JPH02239582A - Sealing material for spark plug - Google Patents

Sealing material for spark plug

Info

Publication number
JPH02239582A
JPH02239582A JP5854189A JP5854189A JPH02239582A JP H02239582 A JPH02239582 A JP H02239582A JP 5854189 A JP5854189 A JP 5854189A JP 5854189 A JP5854189 A JP 5854189A JP H02239582 A JPH02239582 A JP H02239582A
Authority
JP
Japan
Prior art keywords
sealing material
weight
glass
spark plug
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5854189A
Other languages
Japanese (ja)
Inventor
Makoto Sugimoto
誠 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP5854189A priority Critical patent/JPH02239582A/en
Priority to BR9001203A priority patent/BR9001203A/en
Publication of JPH02239582A publication Critical patent/JPH02239582A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sealing material generating no gap between it and an insulator consisting of sintered low expansion ceramics in the cooling procedure of connection process of the terminal electrode to the central electrode of a spark plug by blending an insulating ceramic filler of specified physical properties, a conductive filler and glass in specified ratio. CONSTITUTION:A sealing material is blended with 20-35wt.% of insulating ceramic filler of less than 7.7X10<-6>/ deg.C in thermal expansion coefficient, 10-30wt.% of conductive filler and 35-70wt.% of glass. Thereby the thermal expansion coefficient of the sealing material can be reduced, so that when the rear end of the central electrode 4 is heat sealed to the tip end of the terminal electrode 5 in an axial hole 31, the shrinkage of the sealing material can be reduced and the generation of gap between the insulator and the sealing material can be prevented to improve the adhesiveness. Because of excellent adhesiveness, even when a spark plug 100 is subjected to repeated mechanical shocks, the contact of the terminal electrode to the central electrode cannot be broken to keep the sealing to the axial hole 31 and the conducting circuit reliably.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はスパークプラグの、端子電極と中心電極とを接
着するためのシール材に閏する.[従来の技術J 特公昭57− 19842号公報には、アルミナ製絶縁
体を用いたスパークプラグの、端子電極と中心電極との
接着用のシール材が開示されている.このシール材は、
ガラスと、導電性金属粉と、希土類元素の酸化物および
炭化物の1種以」〕とからなる. [発明が解決しようとするn題] しかるに、従来のシール材は、つぎような欠点がある. 窒化物や酸素窒素化物のセラミック焼結体で形成された
絶縁体に上記シール材を用いると、シール材の熱膨張係
数が前記絶縁体よりかなり大きく、かつシール材と絶縁
体の濡れ性が悪いため、冷却時にシール材と絶縁体との
間にR間が生じる.このため、スパークプラグがva返
し機械的な衝撃を受けると、端子電極や中心電極との接
合が離れ、導通不良を誘発する. 本発明の目的は、端子電極と中心電極との接合時、冷却
過程で、低膨張セラミック焼結体で形成された絶縁体と
シール材との間に隙間が生じ難く、かつスパークプラグ
が衝撃を受けても接合が離れ難いシール材の提供にある
. [課題を解決するための手段] 上記目的達成のため、本発明はつぎの構成を採用した. ■シール材はつぎの楕成上りなる.筒状主体金具と、該
主体金具に嵌め込まれ、窒化物および酸素窒素化物セラ
ミック焼結体などを主体として形成されるとともに、?
.7X10−’/”C以下の熱膨脹係数を有する軸孔付
きの絶縁体と、前記軸孔の先端側に嵌め込まれる中心電
掻および後端側に嵌め込まれる端子電極とを有するスパ
ークプラグに用いられ、前記中心電極の後端と、端子電
極の先端とを電気的に接続するとともに前記軸孔内で加
熱封着するシール材において、20重量%〜35重量%
の範囲で、かつ、熱m*係数が7.7X10−6/℃以
下である絶縁性セラミックフィラーと、10重量%〜3
0重量%の導電性フィラーと、35重量%〜70重量%
のガラスとを調合してなる.■シール材は、前記■の構
成を有し、かつ、つぎの構成よりなる.スパークプラグ
に用いられ、シール材は、熱膨張係数を前記絶縁体に対
し8%〜75%の範囲内とされる20重量%〜35重量
%の絶縁性セラミックフィラーと、10重量%〜30重
量%の導電性フ2イラーと、35重量%〜70重量%で
、かつ、平均粒径が350μ以下のガラスとを調合し、
加熱封着後、20℃における電気抵抗値が25kΩ以下
である. [作用および発明の効果] 本発明はつぎの作用および効果を奏する.く請求項1に
ついて〉 シール材は、201111%〜35重量%の範囲で、か
つ、熱m張係数が7.7X10−6/℃以下である絶縁
性セラミックフィラーと、10重量%〜30.Ij量%
の導電性フィラーと、35重量%〜70重産%のガラス
とを調合している.このため、シール材の熱膨張係数が
下がり、中心電極の後端と端子電極の先端とを軸孔内に
加熱封着する際、シール材の収縮が少なく、絶縁体とシ
ール材との間に隙間が生じ難くて密着性に優れる.また
、密着性に優れるので、スパークプラグが繰返し機械的
な衝撃を受でも、端子電極と中心電極との接合が離れた
りぜず、軸孔への封着が保たれ導通路は安定に確保され
る. 数値限定の理由はつぎのとおりである.絶縁性セラミッ
クフィラーが20重量%未満であると少なすぎシール材
の熱ilI5i係数を下げることが困難であり、35重
量%を越えると多すぎ端子電極の封着が困難になる.ま
た、熱膨張係数が7 . 7 X 1 0−6/℃を越
えるものを用いると導電性ガラスシール材の熱膨張係数
を下げることが困難となる. 導電性フィラーが10重量%未満であるとシール材の電
気抵抗値が高くなりすぎ、30重量%を越えると、ホウ
クイ酸系のガラスの占める割合が少なくなり端子電極の
封着が困難になる.ガラスが35重量%未満であると端
子電極の封着が困難になり、70重量%を越えると導電
性フィラーおよび絶縁性セラミックフィラーの占める割
合が少なくなり必要量が得られない.く請求項2につい
て〉 使用する絶縁性セラミックフィラーの熱膨張係数を前記
絶縁体に対し8%〜75%の範囲と限定している.この
ため、シール材は絶縁体の熱膨張係数に近似しやすくな
る.よって、各材料の調合割合の著しい精密さを必要と
せず上記記載の作用効果が得られる, ガラスの平均粒径が350μ以下と限定し゛Cいるので
、加熱時、軸孔内への充填が良く、特に中心電極との封
着性を良好にできる. シール材の電気抵抗値を、加熱封着後、20℃で25k
Ωとしている.このため、火花エネルギーにより導電性
フィラーが焼け切れ難く、耐久性が向上する. [実施PA] 本発明の楕成(請求項l、2に対応)を第1図に示すス
パークプラグ100に適用した各実施例を第1表〜第5
表とともに説明する. 第1図に示すごとく、導電性ガラスシール材1は、筒状
主体金具2と、該主体金具2に嵌め込まれる軸孔3l付
きの絶縁体3と、前記軸孔31の先端側に嵌め込まれる
中心電wl4および後端側に嵌め込まれる端子電極5と
を有するスパークプラグ100の前記各電極4、5の後
端、先端に加熱封着されている. 導電性ガラスシール材1は、絶縁性セラミックフィラー
と、導電性フィラーと、ホウケイ酸系のガラスとを調合
してなる.絶縁性セラミックフイラーは、第1表のF1
〜F8、FIO、Filに示すように、窒化珪素(Sl
jN4).窒化アルミニウム(AI N) .窒化硼素
(BN) 、珪酸(SiO!).燐酸ジルコニル[ (
ZrO)2 Piota、チタン酸アルミニウム( ’
I’ i 0 x  ・Ajzos)、窒化珪素トアル
ミナ、窒化硼素ト珪酸であり、これらは単体または混合
してその合計を20重量%〜35重量%とじている.ま
た、熱膨張率は、最大でも7.7X10−’/”Cであ
り、好ましくは5、7×10″゜6/℃以下である.導
電性フィラーは、粒径(以下略)1。5μのグラフデイ
ト、1μ以下のカーボンブラック、45μの炭化硼素(
Ba C) 、30μの炭化珪素(SLC)、15μの
炭化チタン(TiC)、35μの銅粉、40μの鉄粉、
25μのアルミニウム粉、55μの亜鉛粉45μのフェ
ロボロン粉( F e −B )、25μのニッケルボ
ロン粉(Ni−B)、2.5μのチタニア(TLOx 
).5μのジルコニア(Zro2>.5μの安定化ジル
コニア(5%Y20,)、3μの酸化アンチモン(Sb
z O,)、10μの酸化スズ(Sno2)であり、第
2表のf1・〜fl7に示す組成明細表のように単体ま
たは混合して10重量%〜30重量%としている.ホウ
ケイ酸系のガラスは、第3表に示す物性を有するガラス
A(ホウゲイ酸ガラス)、ガラスB(ホウケイ酸バリウ
ムガラス)、ガラスC(ホウケイ酸ソーダガラス)、ガ
ラスD(ホウケイ酸リチウムガラス)、ガラスE(ホウ
ケイ酸鉛ガラス)を用い残部を槽成している.また、こ
れらのガラスの平均粒径は145μ〜225μである.
簡状主体金具2は、炭素鋼で作られ、先端のねじ部、後
端の後端部、中央の中胴部よりなる.ねじ部の外周には
機関への取付けねじ21が形成され、先端面に,前記中
心電極4の先端を覆うように略J字状の外側電極22(
ニッケル合金)が溶接されている.後端部の外周は六角
部23が形成され、後端は内方にかしめられるとともに
線パッキン24により絶縁体3を固定している.絶縁体
3は、窒化アルミニウム《第4表中では「窒ア』と略記
し以下のものも同様》、窒化珪素(窒珪)、アルミナ+
30%窒化アルミニウム(ア窒)、アルミナ+30%窒
化珪素+20%窒化アルミニウム(ア窒珪)で形成され
ている.この絶縁体3は、先端が径小の脚長部32とな
り、中央はテーバ面を介し径大となり、後端は先端より
やや径大のコルゲーション部33となっている.前記軸
孔31は、脚長部32(絶縁体3の先端》では径小に、
中央およびコルゲーション部33(絶縁体3の後端)で
は段部34を介し径大(直径4.5mm)に形成されて
いる.また、テーバ面35は主体金具2の内壁に形成さ
れたテーバ面26にパッキン27を介して係止されてい
る.中心電極4は、丸棒状の脚部41、該脚部41の後
端部に設けられ前記段部34に係止される鍔状部42お
よびさらに該鍔状部42の後に形成され、略矢羽状の頭
部43からなる.また、中心電極4は、表皮が耐熱金属
であるニッケル合金44(Ni90%以上)であり、軸
芯には良熱伝導性金属である銅(Cu)45が封入され
ている.この銅45の封入状態は中心電極4の先端付近
ではニッケル合金44の外表iIiJ=iでの距離を他
の部分より長くとり、頭部43の中央付近で露出するよ
うに行われている. 端子電極5は、炭素鋼で形成されて、ニッケルメッキさ
れ、前記軸孔31の後端側に嵌め込まれている.また、
後端は前記絶縁体3の後端より突出して配設されている
. つぎに、スパークプラグ100の導電性ガラスシール材
1の周辺部分の製造方法を説明する.■中心電極4を、
絶縁体3の径大の軸孔31側から脚部41を先にして差
し込む. ■第1表の絶縁性セラミックフィラー、第2表の組成の
導電性フィラー、および第3表のガラスを第4表の組成
となるように混合し、濃度5%のPVA水溶液、もしく
は同濃度のCMC溶液を適量加え、よく混合した後10
0℃の恒温乾燥器中で乾燥させ導電性ガラスシール材】
,の素地粉末とする. ■つぎに、この素地粉末を径大〈内径4。5 m +n
 )の軸孔31から0、5g〜0.6g入れ、押棒(図
示せず)により約200kgの荷重をかけ、粉末の充填
プレスを行う. ■850℃〜950℃で約10分同加熱し、素地粉末を
溶融させ端子電極5を圧入する.その後室温《20℃》
まで冷却させる. つぎに、第5表について説明する.第5表は、第4表の
各実施例のもののガラスシールの封着状態と、冷却後の
抵抗値を測定して記載している5また、JISB−80
31  3.3の衝撃試験器による耐衝撃性(抵抗値の
変化の有無),JISD−5102  3.11による
負荷寿命試@(抵抗値の変化率)結果もあわせて記載し
ている.「接合状態』の欄において、ガラスシール接合
が良好なものを「○』、不良なものを「×」、端子圧入
不可のものを[不可』としている.『耐衝撃性」は、各
実施例船のスパークプラグl00に前記衝撃試験器で楕
撃を加え、試験終了後に抵抗値を測定し、20℃の抵抗
値と比較して抵抗値に変化が認められないものを「0」
、変化を億か起こすものを「Δ』、変化を起こすものを
1゛×Jとしている. 『負荷寿命試験」は、各実施例社のスパークプラグ10
0を繰り返しスパークさせ導電性ガラスシール材1の導
電経路の耐久性を調べ、抵抗値の変化率がJIS規格内
のものを10」、外れたものを[×1としている. つぎに、導電性ガラスシール材1を用いたスパークプラ
グ100の作用および効果を述べる.(あ)第5表にお
いて、つぎのちのは、電極4、5の後端と先端とが軸孔
31内で加熱封着できないか困難である. 実施例N117、20、26、29、32、44、50
、62、71.また、実施例随1、5、8、12.15
−  18、21、24、27、30、33、36、3
9、45、48、51、55、59、63、64、65
、66、70、71のものは、絶縁性セラミックフィラ
ーがO重量%〜20重量%未満であり、更に実施例N[
14、7、11、14、17、20、26、29、32
、44、50、54、62のものは絶縁性セラミックフ
ィラーが40重量%以上であり除外される.本発明品の
導電性ガラスシール材1は、20重量%〜35重厘%の
範囲で、かつ、熱m張係数が7。7 X 1 0 −’
/℃以下である第1表記載の絶縁性セラミックフィラー
(Pi〜F8、FIO、F11)と、10重量%〜30
重量%の範囲で、第2表記載の導電性フィラー(fl〜
f17)と、35重量%〜70重量%の範囲で、第3表
記載のガラス《ガラスA〜E)とを調合している.この
ため導電性ガラスシール材1の熱m張係数が下がり、中
心電極4の後端と端子電極5の先端とを軸孔31内に加
熱封着する際、導電性ガラスシール材1の収縮が少なく
絶縁体3とシール材1との間に隙間が生じ難くて密着性
が良い.また、密着性が良いので、スパークブラグ10
0にJISB−8031による耐衝撃試験を行った場合
、大部分は良好な耐久性を示す.しかし、つぎのらのは
耐衝撃試験で抵抗値の変化を温か起こし、JISD−5
102による負1命試験でJIS規格を外れる.これは
、導電性ガラスシール材1を楕成する絶縁性セラミック
フィラー、導電性フィラー、およびガラスに用いる各材
料の種類によってそれらの最適値の範囲が異なるためで
ある.実施例Nt1i、4、8、11、12、14、1
5、17、21、24、27、30、33、36、39
、45、48、59、60.くい》使用する絶縁性セラ
ミックフィラーの熱膨張係数を絶縁体3に対し8%〜7
5%の範囲と限定している.このため、導電性ガラスシ
ール材1は絶縁体の熱膨張係数に近似しやすくなる.よ
って、各材料の調合割合の著しい精密さを必要とせず中
心t極4との良好な封着性が得られる.また、ガラスの
平均粒径を350μ以下と限定している.このため、鍔
状部42や頭部43と、軸孔31との隙問に導電性ガラ
スシール材1が良好に充填される.上記理由により、.
JISB−8031による耐衝撃性は大部分は良好であ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a sealing material for bonding a terminal electrode and a center electrode of a spark plug. [Prior Art J Japanese Patent Publication No. 19842/1984 discloses a sealing material for bonding a terminal electrode and a center electrode of a spark plug using an alumina insulator. This sealing material is
It consists of glass, conductive metal powder, and one or more rare earth element oxides and carbides. [Problems to be solved by the invention] However, conventional sealing materials have the following drawbacks. When the above sealing material is used for an insulator formed of a ceramic sintered body of nitride or oxygen nitride, the coefficient of thermal expansion of the sealing material is considerably larger than that of the above-mentioned insulator, and the wettability between the sealing material and the insulator is poor. Therefore, an R gap is created between the seal material and the insulator during cooling. For this reason, when the spark plug is subjected to a mechanical shock due to va-return, the connection with the terminal electrode and center electrode separates, causing poor conduction. An object of the present invention is to prevent a gap from forming between an insulator made of a low expansion ceramic sintered body and a sealing material during the cooling process when joining a terminal electrode and a center electrode, and to prevent the spark plug from being subjected to impact. The objective is to provide a sealing material that does not easily come apart even when exposed to heat. [Means for Solving the Problems] To achieve the above object, the present invention employs the following configuration. ■The sealing material has the following oval shape. A cylindrical metal shell, fitted into the metal shell, and formed mainly of nitride and oxygen nitride ceramic sintered bodies, and ?
.. Used in a spark plug having an insulator with a shaft hole having a coefficient of thermal expansion of 7X10-'/''C or less, a center electrode fitted into the front end side of the shaft hole, and a terminal electrode fitted into the rear end side, 20% by weight to 35% by weight of the sealing material that electrically connects the rear end of the center electrode and the tip of the terminal electrode and seals them by heat in the shaft hole.
and an insulating ceramic filler with a thermal m* coefficient of 7.7X10-6/°C or less, and 10% by weight to 3% by weight.
0% by weight conductive filler and 35% to 70% by weight
It is made by mixing with glass. (2) The sealing material has the structure (2) above, and also has the following structure. The sealing material used in the spark plug includes 20% to 35% by weight of an insulating ceramic filler whose thermal expansion coefficient is within the range of 8% to 75% relative to the insulator, and 10% to 30% by weight. % conductive filler and 35% to 70% by weight glass with an average particle size of 350μ or less,
After heat sealing, the electrical resistance value at 20°C is 25 kΩ or less. [Actions and Effects of the Invention] The present invention has the following actions and effects. Regarding Claim 1> The sealing material contains an insulating ceramic filler in a range of 201111% to 35% by weight and having a thermal tensile coefficient of 7.7X10-6/°C or less, and 10% to 30% by weight. Ij amount%
The conductive filler is mixed with 35% to 70% glass by weight. For this reason, the coefficient of thermal expansion of the sealing material decreases, and when the rear end of the center electrode and the tip of the terminal electrode are heat-sealed into the shaft hole, there is less shrinkage of the sealing material, and there is a gap between the insulator and the sealing material. Excellent adhesion with no gaps. In addition, it has excellent adhesion, so even if the spark plug is subjected to repeated mechanical shocks, the connection between the terminal electrode and center electrode will not separate, and the seal to the shaft hole will be maintained, ensuring a stable conduction path. Ru. The reason for the numerical limitation is as follows. If the amount of insulating ceramic filler is less than 20% by weight, it is too small and it is difficult to lower the heat ilI5i coefficient of the sealing material, and if it exceeds 35% by weight, it is too large and it becomes difficult to seal the terminal electrodes. Also, the coefficient of thermal expansion is 7. If a material with a coefficient exceeding 7 x 10-6/°C is used, it will be difficult to lower the thermal expansion coefficient of the conductive glass sealing material. If the content of the conductive filler is less than 10% by weight, the electrical resistance value of the sealing material will be too high, and if it exceeds 30% by weight, the proportion of the borosilicate glass will decrease, making it difficult to seal the terminal electrodes. If the glass content is less than 35% by weight, it will be difficult to seal the terminal electrode, and if it exceeds 70% by weight, the proportion of the conductive filler and the insulating ceramic filler will be too small to obtain the required amount. Regarding Claim 2> The coefficient of thermal expansion of the insulating ceramic filler used is limited to a range of 8% to 75% with respect to the insulator. Therefore, the thermal expansion coefficient of the sealing material can be easily approximated to that of the insulator. Therefore, the above-mentioned effects can be obtained without requiring extreme precision in the mixing ratio of each material.Since the average particle size of the glass is limited to 350μ or less, it can be easily filled into the shaft hole during heating. In particular, the sealing properties with the center electrode can be improved. The electrical resistance value of the sealing material is 25k at 20℃ after heat sealing.
It is set to Ω. Therefore, the conductive filler is difficult to burn out due to spark energy, improving durability. [Implementation PA] Examples in which the elliptical structure of the present invention (corresponding to claims 1 and 2) is applied to the spark plug 100 shown in FIG. 1 are shown in Tables 1 to 5.
This will be explained along with the table. As shown in FIG. 1, the conductive glass sealing material 1 includes a cylindrical metal shell 2, an insulator 3 with a shaft hole 3l fitted into the metal shell 2, and a center fitted into the tip side of the shaft hole 31. The rear end and tip of each of the electrodes 4 and 5 of the spark plug 100 has an electric terminal 4 and a terminal electrode 5 that is fitted into the rear end side. The conductive glass sealing material 1 is made by blending an insulating ceramic filler, a conductive filler, and a borosilicate glass. The insulating ceramic filler is F1 in Table 1.
~ As shown in F8, FIO, Fil, silicon nitride (Sl
jN4). Aluminum nitride (AIN). Boron nitride (BN), silicic acid (SiO!). Zirconyl phosphate [ (
ZrO)2 Piota, aluminum titanate ('
I' i0 The coefficient of thermal expansion is at most 7.7 x 10-'/"C, preferably 5.7 x 10"/"C or less. The conductive fillers include Graphdate with a particle size (hereinafter omitted) of 1.5μ, carbon black with a particle size of 1μ or less, and boron carbide (45μ).
Ba C), 30μ silicon carbide (SLC), 15μ titanium carbide (TiC), 35μ copper powder, 40μ iron powder,
25μ aluminum powder, 55μ zinc powder, 45μ ferroboron powder (F e -B), 25μ nickel boron powder (Ni-B), 2.5μ titania (TLOx)
). 5μ zirconia (Zro2>.5μ stabilized zirconia (5% Y20,), 3μ antimony oxide (Sb
zO,), 10μ tin oxide (Sno2), and as shown in the composition table shown in Table 2, f1 to fl7, it is used singly or in combination to give 10% to 30% by weight. Borosilicate-based glasses include glass A (borosilicate glass), glass B (barium borosilicate glass), glass C (sodium borosilicate glass), glass D (lithium borosilicate glass), and glass D (lithium borosilicate glass), which have the physical properties shown in Table 3. The rest of the tank is made of glass E (lead borosilicate glass). Moreover, the average particle diameter of these glasses is 145μ to 225μ.
The simple metal shell 2 is made of carbon steel and consists of a threaded portion at the tip, a rear end portion at the rear end, and a middle body portion at the center. A mounting screw 21 to the engine is formed on the outer periphery of the threaded portion, and a substantially J-shaped outer electrode 22 (
Nickel alloy) is welded. A hexagonal part 23 is formed on the outer periphery of the rear end, and the rear end is caulked inward and the insulator 3 is fixed with a wire packing 24. The insulator 3 is made of aluminum nitride (abbreviated as "nitria" in Table 4 and the same applies to the following), silicon nitride (silicon nitride), alumina +
It is made of 30% aluminum nitride (anitride), alumina + 30% silicon nitride + 20% aluminum nitride (silicon anitride). This insulator 3 has a long leg portion 32 having a small diameter at the tip, a large diameter portion at the center through a tapered surface, and a corrugation portion 33 having a slightly larger diameter at the rear end. The shaft hole 31 has a smaller diameter at the long leg portion 32 (the tip of the insulator 3).
The central and corrugated portions 33 (rear end of the insulator 3) are formed with a large diameter (4.5 mm in diameter) via a stepped portion 34. Further, the tapered surface 35 is locked to a tapered surface 26 formed on the inner wall of the metal shell 2 via a packing 27. The center electrode 4 includes a round bar-shaped leg 41, a flange 42 provided at the rear end of the leg 41 and locked to the step 34, and further formed behind the flange 42. It consists of a feather-like head 43. The outer surface of the center electrode 4 is made of a nickel alloy 44 (90% or more Ni), which is a heat-resistant metal, and the axial core is filled with copper (Cu) 45, which is a metal with good thermal conductivity. The copper 45 is encapsulated in such a way that near the tip of the center electrode 4, the distance from the outer surface iIiJ=i of the nickel alloy 44 is longer than in other parts, and the copper 45 is exposed near the center of the head 43. The terminal electrode 5 is made of carbon steel, plated with nickel, and fitted into the rear end of the shaft hole 31. Also,
The rear end is arranged to protrude from the rear end of the insulator 3. Next, a method for manufacturing the peripheral portion of the conductive glass sealing material 1 of the spark plug 100 will be explained. ■Center electrode 4,
Insert the insulator 3 from the large diameter shaft hole 31 side with the leg 41 first. ■ Mix the insulating ceramic filler in Table 1, the conductive filler with the composition in Table 2, and the glass in Table 3 to have the composition in Table 4, and use a PVA aqueous solution with a concentration of 5% or a PVA aqueous solution with the same concentration. After adding an appropriate amount of CMC solution and mixing well,
Conductive glass sealing material dried in a constant temperature dryer at 0℃]
, as a base powder. ■Next, this base powder is made into a large diameter (inner diameter 4.5 m + n
), 0.5 to 0.6 g is put into the shaft hole 31 of the powder, and a load of about 200 kg is applied using a push rod (not shown) to perform a powder filling press. ■Heat at 850°C to 950°C for about 10 minutes to melt the base powder and press-fit the terminal electrode 5. Then room temperature (20℃)
Cool until cooled. Next, Table 5 will be explained. Table 5 shows the sealed state of the glass seal and the resistance value after cooling of each example in Table 4.
31 The results of impact resistance (presence or absence of change in resistance value) using the impact tester in 3.3 and load life test @ (rate of change in resistance value) according to JISD-5102 3.11 are also listed. In the ``Joining condition'' column, items with good glass seal bonding are marked as ``○'', those with poor bonding are marked as ``x'', and items that cannot be press-fitted with terminals are marked as ``impossible''. "Impact resistance" is determined by applying an elliptical impact to the spark plug 100 of each example ship using the impact tester, measuring the resistance value after the test, and comparing it with the resistance value at 20 degrees Celsius. "0" for things that cannot be done
, the one that causes a change is "Δ", and the one that causes a change is 1゛×J.
The durability of the conductive path of the conductive glass sealing material 1 was examined by repeatedly sparking 0, and the rate of change in resistance value was rated as 10'' if it was within the JIS standard, and 1 if it was outside the JIS standard. Next, the functions and effects of the spark plug 100 using the conductive glass sealing material 1 will be described. (A) In Table 5, in the following case, it is difficult to heat seal the rear ends and tips of the electrodes 4 and 5 within the shaft hole 31. Examples N117, 20, 26, 29, 32, 44, 50
, 62, 71. Also, Examples 1, 5, 8, 12.15
- 18, 21, 24, 27, 30, 33, 36, 3
9, 45, 48, 51, 55, 59, 63, 64, 65
, 66, 70, and 71, the insulating ceramic filler is O weight % to less than 20 weight %, and Example N[
14, 7, 11, 14, 17, 20, 26, 29, 32
, 44, 50, 54, and 62 have an insulating ceramic filler content of 40% by weight or more and are excluded. The conductive glass sealing material 1 of the present invention has a content in the range of 20% by weight to 35% by weight, and a thermal tensile coefficient of 7.7 x 10 -'
/°C or less and the insulating ceramic fillers listed in Table 1 (Pi to F8, FIO, F11) and 10% by weight to 30% by weight.
The conductive fillers listed in Table 2 (fl~
f17) and the glasses listed in Table 3 (Glass A to E) in the range of 35% to 70% by weight. Therefore, the thermal tensile coefficient of the conductive glass sealing material 1 decreases, and when the rear end of the center electrode 4 and the tip of the terminal electrode 5 are heat-sealed in the shaft hole 31, the contraction of the conductive glass sealing material 1 is reduced. There are few gaps between the insulator 3 and the sealing material 1, resulting in good adhesion. In addition, since it has good adhesion, Spark Blag 10
When the impact resistance test according to JISB-8031 was conducted on 0.0, most of them showed good durability. However, the next one caused a change in resistance value in the impact test, and was JISD-5.
The negative 1 life test by 102 deviates from the JIS standard. This is because the range of their optimum values differs depending on the type of insulating ceramic filler forming the conductive glass sealing material 1, the conductive filler, and each material used for the glass. Examples Nt1i, 4, 8, 11, 12, 14, 1
5, 17, 21, 24, 27, 30, 33, 36, 39
, 45, 48, 59, 60. 》The coefficient of thermal expansion of the insulating ceramic filler used is 8% to 7 relative to the insulator 3.
The range is limited to 5%. Therefore, the conductive glass sealing material 1 easily approximates the coefficient of thermal expansion of the insulator. Therefore, good sealing performance with the center t-pole 4 can be obtained without requiring extreme precision in the mixing ratio of each material. Additionally, the average particle size of the glass is limited to 350μ or less. Therefore, the conductive glass sealing material 1 is well filled into the gap between the flange portion 42, the head portion 43, and the shaft hole 31. Due to the above reasons.
Impact resistance according to JISB-8031 is mostly good.

導電性ガラスシール材の電気抵抗値を、加熱封着後、2
0℃で25kΩとしている.このため、火花エネルギー
により導電性フィラーが焼け切れ難く、大部分、JIS
D−5102による負荷寿命試験に優れた耐久性を奏す
る。
The electrical resistance value of the conductive glass sealing material is 2 after heat sealing.
It is set to 25kΩ at 0℃. For this reason, the conductive filler is difficult to burn out due to spark energy, and most of the conductive filler is
It shows excellent durability in the load life test using D-5102.

つぎに、本発明の楕成(謂求項1、2に対応)を第2図
に示すスパークプラグ200に適応した各実施例を第6
表とともに説明する. 第2図に示すごとく、下側導電性ガラスシール材6およ
び上側導電性ガラスシール材7は、抵抗体8を挟んで、
中心電極4の後端側と端子電極5の先端側に配され、ス
パークプラグ200の軸孔31内で加熱封着されている
. 各ガラスシール材6、7は第5表の組成割合で調合され
、抵抗体8は、ガラスD80重量%、ジルコニア15重
量%、カーボンブラック5重量%の組成割合で調合され
ている.それぞれの粉末重量はガラスシール材6が0.
2g,ガラスシール材7が0.2g〜0,6g、抵抗体
8の抵抗材が0.6gである.また、加熱封着温度は9
50℃、シール寸法1は全て10mrnである.各実施
例より、下側導電性ガラスシール材6および上側導電性
ガラスシール材7は、つぎの作用効果を奏する. 実施例Na77 (従来晶)に示す、アルミナ絶縁体く
第6表中では1′アル」と略記)では良好な耐久性を示
すガラスシール材料も、絶縁体が窒化物や酸素窒素化物
セラミック焼結体で形成された低i張係数のものである
と、実施例NQ76(比較晶)に示すようにJ ISB
−8031の耐衝撃試験に対し、耐久性に劣る. 実施例NQ72、73(発明晶)に示すように、下側導
電性ガラスシール材6および上側導電性ガラスシール材
7に本発明の構成を用いたスパークプラグ200はJI
SB−8031の耐衝撃試験に対し、優れた耐久性を示
す.しかし、実施例随74、75(比較晶》に示すよう
に、どちらかのガラスシール材に従来の材料を使用する
と耐久性に劣り、実用に供し得なくなる. (以下余白) 第1表(A) 第2表 次頁に続く 第1表CB) 第3表(A) 第4表 第3表(B) 熱膨張係数 条件: r. t. 〜400℃(×10 6/℃) 第5表 第6表
Next, we will discuss each embodiment in which the elliptical structure (corresponding to so-called claims 1 and 2) of the present invention is applied to the spark plug 200 shown in FIG.
This will be explained along with the table. As shown in FIG. 2, the lower conductive glass seal material 6 and the upper conductive glass seal material 7 sandwich the resistor 8.
They are arranged on the rear end side of the center electrode 4 and on the front end side of the terminal electrode 5, and are heat-sealed within the shaft hole 31 of the spark plug 200. Each of the glass sealing materials 6 and 7 was prepared with the composition ratios shown in Table 5, and the resistor 8 was prepared with a composition ratio of 80% by weight of glass D, 15% by weight of zirconia, and 5% by weight of carbon black. The powder weight of each glass seal material 6 is 0.
2g, the glass sealing material 7 weighs 0.2g to 0.6g, and the resistance material of the resistor 8 weighs 0.6g. In addition, the heat sealing temperature is 9
50℃, seal dimension 1 is all 10 mrn. From each example, the lower conductive glass seal material 6 and the upper conductive glass seal material 7 have the following effects. Example Na77 (conventional crystal) The alumina insulator (abbreviated as 1'Al in Table 6) shows good durability. As shown in Example NQ76 (comparative crystal), J ISB
- Poor durability in impact resistance test of 8031. As shown in Examples NQ72 and 73 (invention crystals), the spark plug 200 using the structure of the present invention for the lower conductive glass sealing material 6 and the upper conductive glass sealing material 7 is JI
Shows excellent durability in the impact resistance test of SB-8031. However, as shown in Examples 74 and 75 (comparative crystals), if conventional materials are used for either glass sealing material, the durability will be poor and it will not be practical. ) Table 2 Table 1 CB continued on next page) Table 3 (A) Table 4 Table 3 (B) Thermal expansion coefficient conditions: r. t. ~400℃ (×106/℃) Table 5 Table 6

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例Nlll〜lIQ71に用いた、導電性
ガラスシール材が封着されたスパークプラグの部分断面
図である. 第2図は実施例N11?2〜k77に用いた、上側導電
性ガラスシール材、下側導電性ガラスシール材が封着さ
れた、抵抗体を有するスパークプラグの部分断面図であ
る. 図中 1・・・導電性ガラスシール材(シール材)2・
・・主体金具 3・・・絶縁体 4・・・中心電極 5
・・・端子電極 6・・・下部導電性ガラスシール材(
シール材) 7・・・上部導電性ガラスシール材(シー
ル材) 8・・・抵抗体 31・・・軸孔 100、2
00・・・スパークプラグ
FIG. 1 is a partial sectional view of a spark plug sealed with a conductive glass sealant, which was used in Examples Nllll to IIQ71. FIG. 2 is a partial sectional view of a spark plug having a resistor and having an upper conductive glass sealing material and a lower conductive glass sealing material sealed together, which was used in Examples N11?2 to K77. In the diagram 1... Conductive glass sealing material (sealing material) 2.
...Metal shell 3...Insulator 4...Center electrode 5
... Terminal electrode 6 ... Lower conductive glass sealing material (
Seal material) 7... Upper conductive glass seal material (seal material) 8... Resistor 31... Shaft hole 100, 2
00...Spark plug

Claims (1)

【特許請求の範囲】 1)筒状主体金具と、 該主体金具に嵌め込まれ、窒化物および酸素窒素化物セ
ラミック焼結体などを主体として形成されるとともに、
7.7×10^−^6/℃以下の熱膨脹係数を有する軸
孔付きの絶縁体と、 前記軸孔の先端側に嵌め込まれる中心電極および後端側
に嵌め込まれる端子電極とを有するスパークプラグに用
いられ、 前記中心電極の後端と、端子電極の先端とを電気的に接
続するとともに前記軸孔内で加熱封着するシール材にお
いて、 20重量%〜35重量%の範囲で、かつ、熱膨張係数が
7.7×10^−^6/℃以下である絶縁性セラミック
フィラーと、 10重量%〜30重量%の導電性フィラーと、35重量
%〜70重量%のガラスと を調合してなることを特徴とするスパークプラグのシー
ル材。 2)前記スパークプラグに用いられ、 前記シール材は、 熱膨張係数を前記絶縁体に対し8%〜75%の範囲内と
される20重量%〜35重量%の絶縁性セラミックフィ
ラーと、 10重量%〜30重量%の導電性フィラーと、35重量
%〜70重量%で、かつ、平均粒径が350μ以下のガ
ラスと を調合し、加熱封着後、20℃における電気抵抗値が2
5kΩ以下であることを特徴とするスパープラグのシー
ル材。
[Scope of Claims] 1) A cylindrical metal shell, which is fitted into the metal shell and is formed mainly of nitride and oxygen-nitride ceramic sintered bodies, and
A spark plug having an insulator with a shaft hole having a coefficient of thermal expansion of 7.7×10^-^6/°C or less, a center electrode fitted into the front end side of the shaft hole, and a terminal electrode fitted into the rear end side of the shaft hole. in the sealing material used for electrically connecting the rear end of the center electrode and the tip of the terminal electrode and heat-sealing them in the shaft hole, in a range of 20% to 35% by weight, and An insulating ceramic filler with a thermal expansion coefficient of 7.7 x 10^-^6/℃ or less, 10% to 30% by weight of a conductive filler, and 35% to 70% by weight of glass are blended. A spark plug sealing material that has the characteristic of: 2) Used in the spark plug, the sealing material includes: 20% to 35% by weight of an insulating ceramic filler whose thermal expansion coefficient is within the range of 8% to 75% relative to the insulator; % to 30% by weight of conductive filler and 35% to 70% by weight of glass with an average particle size of 350μ or less are mixed, and after heat sealing, the electrical resistance value at 20°C is 2.
A spar plug sealing material characterized by a resistance of 5kΩ or less.
JP5854189A 1989-03-10 1989-03-10 Sealing material for spark plug Pending JPH02239582A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5854189A JPH02239582A (en) 1989-03-10 1989-03-10 Sealing material for spark plug
BR9001203A BR9001203A (en) 1989-03-10 1990-03-09 IGNITION SEAL SEALING MATERIAL FOR THE INTERNAL COMBUSTION ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5854189A JPH02239582A (en) 1989-03-10 1989-03-10 Sealing material for spark plug

Publications (1)

Publication Number Publication Date
JPH02239582A true JPH02239582A (en) 1990-09-21

Family

ID=13087303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5854189A Pending JPH02239582A (en) 1989-03-10 1989-03-10 Sealing material for spark plug

Country Status (2)

Country Link
JP (1) JPH02239582A (en)
BR (1) BR9001203A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003022886A (en) * 2001-07-06 2003-01-24 Ngk Spark Plug Co Ltd Spark plug
JP2011084463A (en) * 2009-09-15 2011-04-28 Ngk Spark Plug Co Ltd Spark plug
WO2020120121A1 (en) 2018-12-13 2020-06-18 Robert Bosch Gmbh Spark plug resistance element and spark plug

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003022886A (en) * 2001-07-06 2003-01-24 Ngk Spark Plug Co Ltd Spark plug
US6744189B2 (en) 2001-07-06 2004-06-01 Ngk Spark Plug Co., Ltd. Spark plug
CN100346545C (en) * 2001-07-06 2007-10-31 日本特殊陶业株式会社 Sparking plug
KR100859068B1 (en) * 2001-07-06 2008-09-17 니혼도꾸슈도교 가부시키가이샤 Spark plug
JP4578025B2 (en) * 2001-07-06 2010-11-10 日本特殊陶業株式会社 Spark plug
JP2011084463A (en) * 2009-09-15 2011-04-28 Ngk Spark Plug Co Ltd Spark plug
WO2020120121A1 (en) 2018-12-13 2020-06-18 Robert Bosch Gmbh Spark plug resistance element and spark plug
JP2022511462A (en) * 2018-12-13 2022-01-31 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Spark plug resistor element and spark plug

Also Published As

Publication number Publication date
BR9001203A (en) 1991-03-19

Similar Documents

Publication Publication Date Title
JP3813708B2 (en) Manufacturing method of spark plug
JP4249161B2 (en) Spark plug with resistor
US4939409A (en) Spark plug with a surface discharge section
EP0303353B1 (en) Metallized glass seal resistor composition
WO2011036871A1 (en) Spark plug
US6699807B2 (en) Glass ceramic material, method for producing the same and spark plug containing such a glass ceramic material
US6580202B1 (en) Electrically conductive sealing mass for spark plugs
US4144474A (en) Low noise resistance containing spark plug
JPH02239582A (en) Sealing material for spark plug
US6693053B2 (en) Glass and glass powder mixture and use thereof for the production of a glass ceramic
JP2004039634A (en) Spark plug, spark plug insulator, and method of manufacturing spark plug
JP3734293B2 (en) Resistor plug
JPS6134877A (en) Ignition plug
JP4834264B2 (en) Spark plug
JPH04167385A (en) Spark plug for internal combustion engine
JP2003342655A (en) Alloy, electrode containing the alloy and ignition device
US3360676A (en) Spark plug with a sealing glass mixture with graphite and iron, nickel or cobalt
JPH02220384A (en) Resistor for spark plug
JP5238003B2 (en) Spark plug
KR100287231B1 (en) Spark plug and manufacturing method
JPH09329334A (en) Spark plug accommodating resistor
JPH03226982A (en) Spark plug for internal combustion engine
JPH1022042A (en) Electronic part sealing body
JPH0751752Y2 (en) Ceramic heater
JPH02155184A (en) Spark plug having nitride series ceramic insulator