾向が大きくなる。ガラスの分相傾向が大きくなると、熱処理温度の小さな変化に対しても、分相状態が大きく変動し、その影響により、ホットプレス温度が変動すると、点火プラグの抵抗値がばらつく不具合が発生しやすくなる。一方、ガラスの分相傾向が小さくなると、粗粒ガラス粉末がブロック粒子として機能し難くなる。また、分子量が小さい程、ガラスの誘電率が低下し、具体的にはBaO、SrO、CaO、MgOの順で分子量が小さくなるに従い、ガラスの誘電率が低下する。さらに、BaO、SrO、CaO、MgOの順で分子量が小さくなるに従い、ガラスの屈伏点が上昇する。以上から明らかなように、ガラスの誘電率、分相性、屈伏点等の特性を総合的に勘案して、アルカリ土類金属酸化物を適宜選択して添加することが好ましく、その含有量は0〜25%、特に1〜15%が好ましい。   Alkaline earth metal oxides (MgO, CaO, SrO, BaO) are components for promoting the phase separation of glass and at the same time, components that affect the dielectric constant of glass. The smaller the ionic radius, the easier the phase separation of the glass. Specifically, as the ionic radius decreases in the order of BaO, SrO, CaO, MgO, the phase separation tendency of the glass increases. When the phase separation tendency of the glass increases, the phase separation state fluctuates greatly even with a small change in the heat treatment temperature, and if the hot press temperature fluctuates due to the influence, the spark plug resistance value tends to vary. Become. On the other hand, when the phase separation tendency of glass becomes small, it becomes difficult for the coarse glass powder to function as block particles. Further, the smaller the molecular weight, the lower the dielectric constant of the glass. Specifically, as the molecular weight decreases in the order of BaO, SrO, CaO, and MgO, the dielectric constant of the glass decreases. Furthermore, as the molecular weight decreases in the order of BaO, SrO, CaO, and MgO, the yield point of the glass increases. As is apparent from the above, it is preferable to add an alkaline earth metal oxide as appropriate in consideration of the overall characteristics of glass such as dielectric constant, phase separation, yield point, etc., and its content is 0. -25%, especially 1-15% is preferred.

MgOは、ガラスの誘電率を低下させる成分であり、またガラスの分相を促進させるための成分であり、その含有量は0〜20%、0〜10%、特に0〜5%が好ましい。MgOの含有量が20%より多いと、ガラスの熱的安定性が低下しやすくなる。   MgO is a component that lowers the dielectric constant of the glass and is a component for promoting the phase separation of the glass, and its content is preferably 0 to 20%, 0 to 10%, particularly preferably 0 to 5%. If the content of MgO is more than 20%, the thermal stability of the glass tends to decrease.

CaOは、ガラスの誘電率を低下させる成分であり、その含有量は0〜20%、0〜10%、特に0〜5%が好ましい。CaOの含有量が20%より多いと、ガラスの熱的安定性が低下しやすくなる。   CaO is a component that lowers the dielectric constant of glass, and its content is preferably 0 to 20%, 0 to 10%, particularly preferably 0 to 5%. When there is more content of CaO than 20%, the thermal stability of glass will fall easily.

SrOは、ガラスの誘電率を低下させる成分であるとともに、ガラスの屈伏点を低下させる成分である。また、SrOは、ホットプレス温度が変動すると、点火プラグの抵抗値がばらつく不具合を防止する成分であり、その含有量は0〜25%、0〜20%、0〜15%、特に0〜8%が好ましい。SrOの含有量が25%より多いと、ガラスの熱膨張係数が上昇し過ぎて、抵抗体と導電ガラス体または絶縁碍子の界面で剥離またはクラックが発生しやすくなる。   SrO is a component that lowers the dielectric constant of glass and a component that lowers the yield point of glass. SrO is a component that prevents a problem that the resistance value of the spark plug varies when the hot press temperature fluctuates, and the content thereof is 0 to 25%, 0 to 20%, 0 to 15%, particularly 0 to 8%. % Is preferred. When the content of SrO is more than 25%, the thermal expansion coefficient of the glass is excessively increased, and peeling or cracking is likely to occur at the interface between the resistor and the conductive glass body or the insulator.

BaOは、ガラスの屈伏点を低下させる成分であるとともに、ホットプレス温度が変動すると、点火プラグの抵抗値がばらつく不具合を防止する成分であり、その含有量は0〜25%、0〜20%、特に0〜15%が好ましい。BaOの含有量が多くなると、ガラスの誘電率が上昇し、ガラスが高周波雑音電波の発生を防止し難くなる。また、BaOの含有量が多くなると、ガラスの熱膨張係数が上昇し過ぎて、抵抗体と導電ガラス体または絶縁碍子の界面で剥離またはクラックが発生しやすくなる。なお、ガラスの誘電率を確実に低下させる観点から、ガラス組成として、BaOの含有量は15%以下、望ましくは10%以下、より望ましくは実質的に含有しないことが好ましい。ここで、「実質的にBaOを含有しない」とは、ガラス組成中のBaOの含有量が3000ppm以下の場合を指す。   BaO is a component that lowers the yield point of the glass and also prevents a variation in the resistance value of the spark plug when the hot press temperature fluctuates, and its content is 0 to 25%, 0 to 20%. In particular, 0 to 15% is preferable. When the content of BaO increases, the dielectric constant of the glass increases and it becomes difficult for the glass to prevent the generation of high-frequency noise radio waves. Moreover, when the content of BaO increases, the thermal expansion coefficient of the glass increases excessively, and peeling or cracking is likely to occur at the interface between the resistor and the conductive glass body or the insulator. From the viewpoint of reliably reducing the dielectric constant of the glass, it is preferable that the content of BaO is 15% or less, desirably 10% or less, and more desirably substantially not contained as the glass composition. Here, “substantially does not contain BaO” refers to a case where the content of BaO in the glass composition is 3000 ppm or less.

更に、種々の成分を10%までガラス組成中に添加することができる。例えば、TiO2、ZrO2、Bi23、Cs2O、La23、Gd23、V25、WO3、Sb23、SnO2、Nb25、Y23、CeO2、P25等を10%まで添加することができる。なお、本発明の抵抗体形成用ガラス組成物は、PbOの含有を完全に排除するものではないが、既述の通り、環境的観点から実質的にPbOを含有しないことが好ましい。 Furthermore, up to 10% of various components can be added into the glass composition. For example, TiO 2, ZrO 2, Bi 2 O 3, Cs 2 O, La 2 O 3, Gd 2 O 3, V 2 O 5, WO 3, Sb 2 O 3, SnO 2, Nb 2 O 5, Y 2 O 3 , CeO 2 , P 2 O 5 and the like can be added up to 10%. In addition, although the glass composition for resistor formation of this invention does not exclude inclusion of PbO completely, it is preferable not to contain PbO substantially from an environmental viewpoint as stated above.

本発明の抵抗体形成用ガラス組成物において、25℃、1MHzにおける誘電率は5.5以下、5.3以下、5.0以下、特に4.8以下が好ましい。25℃、1MHzにおける誘電率が5.5より大きいと、ガラスが高周波雑音電波の発生を防止し難くなり、点火プラグを細径化した場合、抵抗体が高周波雑音電波を十分に吸収し難くなり、車載用のTV、ラジオ、無線等を妨害するおそれがある。   In the glass composition for forming a resistor of the present invention, the dielectric constant at 25 ° C. and 1 MHz is preferably 5.5 or less, 5.3 or less, 5.0 or less, particularly preferably 4.8 or less. If the dielectric constant at 25 ° C. and 1 MHz is greater than 5.5, it will be difficult for the glass to prevent the generation of high frequency noise radio waves, and if the spark plug is made thinner, the resistor will not be able to absorb the high frequency noise radio waves sufficiently. There is a risk of interference with in-vehicle TV, radio, radio, and the like.

本発明の抵抗体形成用ガラス組成物において、25℃、1MHzにおける誘電正接は0.0008以上、0.0010以上、0.0013以上、特に0.0018以上が好ましい。25℃、1MHzにおける誘電正接が0.0008より小さいと、ガラスの高周波雑音電波の吸収能を高め難くなり、点火プラグを細径化した場合、高周波雑音電波を十分に吸収し難くなり、車載用のTV、ラジオ、無線等を妨害するおそれがある。   In the glass composition for forming a resistor of the present invention, the dielectric loss tangent at 25 ° C. and 1 MHz is preferably 0.0008 or more, 0.0010 or more, 0.0013 or more, particularly preferably 0.0018 or more. If the dielectric loss tangent at 25 ° C. and 1 MHz is less than 0.0008, it will be difficult to increase the high frequency noise radio wave absorption capacity of the glass, and if the spark plug is made thinner, it will be difficult to absorb high frequency noise radio waves. May interfere with TV, radio, radio, etc.

本発明の抵抗体形成用ガラス組成物において、密度は2.55g/cm3未満、2.50g/cm3以下、2.45g/cm3以下、2.40g/cm3以下、特に2.35g/cm3以下が好ましい。密度が小さい程、ガラスを軽量化することができ、結果として、点火プラグを軽量化することができる。 In the resistor forming glass compositions of the present invention, the density is less than 2.55g / cm 3, 2.50g / cm 3 or less, 2.45 g / cm 3 or less, 2.40 g / cm 3 or less, particularly 2.35g / Cm 3 or less is preferable. The smaller the density, the lighter the glass and, as a result, the lighter the spark plug.

本発明の抵抗体形成用ガラス組成物において、ガラス転移点は430〜570℃が好ましく、450〜550℃がより好ましく、460〜510℃が更に好ましい。ガラス転移点が430℃より低いと、ホットプレス工程で粗粒ガラス粉末が導電粉末を溶解しやすくなるため、粗粒ガラス粉末が導電路を迂回させるブロック粒子として機能し難くなり、抵抗体の高周波雑音電波の吸収能が低下しやすくなる。一方、ガラス転移点が570℃より高いと、ホットプレス工程でガラスが変形し難くなり、端子浮き等の不具合が発生しやすくなる。   In the glass composition for forming a resistor of the present invention, the glass transition point is preferably 430 to 570 ° C, more preferably 450 to 550 ° C, and further preferably 460 to 510 ° C. When the glass transition point is lower than 430 ° C., the coarse glass powder easily dissolves the conductive powder in the hot pressing process, so the coarse glass powder hardly functions as a block particle that bypasses the conductive path, and the high frequency of the resistor Noise absorption capacity is likely to decrease. On the other hand, if the glass transition point is higher than 570 ° C., the glass is difficult to deform in the hot pressing process, and problems such as terminal floating are likely to occur.

本発明の抵抗体形成用ガラス組成物において、屈伏点は500〜680℃が好ましく、520〜630℃がより好ましく、530〜600℃が更に好ましい。屈伏点が500℃より低いと、ホットプレス工程で粗粒ガラス粉末が導電粉末を溶解しやすくなるため、粗粒ガラス粉末が導電路を迂回させるブロック粒子として機能し難くなり、抵抗体の高周波雑音電波の吸収能が低下しやすくなる。一方、屈伏点が680℃より高いと、ホットプレス工程でガラスが変形し難くなり、端子浮き等の不具合が発生しやすくなる。   In the glass composition for forming a resistor of the present invention, the yield point is preferably 500 to 680 ° C, more preferably 520 to 630 ° C, and further preferably 530 to 600 ° C. When the yield point is lower than 500 ° C., the coarse glass powder easily dissolves the conductive powder in the hot pressing process, so that the coarse glass powder hardly functions as a block particle that bypasses the conductive path, and the high-frequency noise of the resistor The ability to absorb radio waves tends to decrease. On the other hand, if the yield point is higher than 680 ° C., the glass is not easily deformed in the hot pressing process, and problems such as terminal floating are likely to occur.

本発明の抵抗体形成用ガラス組成物において、熱膨張係数は40〜60×10-7/℃が好ましく、40〜55×10-7/℃がより好ましく、42〜51×10-7/℃が更に好ましい。熱膨張係数が40×10-7/℃より低くするためには、ガラス組成中のSiO2等の含有量を増加させる必要がある。このような場合、ガラスの屈伏点が上昇することに起因して、ホットプレス工程でガラスが変形し難くなり、端子浮き等の不具合が発生しやすくなる。一方、熱膨張係数が60×10-7/℃より高いと、抵抗体と導電ガラス体または絶縁碍子の界面で剥離またはクラックが発生しやすくなる。 In the glass composition for forming a resistor of the present invention, the thermal expansion coefficient is preferably 40 to 60 × 10 −7 / ° C., more preferably 40 to 55 × 10 −7 / ° C., and 42 to 51 × 10 −7 / ° C. Is more preferable. In order to make the thermal expansion coefficient lower than 40 × 10 −7 / ° C., it is necessary to increase the content of SiO 2 or the like in the glass composition. In such a case, due to an increase in the yield point of the glass, the glass is difficult to deform in the hot press process, and problems such as terminal floating are likely to occur. On the other hand, if the thermal expansion coefficient is higher than 60 × 10 −7 / ° C., peeling or cracking is likely to occur at the interface between the resistor and the conductive glass body or the insulator.

本発明の抵抗体形成用ガラス粉末は、上記の抵抗体形成用ガラス組成物からなるガラス粉末を用いる。ガラス粉末に加工すれば、ホットプレス工程でガラスが変形しやすくなるとともに、顆粒に加工すれば、絶縁碍子の内孔に抵抗体材料を充填しやすくなる。   As the resistor forming glass powder of the present invention, a glass powder made of the above resistor forming glass composition is used. If it is processed into glass powder, the glass is easily deformed in the hot press process, and if it is processed into granules, it becomes easier to fill the inner hole of the insulator with the resistor material.

本発明の抵抗体形成用ガラス粉末は、分相性を有することが好ましい。好ましい理由は、既述であるため、ここでは、便宜上、その記載を省略する。   The resistor-forming glass powder of the present invention preferably has phase separation. Since the preferable reason has already been described, the description thereof is omitted here for convenience.

本発明の抵抗体形成用ガラス粉末において、ガラス粉末の粒度は150〜450μmが好ましく、200〜350μmがより好ましい。ガラス粉末の粒度を150〜450μmにすれば、導電路を迂回させるブロック粒子として機能しやすくなる。ガラス粉末の粒度が150μmより小さいと、ホットプレス工程でガラス粉末が導電粉末を溶解しやすくなるため、ブロック粒子として機能し難くなり、抵抗体の高周波雑音電波の吸収能が低下しやすくなる。一方、ガラス粉末の粒度が450μmより大きいと、顆粒に加工し難くなることに加えて、ホットプレス工程でガラス粉末が変形し難くなり、端子浮き等の不具合が発生しやすくなる。ここで、「150〜450μmの粒度」とは、目開き450μmの篩を通過し、目開き150μmの篩を通過しないことを意味する。   In the glass powder for forming a resistor of the present invention, the particle size of the glass powder is preferably 150 to 450 μm, and more preferably 200 to 350 μm. If the particle size of the glass powder is 150 to 450 μm, the glass powder can easily function as block particles that bypass the conductive path. When the particle size of the glass powder is smaller than 150 μm, the glass powder easily dissolves the conductive powder in the hot pressing process, so that it becomes difficult to function as block particles, and the resistance of the resistor to absorb high-frequency noise radio waves tends to decrease. On the other hand, when the particle size of the glass powder is larger than 450 μm, in addition to being difficult to process into granules, the glass powder is difficult to be deformed in the hot pressing process, and problems such as terminal floating are likely to occur. Here, “150-450 μm particle size” means passing through a sieve having an opening of 450 μm and not passing through a sieve having an opening of 150 μm.

本発明の抵抗体形成用ガラス粉末において、ガラス粉末の平均粒子径D50は150〜450μmが好ましく、200〜350μmがより好ましい。ガラス粉末の平均粒子径D50を150〜450μmにすれば、導電路を迂回させるブロック粒子として機能しやすくなる。ガラス粉末の平均粒子径D50が150μmより小さいと、ホットプレス工程でガラス粉末が導電粉末を溶解し、ブロック粒子として機能し難くなり、抵抗体の高周波雑音電波の吸収能が低下しやすくなる。一方、ガラス粉末の平均粒子径D50が450μmより大きいと、顆粒に加工し難くなることに加えて、ホットプレス工程でガラス粉末が変形し難くなり、端子浮き等の不具合が発生しやすくなる。ここで、「平均粒子径D50」とは、レーザー回折法で測定した値を指し、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して50%である粒子径を表す。 In the glass powder for forming a resistor of the present invention, the average particle diameter D 50 of the glass powder is preferably 150 to 450 μm, and more preferably 200 to 350 μm. If the average particle diameter D 50 of the glass powder 150~450Myuemu, tends to function as a block particles diverting conductive path. If the average particle diameter D 50 of the glass powder is smaller than 150 μm, the glass powder dissolves the conductive powder in the hot pressing process, and it becomes difficult to function as block particles, and the high frequency noise radio wave absorption ability of the resistor tends to be lowered. On the other hand, when the average particle diameter D 50 of the glass powder is larger than 450 μm, in addition to being difficult to process into granules, the glass powder is difficult to be deformed in the hot pressing process, and problems such as terminal floating are likely to occur. Here, the “average particle diameter D 50 ” refers to a value measured by the laser diffraction method. In the volume-based cumulative particle size distribution curve measured by the laser diffraction method, the accumulated amount is accumulated from the smaller particle. The particle diameter is 50%.

本発明の抵抗体形成用ガラス粉末において、ガラス粉末の最大粒子径Dmaxは450μm以下が好ましく、400μm以下がより好ましい。ガラス粉末の平均粒子径Dmaxが450μmより大きいと、絶縁碍子の内孔が細径化された場合に、絶縁碍子の内孔にガラス粉末を充填し難くなる。ここで、「最大粒子径Dmax」は、レーザー回折法で測定した値を指し、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して99%である粒子径を表す。 In the glass powder for forming a resistor of the present invention, the maximum particle diameter D max of the glass powder is preferably 450 μm or less, and more preferably 400 μm or less. When the average particle diameter D max of the glass powder is larger than 450 μm, it becomes difficult to fill the glass powder into the inner hole of the insulator when the inner hole of the insulator is reduced in diameter. Here, the “maximum particle diameter D max ” refers to a value measured by the laser diffraction method. In the volume-based cumulative particle size distribution curve measured by the laser diffraction method, the accumulated amount is accumulated from the smaller particle. The particle diameter is 99%.

本発明の抵抗体形成用ガラス粉末は、抵抗体を形成するための細粒ガラス粉末としても使用することができる。その場合、ガラス粉末の平均粒子径D50は150μm未満が好ましく、100μm以下がより好ましい。ガラス粉末の平均粒子径D50が150μm以上であると、ホットプレス工程で細粒ガラス粉末が結合ガラス相を形成し難くなる。なお、粗粒ガラス粉末と細粒ガラス粉末を同一のガラス組成とすれば、ホットプレス工程で両者が強固に結合するため、抵抗体の機械的強度を高めることができる。 The resistor-forming glass powder of the present invention can also be used as a fine-grained glass powder for forming a resistor. In that case, the average particle diameter D 50 of the glass powder is preferably less than 150 [mu] m, more preferably at most 100 [mu] m. When the average particle diameter D 50 of the glass powder is 150 μm or more, it becomes difficult for the fine glass powder to form a bonded glass phase in the hot pressing step. Note that if the coarse glass powder and the fine glass powder have the same glass composition, the two are firmly bonded in the hot pressing step, so that the mechanical strength of the resistor can be increased.

本発明の抵抗体形成用ガラス粉末は、点火プラグに使用することが好ましい。本発明の抵抗体形成用ガラス粉末は、その充填量が少なくても、高周波雑音電波の発生を抑制できるため、点火プラグが細径化された場合に有利である。   The glass powder for forming a resistor of the present invention is preferably used for a spark plug. The resistor-forming glass powder of the present invention is advantageous when the spark plug is reduced in diameter because the generation of high-frequency noise radio waves can be suppressed even when the filling amount is small.

本発明の抵抗体形成用ガラス組成物は、質量%でさらに、ZnO 7.1〜12.2%、Li2O+Na2O+K2O 2.6〜12%を含有することが好ましい。本発明の抵抗体形成用ガラス組成物は、850℃でのホットプレス時の封着性能を良好とすることが可能である。 The resistor-forming glass composition of the present invention preferably further contains ZnO 7.1 to 12.2% and Li 2 O + Na 2 O + K 2 O 2.6 to 12% by mass%. The glass composition for forming a resistor of the present invention can improve the sealing performance during hot pressing at 850 ° C.

以下、実施例に基づいて、本発明を詳細に説明する。表1〜4は、本発明の実施例(試料No.1〜33)、比較例(試料No.34〜40)を示している。   Hereinafter, based on an Example, this invention is demonstrated in detail. Tables 1-4 show examples of the present invention (sample Nos. 1-33) and comparative examples (sample Nos. 34-40).

Figure 2011084461
Figure 2011084461

Figure 2011084461
Figure 2011084461

Figure 2011084461
Figure 2011084461

Figure 2011084461
Figure 2011084461

まず、表中のガラス組成となるように、各種酸化物、炭酸塩等の原料を調合したガラスバッチを準備し、これを白金坩堝に入れて1300℃で2時間溶融した。次に、水冷ローラーにより、溶融ガラスを薄片状に成形した後、ボールミルにて粉砕後、試験篩で分級し、各ガラス粉末を得た。   First, a glass batch in which raw materials such as various oxides and carbonates were prepared so as to have the glass composition in the table was prepared, and this was put in a platinum crucible and melted at 1300 ° C. for 2 hours. Next, the molten glass was formed into a flake shape with a water-cooled roller, pulverized with a ball mill, and classified with a test sieve to obtain each glass powder.

試料No.1〜40につき、ガラス転移点、屈伏点、熱膨張係数、誘電率、誘電正接、ブロック粒子としての機能、分相性を評価した。   Sample No. For 1 to 40, the glass transition point, yield point, thermal expansion coefficient, dielectric constant, dielectric loss tangent, function as block particles, and phase separation were evaluated.

ガラス転移点および屈伏点は、TMA装置で測定した。なお、TMAの測定試料は、ガラス粉末を焼結させたものを使用した。   The glass transition point and yield point were measured with a TMA apparatus. In addition, the measurement sample of TMA used what sintered the glass powder.

熱膨張係数は、TMA装置を用いて、30〜380℃の温度範囲で測定した。なお、TMAの測定試料は、ガラス粉末を焼結させたものを使用した。   The thermal expansion coefficient was measured in a temperature range of 30 to 380 ° C. using a TMA apparatus. In addition, the measurement sample of TMA used what sintered the glass powder.

誘電率および誘電正接は、50mm×50mm×3mm厚の板状ガラス(ガラス粉末を緻密に焼結させたもの)を測定試料として用い、光学研磨した板状ガラスの表裏面に30mmφの電極を貼り付け、電極間に電圧を印加して測定した。測定条件は、25℃、1MHzとした。   The dielectric constant and dielectric loss tangent were measured using 50 mm x 50 mm x 3 mm thick plate glass (glass powder densely sintered) as the measurement sample, and 30 mmφ electrodes were attached to the front and back surfaces of the optically polished plate glass. The voltage was applied between the electrodes and measured. The measurement conditions were 25 ° C. and 1 MHz.

ブロック粒子としての機能は、次のようにして測定した。まずガラスの密度に相当する質量の各ガラス粉末(粒度150〜450μm、平均粒子径D50=300μm)にカーボンブラックを5質量%添加した試料を金型により外径20mmのボタン状にプレスした。続いて、得られたボタン試料をアルミナ基板で挟んだ後、900℃に保持された電気炉に投入し、100kg/cm2のプレス圧力を加えて10分間加熱し、次いで電気炉からボタン試料を取り出し、得られたボタン試料の外観を観察することで評価した。ガラス粉末が多少変形しているが、完全に溶融しておらず、カーボンブラックがガラス中に溶解していないものを「○」とし、ガラス粉末が完全に溶融し、或いはカーボンブラックがガラス中に溶解しているものを「×」として評価した。 The function as a block particle was measured as follows. First, a sample in which 5% by mass of carbon black was added to each glass powder (particle size: 150 to 450 μm, average particle diameter D 50 = 300 μm) having a mass corresponding to the density of the glass was pressed into a button shape having an outer diameter of 20 mm using a mold. Subsequently, after the obtained button sample was sandwiched between alumina substrates, it was put into an electric furnace maintained at 900 ° C., heated at a press pressure of 100 kg / cm 2 for 10 minutes, and then the button sample was removed from the electric furnace. The button sample was taken out and evaluated by observing the appearance of the obtained button sample. The glass powder is slightly deformed but is not completely melted and the carbon black is not dissolved in the glass is marked with “○”, the glass powder is completely melted, or the carbon black is in the glass. What was melt | dissolved was evaluated as "x".

分相性は、上記ボタン試料を所定形状に加工したものを測定試料とし、TEMで観察することで評価した。ボタン試料の全体が分相しているものを「◎」、ボタン試料の一部が分相しているものを「○」、ボタン試料に分相が確認できなかったものを「×」とした。   The phase separation was evaluated by observing with a TEM a sample obtained by processing the button sample into a predetermined shape. “ボ タ ン” indicates that the entire button sample is phase-separated, “○” indicates that the button sample is partially phase-separated, and “×” indicates that no phase separation is confirmed in the button sample. .

「封着性能」は、ホットプレス時に端子が浮く不具合の発生率を評価したものであり、発生率fが0%のものを「◎◎」、0%<f≦5%のものを「◎」、5%<f≦30%のものを「○」、30%<fのものを「×」とした。   “Sealing performance” is an evaluation of the rate of occurrence of a problem that the terminal floats during hot pressing. “◎◎” indicates that the occurrence rate f is 0%, and “◎” indicates 0% <f ≦ 5%. “5% <f ≦ 30%” was indicated by “◯”, and 30% <f was indicated by “X”.

表1〜4から明らかなように、試料No.1〜33は、ガラス転移点、屈伏点、熱膨張係数、誘電率、誘電正接、高周波雑音電波、ブロック粒子としての機能および分相性の評価が良好であった。特に、試料No.1〜33は、誘電率が低いため、端子電極と中心電極間の実効誘電率を低下させることができ、結果として、点火プラグを細径化しても、抵抗体が高周波雑音電波を的確に吸収できると考えられる。一方、試料No.34は、ガラス組成中にZnOを含有していないため、誘電率が高く、分相性の評価が不良であり、またブロック粒子として機能し難いと考えられる。試料No.35は、SiO2の含有量が少ないため、ブロック粒子として機能し難いと考えられる。試料No.36は、ZnOの含有量が多いため、分相性の評価が不良であり、またブロック粒子として機能し難いと考えられる。試料No.37は、SiO2の含有量が多いため、ガラス転移点、屈伏点が非常に高かった。試料No.38は、Li2O+Na2O+K2Oの含有量が多いため、ブロック粒子として機能し難いと考えられる。試料No.39は、B23の含有量が多いため、ブロック粒子として機能し難いと考えられる。試料No.40は、ガラス組成中にZnOを含有していないため、誘電率が高く、分相性の評価が不良であり、またブロック粒子として機能し難いと考えられる。 As is apparent from Tables 1 to 4, sample No. In Nos. 1 to 33, evaluation of glass transition point, yield point, thermal expansion coefficient, dielectric constant, dielectric loss tangent, radio frequency noise radio wave, function as block particles and phase separation were good. In particular, sample no. 1 to 33, since the dielectric constant is low, the effective dielectric constant between the terminal electrode and the center electrode can be lowered. As a result, even if the spark plug is made thinner, the resistor accurately absorbs high frequency noise radio waves. It is considered possible. On the other hand, sample No. Since No. 34 does not contain ZnO in the glass composition, it is considered that the dielectric constant is high, the evaluation of phase separation is poor, and it is difficult to function as block particles. Sample No. No. 35 is considered to be difficult to function as block particles because the content of SiO 2 is small. Sample No. No. 36 has a high ZnO content, so the evaluation of phase separation is poor, and it is considered difficult to function as block particles. Sample No. No. 37 had a very high glass transition point and yield point due to its high SiO 2 content. Sample No. No. 38 has a large content of Li 2 O + Na 2 O + K 2 O, and is therefore considered difficult to function as block particles. Sample No. No. 39 is considered to be difficult to function as block particles because of its high B 2 O 3 content. Sample No. No. 40 does not contain ZnO in the glass composition, so the dielectric constant is high, the evaluation of phase separation is poor, and it is considered difficult to function as block particles.

以上の説明から明らかなように、本発明の抵抗体形成用ガラス組成物は、電磁波吸収体を搭載した電子部品、特に高周波域における電磁波を遮蔽する必要性が高い車載用電子部品に好適であり、具体的には点火プラグの絶縁碍子の内孔に抵抗体を形成するための粗粒ガラス粉末として好適であり、細粒ガラス粉末としても使用可能である。   As is clear from the above explanation, the glass composition for forming a resistor of the present invention is suitable for an electronic component equipped with an electromagnetic wave absorber, particularly an in-vehicle electronic component that is highly required to shield electromagnetic waves in a high frequency range. Specifically, it is suitable as a coarse glass powder for forming a resistor in the inner hole of the insulator of the spark plug, and can also be used as a fine glass powder.

1 端子電極
2a、2b 導電ガラス体
3 中心電極
4 抵抗体
DESCRIPTION OF SYMBOLS 1 Terminal electrode 2a, 2b Conductive glass body 3 Center electrode 4 Resistor

Claims (19)

ガラス組成として、質量%で、SiO2 35〜60%、B23 25〜55%、Li2O+Na2O+K2O 0〜20%、ZnO 0.1〜25%を含有することを特徴とする抵抗体形成用ガラス組成物。 As a glass composition, in weight%, and characterized in that it contains SiO 2 35~60%, B 2 O 3 25~55%, Li 2 O + Na 2 O + K 2 O 0~20%, a 0.1 to 25% ZnO A glass composition for forming a resistor. 25℃、1MHzにおける誘電率が5.5以下であることを特徴とする請求項1に記載の抵抗体形成用ガラス組成物。   2. The glass composition for forming a resistor according to claim 1, wherein the dielectric constant at 25 ° C. and 1 MHz is 5.5 or less. 25℃、1MHzにおける誘電正接が0.0008以上であることを特徴とする請求項1または2に記載の抵抗体形成用ガラス組成物。   3. The glass composition for forming a resistor according to claim 1, wherein a dielectric loss tangent at 25 ° C. and 1 MHz is 0.0008 or more. ガラス転移点が430〜570℃であることを特徴とする請求項1〜3のいずれかに記載の抵抗体形成用ガラス組成物。   A glass transition point is 430-570 degreeC, The glass composition for resistor formation in any one of Claims 1-3 characterized by the above-mentioned. 屈伏点が500〜680℃であることを特徴とする請求項1〜4のいずれかに記載の抵抗体形成用ガラス組成物。   A yield point is 500-680 degreeC, The glass composition for resistor formation in any one of Claims 1-4 characterized by the above-mentioned. 熱膨張係数が40〜60×10-7/℃であることを特徴とする請求項1〜5のいずれかに記載の抵抗体形成用ガラス組成物。 The glass composition for forming a resistor according to claim 1, wherein the coefficient of thermal expansion is 40 to 60 × 10 −7 / ° C. 実質的にPbOを含有しないことを特徴とする請求項1〜6のいずれかに記載の抵抗体形成用ガラス組成物。   The glass composition for forming a resistor according to any one of claims 1 to 6, which does not substantially contain PbO. 点火プラグに用いることを特徴とする請求項1〜7のいずれかに記載の抵抗体形成用ガラス組成物。   It uses for a spark plug, The glass composition for resistor formation in any one of Claims 1-7 characterized by the above-mentioned. 請求項1〜8のいずれかに記載の抵抗体形成用ガラス組成物からなるガラス粉末を含有することを特徴とする抵抗体形成用ガラス粉末。   A glass powder for forming a resistor, comprising the glass powder made of the glass composition for forming a resistor according to claim 1. 分相性を有することを特徴とする請求項9に記載の抵抗体形成用ガラス粉末。   The glass powder for forming a resistor according to claim 9, which has phase separation. ガラス粉末の粒度が150〜450μmであることを特徴とする請求項9または10に記載の抵抗体形成用ガラス粉末。   The glass powder for resistor formation according to claim 9 or 10, wherein the particle size of the glass powder is 150 to 450 µm. 軸線方向に延びる軸孔を有する絶縁体と、
前記軸孔の一端側に設けられた中心電極と、
前記軸孔の他端側に設けられた端子電極と、
前記中心電極と前記端子電極との間に配置される抵抗体とを備える点火プラグにおいて、
前記抵抗体は、抵抗体形成用ガラス組成物を含み、
前記抵抗体形成用ガラス組成物は、質量%で、SiO2 35〜60%、B23 25〜55%、Li2O+Na2O+K2O 0〜20%、ZnO 0.1〜25%を含有することを特徴とする点火プラグ。
An insulator having an axial hole extending in the axial direction;
A center electrode provided at one end of the shaft hole;
A terminal electrode provided on the other end side of the shaft hole;
In a spark plug comprising a resistor disposed between the center electrode and the terminal electrode,
The resistor includes a resistor-forming glass composition,
The glass composition for forming a resistor comprises, in mass%, SiO 2 35-60%, B 2 O 3 25-55%, Li 2 O + Na 2 O + K 2 O 0-20%, ZnO 0.1-25%. Spark plug characterized by containing.
前記抵抗体形成用ガラス組成物は、質量%で、ZnO 7.1〜12.2%、Li2O+Na2O+K2O 2.6〜12%を含有することを特徴とする請求項12に記載の点火プラグ。 The resistor forming glass composition, in mass%, according to claim 12, characterized in that it contains 7.1~12.2%, 2.6~12% Li 2 O + Na 2 O + K 2 O ZnO Spark plug. 前記抵抗体形成用ガラス組成物は、25℃、1MHzにおける誘電率が5.5以下であることを特徴とする請求項12または13に記載の点火プラグ。   The spark plug according to claim 12 or 13, wherein the resistor-forming glass composition has a dielectric constant of 5.5 or less at 25 ° C and 1 MHz. 前記抵抗体形成用ガラス組成物は、25℃、1MHzにおける誘電正接が0.0008以上であることを特徴とする請求項12〜14のいずれかに記載の点火プラグ。   The spark plug according to any one of claims 12 to 14, wherein the resistor-forming glass composition has a dielectric loss tangent of 0.0008 or more at 25 ° C and 1 MHz. 前記抵抗体形成用ガラス組成物は、ガラス転移点が430〜570℃であることを特徴とする請求項12〜15のいずれかに記載の点火プラグ。   The spark plug according to any one of claims 12 to 15, wherein the resistor-forming glass composition has a glass transition point of 430 to 570 ° C. 前記抵抗体形成用ガラス組成物は、屈伏点が500〜680℃であることを特徴とする請求項12〜16のいずれかに記載の点火プラグ。   The spark plug according to any one of claims 12 to 16, wherein the resistor-forming glass composition has a yield point of 500 to 680 ° C. 前記抵抗体形成用ガラス組成物は、熱膨張係数が40〜60×10-7/℃であることを特徴とする請求項12〜17のいずれかに記載の点火プラグ。 The spark plug according to any one of claims 12 to 17, wherein the resistor-forming glass composition has a coefficient of thermal expansion of 40 to 60 x 10-7 / ° C. 前記抵抗体形成用ガラス組成物は、実質的にPbOを含有しないことを特徴とする請求項12〜18のいずれかに記載の点火プラグ。   The spark plug according to any one of claims 12 to 18, wherein the resistor-forming glass composition contains substantially no PbO.
JP2010200963A 2009-09-15 2010-09-08 Resistor forming glass composition Active JP5709085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010200963A JP5709085B2 (en) 2009-09-15 2010-09-08 Resistor forming glass composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009213145 2009-09-15
JP2009213145 2009-09-15
JP2010200963A JP5709085B2 (en) 2009-09-15 2010-09-08 Resistor forming glass composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010215330A Division JP5364669B2 (en) 2009-09-15 2010-09-27 Spark plug

Publications (2)

Publication Number Publication Date
JP2011084461A true JP2011084461A (en) 2011-04-28
JP5709085B2 JP5709085B2 (en) 2015-04-30

Family

ID=44077701

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010200963A Active JP5709085B2 (en) 2009-09-15 2010-09-08 Resistor forming glass composition
JP2010215330A Active JP5364669B2 (en) 2009-09-15 2010-09-27 Spark plug

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2010215330A Active JP5364669B2 (en) 2009-09-15 2010-09-27 Spark plug

Country Status (1)

Country Link
JP (2) JP5709085B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5467495B2 (en) * 2008-02-28 2014-04-09 日本電気硝子株式会社 Resistor forming glass powder
JP5688880B2 (en) * 2008-02-28 2015-03-25 日本電気硝子株式会社 Glass composition for forming a resistor for a spark plug

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151345A (en) * 1982-02-26 1983-09-08 Asahi Glass Co Ltd Glass composition with low dielectric constant
JPS59167984A (en) * 1983-03-12 1984-09-21 日本特殊陶業株式会社 Resistor for ignition plug and method of producing same
JPS60150601A (en) * 1984-01-18 1985-08-08 日本特殊陶業株式会社 Resistor composition for ignition plug with resistor
JPS6218001A (en) * 1985-07-17 1987-01-27 日本特殊陶業株式会社 Resistance body composition for ignition plug
JPS62226839A (en) * 1986-03-27 1987-10-05 Nippon Sheet Glass Co Ltd Glass fiber having low dielectric constant
JPH01286937A (en) * 1988-05-13 1989-11-17 Nakashima:Kk Material for glass-spraying
JPH02208235A (en) * 1989-02-08 1990-08-17 Nakashima:Kk Material for spraying glass
JPH03180457A (en) * 1989-12-08 1991-08-06 Nakashima:Kk Formation of glass film
JPH03193639A (en) * 1989-12-22 1991-08-23 Mitsubishi Materials Corp High strength frit glaze for red color
JPH03193638A (en) * 1989-12-22 1991-08-23 Mitsubishi Materials Corp Frit glaze for red color having low thermal expandability
JPH04228453A (en) * 1990-06-05 1992-08-18 Johnson Matthey Plc Glass fusing composition
JPH04228452A (en) * 1990-02-28 1992-08-18 Johnson Matthey Plc Glass fusing composition
US5188989A (en) * 1987-12-01 1993-02-23 Dresser Industries Coating mix to prevent oxidation of carbon substrates
JPH06234548A (en) * 1993-02-10 1994-08-23 Ishikawa Pref Gov Japanese-style coloring material for pottery
US5376596A (en) * 1992-08-06 1994-12-27 Murata Manufacturing Co., Ltd. Conductive paste
JPH09100182A (en) * 1995-10-03 1997-04-15 Kanji Imai Lead-free frit for japanese coloring material for pottery and lead-free japanese coloring material for pottery containing the frit
JPH09132427A (en) * 1995-11-13 1997-05-20 Kaoru Mizuno Lead-free frit glaze and lead-free frit pigment
JPH09306636A (en) * 1996-05-13 1997-11-28 Ngk Spark Plug Co Ltd Spark plug
US5985473A (en) * 1997-11-17 1999-11-16 Cooper Automotive Products, Inc. Low-temperature barium/lead-free glaze for alumina ceramics
JP2001097736A (en) * 1999-09-28 2001-04-10 Noritake Co Ltd Glass composition, adjusting painting tool, transfer paper and enameled ware
JP2002211953A (en) * 2001-01-05 2002-07-31 Nippon Electric Glass Co Ltd Glass for sealing, conductive sealing composition and hermetic package
JP2002536816A (en) * 1999-02-12 2002-10-29 アライド・シグナル・インコーポレーテツド Contact glass formulation used for spark plugs
JP2003026444A (en) * 2001-07-11 2003-01-29 Asahi Glass Co Ltd Ceramic color composition, ceramic color paste and method for producing glass board fitted with ceramic color layer
JP2003238200A (en) * 2002-02-19 2003-08-27 Noritake Co Ltd Lead-free glass flux and china hand-painting material containing the same
JP2004026529A (en) * 2002-06-21 2004-01-29 Ferro Enamels Japan Ltd Glass composition for low-temperature fired substrate and glass ceramics using the same
JP2004137145A (en) * 2002-09-25 2004-05-13 Nippon Electric Glass Co Ltd Optical glass for molding press molding
EP1457794A2 (en) * 2001-12-20 2004-09-15 Isuzu Glass Co., Ltd. Method for forming optical waveguide
JP2005340171A (en) * 2004-04-30 2005-12-08 Ngk Spark Plug Co Ltd Spark plug
JP2007122879A (en) * 2004-10-12 2007-05-17 Ngk Spark Plug Co Ltd Spark plug
JP2008214176A (en) * 2007-02-06 2008-09-18 Mitsubishi Electric Corp Ceramic powder for green sheet and multilayer ceramic substrate
JP2009091184A (en) * 2007-10-05 2009-04-30 Asahi Glass Co Ltd Lead-free glass for coating electrode and plasma display device
JP2009102222A (en) * 2007-10-05 2009-05-14 Asahi Glass Co Ltd Electrode coating non-lead glass and plasma display device
JP2011082153A (en) * 2009-09-09 2011-04-21 Nippon Electric Glass Co Ltd Resistance-forming material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02239582A (en) * 1989-03-10 1990-09-21 Ngk Spark Plug Co Ltd Sealing material for spark plug

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151345A (en) * 1982-02-26 1983-09-08 Asahi Glass Co Ltd Glass composition with low dielectric constant
JPS59167984A (en) * 1983-03-12 1984-09-21 日本特殊陶業株式会社 Resistor for ignition plug and method of producing same
JPS60150601A (en) * 1984-01-18 1985-08-08 日本特殊陶業株式会社 Resistor composition for ignition plug with resistor
JPS6218001A (en) * 1985-07-17 1987-01-27 日本特殊陶業株式会社 Resistance body composition for ignition plug
JPS62226839A (en) * 1986-03-27 1987-10-05 Nippon Sheet Glass Co Ltd Glass fiber having low dielectric constant
US5188989A (en) * 1987-12-01 1993-02-23 Dresser Industries Coating mix to prevent oxidation of carbon substrates
JPH01286937A (en) * 1988-05-13 1989-11-17 Nakashima:Kk Material for glass-spraying
JPH02208235A (en) * 1989-02-08 1990-08-17 Nakashima:Kk Material for spraying glass
JPH03180457A (en) * 1989-12-08 1991-08-06 Nakashima:Kk Formation of glass film
JPH03193639A (en) * 1989-12-22 1991-08-23 Mitsubishi Materials Corp High strength frit glaze for red color
JPH03193638A (en) * 1989-12-22 1991-08-23 Mitsubishi Materials Corp Frit glaze for red color having low thermal expandability
JPH04228452A (en) * 1990-02-28 1992-08-18 Johnson Matthey Plc Glass fusing composition
JPH04228453A (en) * 1990-06-05 1992-08-18 Johnson Matthey Plc Glass fusing composition
US5376596A (en) * 1992-08-06 1994-12-27 Murata Manufacturing Co., Ltd. Conductive paste
JPH06234548A (en) * 1993-02-10 1994-08-23 Ishikawa Pref Gov Japanese-style coloring material for pottery
JPH09100182A (en) * 1995-10-03 1997-04-15 Kanji Imai Lead-free frit for japanese coloring material for pottery and lead-free japanese coloring material for pottery containing the frit
JPH09132427A (en) * 1995-11-13 1997-05-20 Kaoru Mizuno Lead-free frit glaze and lead-free frit pigment
JPH09306636A (en) * 1996-05-13 1997-11-28 Ngk Spark Plug Co Ltd Spark plug
US5985473A (en) * 1997-11-17 1999-11-16 Cooper Automotive Products, Inc. Low-temperature barium/lead-free glaze for alumina ceramics
JP2002536816A (en) * 1999-02-12 2002-10-29 アライド・シグナル・インコーポレーテツド Contact glass formulation used for spark plugs
JP2001097736A (en) * 1999-09-28 2001-04-10 Noritake Co Ltd Glass composition, adjusting painting tool, transfer paper and enameled ware
JP2002211953A (en) * 2001-01-05 2002-07-31 Nippon Electric Glass Co Ltd Glass for sealing, conductive sealing composition and hermetic package
JP2003026444A (en) * 2001-07-11 2003-01-29 Asahi Glass Co Ltd Ceramic color composition, ceramic color paste and method for producing glass board fitted with ceramic color layer
EP1457794A2 (en) * 2001-12-20 2004-09-15 Isuzu Glass Co., Ltd. Method for forming optical waveguide
JP2003238200A (en) * 2002-02-19 2003-08-27 Noritake Co Ltd Lead-free glass flux and china hand-painting material containing the same
JP2004026529A (en) * 2002-06-21 2004-01-29 Ferro Enamels Japan Ltd Glass composition for low-temperature fired substrate and glass ceramics using the same
JP2004137145A (en) * 2002-09-25 2004-05-13 Nippon Electric Glass Co Ltd Optical glass for molding press molding
JP2005340171A (en) * 2004-04-30 2005-12-08 Ngk Spark Plug Co Ltd Spark plug
JP2007122879A (en) * 2004-10-12 2007-05-17 Ngk Spark Plug Co Ltd Spark plug
JP2008214176A (en) * 2007-02-06 2008-09-18 Mitsubishi Electric Corp Ceramic powder for green sheet and multilayer ceramic substrate
JP2009091184A (en) * 2007-10-05 2009-04-30 Asahi Glass Co Ltd Lead-free glass for coating electrode and plasma display device
JP2009102222A (en) * 2007-10-05 2009-05-14 Asahi Glass Co Ltd Electrode coating non-lead glass and plasma display device
JP2011082153A (en) * 2009-09-09 2011-04-21 Nippon Electric Glass Co Ltd Resistance-forming material
JP2011079734A (en) * 2009-09-09 2011-04-21 Ngk Spark Plug Co Ltd Ignition plug

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
G. DELLA MEA ET AL.: " Chemical durability of zinc-containing glasses", JOURNAL OF NON-CRYSTALLINE SOLIDS, vol. Vol. 84, Issues 1-3, JPN6014048528, pages 443 - 451, ISSN: 0002941392 *
ZHONGJIAN WANG ET AL.: "Dielectric properties and crystalline characteristics of borosilicate glasses", JOURNAL OF NON-CRYSTALLINE SOLIDS, vol. Vol. 354, Issues 12-13, JPN6014048526, 2008, pages 1128 - 1132, ISSN: 0002941393 *

Also Published As

Publication number Publication date
JP2011084463A (en) 2011-04-28
JP5709085B2 (en) 2015-04-30
JP5364669B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
JP5748079B2 (en) Resistor forming glass powder
JP5679273B2 (en) Resistor forming material
CN100589234C (en) electronic component passivated by lead free glass, uses thereof, preparation method thereof and the uses of the preparation method
JP4913225B2 (en) Manufacturing method of spark plug
JP5717043B2 (en) Electrode forming glass composition and electrode forming material
JP5086790B2 (en) Method for producing electronic components passivated by lead-free glass
JP4291146B2 (en) Silver conductor composition
JP2009227571A5 (en)
JP5286344B2 (en) Spark plug
CN109524150A (en) A kind of full Al-BSF back silver paste and the preparation method and application thereof
JP5709085B2 (en) Resistor forming glass composition
CN105098602B (en) Spark plug
JP5594682B2 (en) Lead-free low melting point glass with acid resistance
CN102760511B (en) Crystalline silicon solar cell BSF (back surface field) lead-free aluminum electroconductive slurry and preparation method thereof
JP6064298B2 (en) Glass for semiconductor element coating
WO2012111478A1 (en) Conductive paste and solar cell
JP5429463B2 (en) Conductive paste
JP6103051B2 (en) Composition for ceramic substrate and ceramic circuit component
JP6642786B2 (en) Composite powder material
JP5645009B2 (en) Resistor forming glass
CN113860749A (en) Glass powder and preparation method thereof
WO2013031957A1 (en) Lead-free glass composition for forming conductors
CN102693834B (en) The manufacture method of microwave ceramic capacitor
WO2011030845A1 (en) Spark plug for internal combustion engine
JP5040574B2 (en) Resistance material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150209

R150 Certificate of patent or registration of utility model

Ref document number: 5709085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150222