JPH09302004A - Synthesis for fine monodisperse particle - Google Patents

Synthesis for fine monodisperse particle

Info

Publication number
JPH09302004A
JPH09302004A JP11907996A JP11907996A JPH09302004A JP H09302004 A JPH09302004 A JP H09302004A JP 11907996 A JP11907996 A JP 11907996A JP 11907996 A JP11907996 A JP 11907996A JP H09302004 A JPH09302004 A JP H09302004A
Authority
JP
Japan
Prior art keywords
monomer
particles
polymerization
chain transfer
transfer agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11907996A
Other languages
Japanese (ja)
Other versions
JP3391979B2 (en
Inventor
Yasuhiko Nagai
康彦 永井
Haruma Kawaguchi
春馬 川口
Kazuhiko Nishimura
和彦 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP11907996A priority Critical patent/JP3391979B2/en
Publication of JPH09302004A publication Critical patent/JPH09302004A/en
Application granted granted Critical
Publication of JP3391979B2 publication Critical patent/JP3391979B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain fine monodisperse particles having a low molecular weight and a narrow particle diameter distribution and being desirable as seeds suited for seed polymerization by adding a specified amount of a specified chain transfer agent to the reaction system in dispersing a polymerizable unsaturated monomer and a polymerization initiator in water and heat-polymerizing the monomer. SOLUTION: In a process for synthesizing fine monodisperse particles by dispersing a polymerizable unsaturated monomer (which may be any monofunctional monomer, desirably a styrene derivative, that is not highly soluble in water) and a polymerization initiator in water and heating the dispersion to polymerize the monomer, a 10C or lower alkyl mercaptan type chain transfer agent (a 6-10C linear alkyl mercaptan is lowly odorous and is therefore desirable) in an amount 0.5-15 times as high as the weight of the polymerization initiator is added to the reaction system. According to the above process, polymer particles having a low molecular weight and having a narrow particle diameter distribution, i.e., being monodisperse can be obtained, and the obtained fine polymer particles have high swelling power and can be used as seeds suitable for seed polymerization.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、液晶表示用スペー
サ、カラム用の充填剤、診断薬用の担体等に用いること
ができる単分散微粒子の合成方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for synthesizing monodisperse fine particles which can be used as a spacer for liquid crystal display, a filler for columns, a carrier for diagnostic agents, and the like.

【0002】[0002]

【従来の技術】液晶表示用スペーサ、カラム用の充填
剤、診断薬用の担体等に用いられている重合体粒子は、
その粒子径が均一であることが要求される。従来、この
ような粒子を得る方法としては、主に懸濁重合で得られ
た粒子を分級して粒子の均一化を行う場合が多かった。
しかしながら、このような方法では、得られる粒子の収
率が低く、また粒子の均一性も十分満足できるものでは
なかった。
Polymer particles used as spacers for liquid crystal displays, fillers for columns, carriers for diagnostic agents, etc.
The particle size is required to be uniform. Conventionally, as a method for obtaining such particles, there have been many cases where particles obtained mainly by suspension polymerization are classified to homogenize the particles.
However, in such a method, the yield of the obtained particles was low, and the uniformity of the particles was not sufficiently satisfactory.

【0003】単分散微粒子を製造する他の方法として、
スチレン系重合体等の単分散微粒子にビニル系単量体を
吸収させた後、重合を行い、その粒子径を増大させるシ
ード重合法が知られている。この方法で粒子径が1〜1
0μm前後の粒子を得るためには、微小な重合体粒子に
単量体を吸収させて重合する工程を複数回繰り返す必要
がある。このシード重合法では、生成する粒子の均一性
が低く、重合速度が低い点に問題があった。
As another method for producing monodisperse fine particles,
A seed polymerization method is known in which monodispersed fine particles such as a styrene polymer are allowed to absorb a vinyl monomer and then polymerized to increase the particle diameter. Particle size is 1 to 1 by this method
In order to obtain particles of about 0 μm, it is necessary to repeat the step of allowing the fine polymer particles to absorb the monomer and polymerizing it, a plurality of times. This seed polymerization method has a problem in that the uniformity of particles formed is low and the polymerization rate is low.

【0004】また、この方法とは別に、特公昭57−2
4369号公報に代表される2段階膨潤シード重合法が
知られている。この方法によれば、均一な粒子径の重合
体を得ることができるが、予めシード粒子中に膨潤助剤
と呼ばれる疎水性有機化合物を吸収させ、シード粒子の
膨潤能力を高めた後に、ビニル系単量体を膨潤させて重
合を行う必要がある。このような方法では、膨潤助剤と
単量体の2つの吸収工程が必要であるため、作業が煩雑
になるという問題があった。また重合に関与しない膨潤
助剤が、重合後に粒子から溶出してくるという問題もあ
った。
In addition to this method, Japanese Patent Publication No. 57-2
A two-step swelling seed polymerization method represented by 4369 is known. According to this method, a polymer having a uniform particle diameter can be obtained, but after a hydrophobic organic compound called a swelling aid is absorbed in the seed particles in advance to enhance the swelling ability of the seed particles, a vinyl-based polymer is used. It is necessary to swell the monomer and perform polymerization. In such a method, two steps for absorbing the swelling aid and the monomer are required, and thus there is a problem that the work becomes complicated. There is also a problem that a swelling aid that does not participate in the polymerization elutes from the particles after the polymerization.

【0005】また、膨潤助剤を用いずとも、重合度の低
いシード粒子であれば、高い膨潤能力を示すことが知ら
れており、このような重合度の低いシード粒子を用いれ
ば、1段階で1〜10μmの粒子を得ることができる。
特開昭54−97582号公報では、乳化重合時に連鎖
移動剤を添加し、分子量1万以下のシード粒子を作製
し、これを用いてシード重合する方法が開示されてい
る。しかしながら、単に連鎖移動剤を加えるだけでは、
分子量の低下は生じるものの、粒子径分布が広がる傾向
にある。従って、低分子量でかつ単分散な粒子は得られ
ていないのが現状である。また該公報の方法で用いられ
ているブタンチオール及びプロパンチオールなどのメル
カプタン系連鎖移動剤は、一般に強い臭気があり作業性
が悪いことも問題となっている。
Further, it is known that seed particles having a low degree of polymerization show a high swelling ability without using a swelling auxiliary agent. If such seed particles having a low degree of polymerization are used, it is possible to use one step. It is possible to obtain particles of 1 to 10 μm.
JP-A-54-97582 discloses a method in which a chain transfer agent is added during emulsion polymerization to prepare seed particles having a molecular weight of 10,000 or less, and seed polymerization is performed using the seed particles. However, if you simply add a chain transfer agent,
Although the molecular weight decreases, the particle size distribution tends to widen. Therefore, under the present circumstances, monodisperse particles having a low molecular weight have not been obtained. Further, the mercaptan-based chain transfer agents such as butanethiol and propanethiol used in the method of the above publication generally have a strong odor and have poor workability, which is also a problem.

【0006】[0006]

【発明が解決しようとする課題】上述のように、シード
重合において、1〜10μmの粒子を得るためには、分
子量が10万以下と低く、かつ単分散なシード粒子が必
要となる。
As described above, in seed polymerization, monodisperse seed particles having a low molecular weight of 100,000 or less are required in order to obtain particles having a particle size of 1 to 10 μm.

【0007】本発明の目的は、このようなシード重合に
おけるシード粒子として用いることが可能な、低分子量
でかつ単分散なすなわち粒子径分布の狭い重合体粒子を
合成する方法を提供することにある。
An object of the present invention is to provide a method for synthesizing polymer particles having a low molecular weight and being monodispersed, that is, having a narrow particle size distribution, which can be used as seed particles in such seed polymerization. .

【0008】[0008]

【課題を解決するための手段】本発明の単分散微粒子の
合成方法は、重合性不飽和単量体及び重合開始剤を水中
に分散し、これを加熱することによって単量体を重合さ
せて単分散微粒子を合成する方法であり、炭素数が10
以下のアルキルメルカプタン系連鎖移動剤を重合開始剤
に対し重量で0.5〜15倍量添加して単量体を重合さ
せることを特徴としている。
The method for synthesizing monodisperse fine particles of the present invention comprises dispersing a polymerizable unsaturated monomer and a polymerization initiator in water, and heating this to polymerize the monomer. It is a method for synthesizing monodisperse fine particles and has 10 carbon atoms.
It is characterized in that the following alkyl mercaptan-based chain transfer agent is added in an amount of 0.5 to 15 times by weight with respect to the polymerization initiator to polymerize the monomer.

【0009】本発明の合成方法における重合法は、乳化
剤を用いない、いわゆるソープフリー重合と呼ばれる重
合法であり、その生成粒子の粒子径分布が極めて狭いこ
とが知られている。本発明においては、このような重合
の際に一定量の特定の連鎖移動剤を添加することによ
り、狭い粒子径分布で分子量の低い重合体微粒子を製造
している。
The polymerization method in the synthetic method of the present invention is a so-called soap-free polymerization method which does not use an emulsifier, and it is known that the particle size distribution of the produced particles is extremely narrow. In the present invention, polymer fine particles having a narrow molecular size distribution and a low molecular weight are produced by adding a certain amount of a specific chain transfer agent during such polymerization.

【0010】本発明において用いられる重合性不飽和単
量体としては、単官能モノマーで水に著しく溶解しない
ものであれば特に限定されない。例えば、スチレン、α
−メチルスチレン、p−メチルスチレン、p−クロロス
チレン、クロロメチルスチレン等のスチレン誘導体;酢
酸ビニル、プロピオン酸ビニル等のビニルエステル類;
アクリロニトリル等の不飽和ニトリル類;(メタ)アク
リル酸メチル、(メタ)アクリル酸エチル、(メタ)ア
クリル酸ブチル、(メタ)アクリル酸2−エチルヘキシ
ル、(メタ)アクリル酸ステアリル、エチレングリコー
ル(メタ)アクリレート、トリフルオロエチル(メタ)
アクリレート、ペンタフルオロプロピル(メタ)アクリ
レート、シクロヘキシル(メタ)アクリレート、メトキ
シポリエチレングリコール(メタ)アクリレート等の
(メタ)アクリル酸エステル誘導体等が挙げられる。こ
れらの単量体の中でも、スチレン誘導体が好ましい。こ
れらの単量体は単独で用いてもよいし、複数種類を用い
てもよい。
The polymerizable unsaturated monomer used in the present invention is not particularly limited as long as it is a monofunctional monomer and does not significantly dissolve in water. For example, styrene, α
-Styrene derivatives such as methylstyrene, p-methylstyrene, p-chlorostyrene and chloromethylstyrene; vinyl esters such as vinyl acetate and vinyl propionate;
Unsaturated nitriles such as acrylonitrile; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate, ethylene glycol (meth) Acrylate, trifluoroethyl (meth)
Examples thereof include (meth) acrylic acid ester derivatives such as acrylate, pentafluoropropyl (meth) acrylate, cyclohexyl (meth) acrylate, and methoxypolyethylene glycol (meth) acrylate. Among these monomers, the styrene derivative is preferable. These monomers may be used alone or in plural kinds.

【0011】本発明において用いられる重合開始剤は、
通常の乳化重合及びソープフリー重合で使われるものを
用いることができ、特に限定されるものではないが、例
えば、過硫酸カリウムやアゾ系開始剤を使用することが
できる。
The polymerization initiator used in the present invention is
What is used by usual emulsion polymerization and soap free polymerization can be used, For example, potassium persulfate or an azo initiator can be used although it is not particularly limited.

【0012】本発明において用いられるアルキルメルカ
プタン系連鎖移動剤は、炭素数が10以下のものであ
る。炭素数が10を超えると、連鎖移動の効果が低下
し、望ましい分子量まで下げるためには多量の連鎖移動
剤を添加することが必要となる。連鎖移動剤を多量に用
いると、粒子径分布が広がる傾向にあるため望ましくな
い。また炭素数が小さくても、分子量低減の効果は十分
に得ることができるので、炭素数が10以下であれば特
に炭素数の下限値は限定されない。しかしながら、炭素
数の小さい、すなわち鎖長の短いメルカプタンは一般に
臭気があるため作業上の面から好ましくない。従って、
より好ましくは、臭気の少ない炭素数6〜10の直鎖ア
ルキルメルカプタンが用いられる。
The alkyl mercaptan chain transfer agent used in the present invention has 10 or less carbon atoms. If the number of carbon atoms exceeds 10, the effect of chain transfer decreases, and it is necessary to add a large amount of chain transfer agent in order to reduce the molecular weight to a desired value. When a large amount of chain transfer agent is used, the particle size distribution tends to widen, which is not desirable. Even if the carbon number is small, the effect of reducing the molecular weight can be sufficiently obtained, so that the lower limit of the carbon number is not particularly limited as long as the carbon number is 10 or less. However, mercaptans having a small number of carbon atoms, that is, having a short chain length, generally have an odor and are not preferable in terms of work. Therefore,
More preferably, a linear alkyl mercaptan having 6 to 10 carbon atoms, which has a low odor, is used.

【0013】本発明において、アルキルメルカプタン系
連鎖移動剤の使用量は、重合開始剤に対し重量で0.5
〜15倍量であり、より好ましくは1〜13倍量であ
る。連鎖移動剤の使用量が少なすぎると分子量の低下の
効果が十分でなく、また連鎖移動剤の使用量が多すぎる
と、分子量は低下するものの、粒子径分布が大きくなる
ため好ましくない。本発明で規定された範囲の連鎖移動
剤を用いることにより、分子量が10万以下の低分子量
であり、かつ単分散な重合体粒子を得ることができる。
In the present invention, the amount of the alkyl mercaptan chain transfer agent used is 0.5 by weight with respect to the polymerization initiator.
˜15 times, more preferably 1 to 13 times. If the amount of the chain transfer agent used is too small, the effect of lowering the molecular weight is not sufficient, and if the amount of the chain transfer agent used is too large, the molecular weight decreases but the particle size distribution becomes large, which is not preferable. By using the chain transfer agent within the range specified in the present invention, it is possible to obtain a monodisperse polymer particle having a low molecular weight of 100,000 or less.

【0014】本発明において、重合性不飽和単量体と媒
体である水との割合は、特に限定されるものではない
が、収量や粒子径分布を考慮すると、重量比(単量体:
水)で5:95〜20:80であることが望ましい。単
量体の含有量が5重量%未満であると、仕込みに対する
収量が著しく少なく生産性の面から好ましくない。また
単量体の含有量が20重量%を超えると、十分制御され
た粒子径分布のものが得られにくい。
In the present invention, the ratio of the polymerizable unsaturated monomer and water as a medium is not particularly limited, but considering the yield and particle size distribution, the weight ratio (monomer:
Water) is preferably 5:95 to 20:80. When the content of the monomer is less than 5% by weight, the yield with respect to charging is remarkably small, which is not preferable from the viewpoint of productivity. When the content of the monomer exceeds 20% by weight, it is difficult to obtain a well-controlled particle size distribution.

【0015】本発明において、重合は、通常の方法に従
い行うことができる。すなわち、所定量の水、重合性単
量体、連鎖移動剤、及び開始剤を容器に入れ、一定時間
窒素ガスを吹き込み雰囲気を置換した後に昇温すること
により行うことができる。この際、重合開始剤は、水に
溶解した状態で添加することが好ましい。重合温度は、
使用する単量体や重合開始剤の種類及び濃度等を考慮し
適宜選択することができるが、通常60〜90℃の範囲
である。また重合時間も、重合条件等により異なるが、
通常12〜36時間程度で重合反応は完結する。
In the present invention, the polymerization can be carried out according to a usual method. That is, it can be carried out by placing a predetermined amount of water, a polymerizable monomer, a chain transfer agent, and an initiator in a container, blowing nitrogen gas for a certain period of time to replace the atmosphere, and then raising the temperature. At this time, the polymerization initiator is preferably added in a state of being dissolved in water. The polymerization temperature is
It can be appropriately selected in consideration of the types and concentrations of the monomers and polymerization initiators used, but it is usually in the range of 60 to 90 ° C. The polymerization time also varies depending on the polymerization conditions and the like,
Usually, the polymerization reaction is completed in about 12 to 36 hours.

【0016】重合後の重合体微粒子は、通常遠心分離等
により媒体と分離することができる。分離した重合体微
粒子は、アルコールまたは水により繰り返し洗浄するこ
とにより精製することができる。洗浄後は、噴霧乾燥ま
たは減圧乾燥等により粉体として単離することができ
る。
The polymer fine particles after the polymerization can be separated from the medium by centrifugation or the like. The separated polymer fine particles can be purified by repeatedly washing with alcohol or water. After washing, it can be isolated as a powder by spray drying, reduced pressure drying, or the like.

【0017】[0017]

【発明の実施の形態】以下、本発明の合成方法を、具体
的な実施例によって説明する。本発明の合成方法は、こ
れらの実施例に限定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the synthesis method of the present invention will be described with reference to specific examples. The synthetic method of the present invention is not limited to these examples.

【0018】実施例1 重合性単量体としてのスチレン(以下「St」と略す)
10重量部、媒体としてのイオン交換水90重量部、連
鎖移動剤としてのn−デシルメルカプタン(炭素数1
0;以下「n−DM」と略す)1重量部をフラスコ容器
に入れ混合した。この容器に冷却管、攪拌羽根、窒素導
入管を取り付け、1時間窒素を流し入れて重合雰囲気の
窒素置換を行った。続いて、攪拌羽根を100rpmで
回転させ、70℃まで昇温し、さらに1時間窒素置換を
行った。この後、0.1重量部の過硫酸カリウム(以下
「KPS」と略す)を少量の水に溶かし、注射器を用い
て系中に注ぎ込んだ。
Example 1 Styrene as a polymerizable monomer (hereinafter abbreviated as "St")
10 parts by weight, 90 parts by weight of ion-exchanged water as a medium, n-decyl mercaptan as a chain transfer agent (having 1 carbon atom)
0; hereinafter abbreviated as "n-DM") 1 part by weight was put into a flask container and mixed. A cooling pipe, a stirring blade, and a nitrogen introduction pipe were attached to this container, and nitrogen was flown in for 1 hour to replace the polymerization atmosphere with nitrogen. Subsequently, the stirring blade was rotated at 100 rpm, the temperature was raised to 70 ° C., and nitrogen replacement was further performed for 1 hour. Then, 0.1 part by weight of potassium persulfate (hereinafter abbreviated as "KPS") was dissolved in a small amount of water and poured into the system using a syringe.

【0019】次に70℃のまま24時間反応を続けた
後、温度を室温まで下げて反応を停止させた。終了時の
重合転化率は80%であった。生成した重合液を遠心分
離にかけ、媒体と得られた重合体微粒子との固液分離を
行った。次に、エタノール、エタノールと水の混合媒
体、水の順序で、それぞれ2回ずつ洗浄と遠心分離を行
い、余分な重合開始剤、単量体、連鎖移動剤を取り除
き、重合体粒子を洗浄した。
After continuing the reaction at 70 ° C. for 24 hours, the temperature was lowered to room temperature to stop the reaction. The polymerization conversion rate at the end was 80%. The produced polymerization liquid was centrifuged to perform solid-liquid separation between the medium and the obtained polymer fine particles. Next, ethanol, a mixed medium of ethanol and water, and water were washed twice in this order and centrifuged to remove excess polymerization initiator, monomer, and chain transfer agent, and to wash polymer particles. .

【0020】〔粒子径の測定〕洗浄した重合体粒子を適
当な媒体に分散し、金属メッシュに支持されたコロジオ
ン膜に沈着固定した。これを透過型電子顕微鏡(TE
M)を用いて観察した。この観察により撮影された写真
の任意粒子50〜100個の粒子径を計り、数平均粒子
径(Dn)重量平均粒子径(Dw)を求めた。なお、粒
子径の均一性の指標として、Dw/Dnを算出した。実
施例1においては、数平均粒子径Dn=571nm、粒
径分布Dw/Dn=1.0013であった。
[Measurement of Particle Diameter] The washed polymer particles were dispersed in an appropriate medium and deposited and fixed on a collodion membrane supported by a metal mesh. This is a transmission electron microscope (TE
M). The particle diameter of 50 to 100 arbitrary particles in the photograph taken by this observation was measured to determine the number average particle diameter (Dn) and the weight average particle diameter (Dw). In addition, Dw / Dn was calculated as an index of uniformity of particle diameter. In Example 1, the number average particle size Dn was 571 nm and the particle size distribution was Dw / Dn = 1.0013.

【0021】〔分子量の測定〕得られた重合体粒子を単
離し、乾燥した後、テトラヒドロフランに溶解させてG
PCにより分子量測定を行った。実施例1においては、
重量平均分子量Mw=48,000であった。
[Measurement of Molecular Weight] The obtained polymer particles are isolated, dried, and then dissolved in tetrahydrofuran to give G
The molecular weight was measured by PC. In the first embodiment,
The weight average molecular weight Mw was 48,000.

【0022】実施例2 連鎖移動剤としてn−DM1重量部の代わりに炭素数8
であるn−オクチルメルカプタン(以下「n−OM」と
略す)0.5重量部を用いた以外は、上記実施例1と同
様にして重合体粒子を合成し、粒子径及び分子量を測定
した。結果を表1に示す。
Example 2 As a chain transfer agent, 1 part by weight of n-DM was used instead of 8 parts by carbon number.
Polymer particles were synthesized in the same manner as in Example 1 except that 0.5 part by weight of n-octyl mercaptan (hereinafter abbreviated as "n-OM") was used, and the particle size and the molecular weight were measured. The results are shown in Table 1.

【0023】実施例3 連鎖移動剤としてn−DM1重量部の代わりに炭素数5
であるn−ペンチルメルカプタン(以下「n−PM」と
略す)0.2重量部を用いた以外は、上記実施例1と同
様にして重合体粒子を合成し、粒子径及び分子量を測定
した。結果を表1に示す。
Example 3 As a chain transfer agent, 1 part by weight of n-DM was used in place of 5 carbon atoms.
Polymer particles were synthesized in the same manner as in Example 1 except that 0.2 part by weight of n-pentyl mercaptan (hereinafter abbreviated as "n-PM") was used, and the particle diameter and molecular weight were measured. The results are shown in Table 1.

【0024】実施例4及び5 連鎖移動剤の量を表1に示すように代えた以外は、上記
実施例1及び2と同様にして重合体微粒子を合成し、粒
子径及び分子量を測定した。結果を表1に示す。
Examples 4 and 5 Polymer fine particles were synthesized in the same manner as in Examples 1 and 2 except that the amounts of the chain transfer agent were changed as shown in Table 1, and the particle diameter and the molecular weight were measured. The results are shown in Table 1.

【0025】比較例1 連鎖移動剤を加えなかったこと以外は、上記実施例1と
同様にして重合体微粒子を合成し、粒子径及び分子量を
測定した。結果を表1に示す。
Comparative Example 1 Polymer fine particles were synthesized in the same manner as in Example 1 except that the chain transfer agent was not added, and the particle size and molecular weight were measured. The results are shown in Table 1.

【0026】比較例2 連鎖移動剤としてn−DMの代わりに炭素数12である
n−ドデシルメルカプタン(以下「n−DDM」と略
す)を用いた以外は、上記実施例1と同様にして重合体
粒子を合成し、粒子径及び分子量を測定した。結果を表
1に示す。
Comparative Example 2 The procedure of Example 1 was repeated except that n-dodecyl mercaptan having 12 carbon atoms (hereinafter abbreviated as "n-DDM") was used as the chain transfer agent instead of n-DM. The coalesced particles were synthesized, and the particle size and the molecular weight were measured. The results are shown in Table 1.

【0027】比較例3及び4 連鎖移動剤の量を表1に示すように代えた以外は、上記
実施例1及び2と同様にして重合体微粒子を合成し、粒
子径及び分子量を測定した。結果を表1に示す。
Comparative Examples 3 and 4 Polymer fine particles were synthesized in the same manner as in Examples 1 and 2 except that the amounts of the chain transfer agent were changed as shown in Table 1, and the particle diameter and the molecular weight were measured. The results are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】表1の結果から明らかなように、本発明に
規定する炭素数を有するアルキルメルカプタンを本発明
に規定する量用いて重合させた重合体微粒子は、粒子径
分布が狭く、10万以下の低い分子量であることがわか
る。
As is clear from the results shown in Table 1, the fine polymer particles obtained by polymerizing the alkyl mercaptan having the carbon number specified in the present invention in the amount specified in the present invention have a narrow particle size distribution and 100,000 or less. It can be seen that the molecular weight is low.

【0030】[0030]

【発明の効果】本発明によれば、低い分子量で粒子径分
布の狭い、すなわち単分散な重合体粒子を得ることがで
きる。このようにして得られた重合体微粒子は、低い分
子量であるので、高い膨潤力を有しており、上述のシー
ド重合に適したシード粒子(種粒子)として用いること
ができる。
According to the present invention, polymer particles having a low molecular weight and a narrow particle size distribution, that is, monodisperse polymer particles can be obtained. The polymer fine particles thus obtained have a low molecular weight and thus have a high swelling power, and can be used as seed particles (seed particles) suitable for the above-mentioned seed polymerization.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重合性不飽和単量体及び重合開始剤を水
中に分散し、これを加熱することによって前記単量体を
重合させて単分散微粒子を合成する方法において、 炭素数が10以下のアルキルメルカプタン系連鎖移動剤
を前記重合開始剤に対し重量で0.5〜15倍量添加し
て前記単量体を重合させることを特徴とする単分散微粒
子の合成方法。
1. A method of synthesizing monodisperse fine particles by dispersing a polymerizable unsaturated monomer and a polymerization initiator in water, and heating this to polymerize the monomer, wherein the number of carbon atoms is 10 or less. 5. The method for synthesizing monodisperse fine particles, which comprises adding the alkyl mercaptan chain transfer agent of 1 to 0.5 to 15 times by weight of the polymerization initiator to polymerize the monomer.
【請求項2】 前記連鎖移動剤が、炭素数6〜10の直
鎖アルキルメルカプタンであることを特徴とする請求項
1に記載の単分散微粒子の合成方法。
2. The method for synthesizing monodisperse fine particles according to claim 1, wherein the chain transfer agent is a linear alkyl mercaptan having 6 to 10 carbon atoms.
【請求項3】 前記単量体と水との割合が5:95〜2
0:80であることを特徴とする請求項1または2に記
載の単分散微粒子の合成方法。
3. The ratio of the monomer to water is 5: 95-2.
The method for synthesizing monodisperse fine particles according to claim 1 or 2, wherein the method is 0:80.
JP11907996A 1996-05-14 1996-05-14 Method for synthesizing monodisperse fine particles Expired - Lifetime JP3391979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11907996A JP3391979B2 (en) 1996-05-14 1996-05-14 Method for synthesizing monodisperse fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11907996A JP3391979B2 (en) 1996-05-14 1996-05-14 Method for synthesizing monodisperse fine particles

Publications (2)

Publication Number Publication Date
JPH09302004A true JPH09302004A (en) 1997-11-25
JP3391979B2 JP3391979B2 (en) 2003-03-31

Family

ID=14752365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11907996A Expired - Lifetime JP3391979B2 (en) 1996-05-14 1996-05-14 Method for synthesizing monodisperse fine particles

Country Status (1)

Country Link
JP (1) JP3391979B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1046658A1 (en) * 1999-04-23 2000-10-25 Tosoh Corporation Monodisperse particles, process for producing the same, and uses thereof
WO2001000695A1 (en) * 1999-06-26 2001-01-04 Basf Aktiengesellschaft Method for producing fine-particle polymer dispersions
US6794466B2 (en) 2001-10-19 2004-09-21 Air Products Polymers, L.P. Shear thinning vinyl acetate based polymer latex composition, especially for adhesives

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1046658A1 (en) * 1999-04-23 2000-10-25 Tosoh Corporation Monodisperse particles, process for producing the same, and uses thereof
US6855761B2 (en) 1999-04-23 2005-02-15 Tosoh Corporation Monodisperse particles, process for producing the same, and uses thereof
WO2001000695A1 (en) * 1999-06-26 2001-01-04 Basf Aktiengesellschaft Method for producing fine-particle polymer dispersions
US6794466B2 (en) 2001-10-19 2004-09-21 Air Products Polymers, L.P. Shear thinning vinyl acetate based polymer latex composition, especially for adhesives

Also Published As

Publication number Publication date
JP3391979B2 (en) 2003-03-31

Similar Documents

Publication Publication Date Title
JPH05178912A (en) Production of cross-linked polymer particle
JP2001002716A (en) Singly particle diameter-dispersed particle, method for producing the same and use by using the same
JPS61215603A (en) Production of polymer particle
JP3391979B2 (en) Method for synthesizing monodisperse fine particles
EP1046658A1 (en) Monodisperse particles, process for producing the same, and uses thereof
JP5541474B2 (en) Monodispersed crosslinked polymer fine particles and method for producing the same
JP3507505B2 (en) Binder resin, method for producing the same, and composition containing the same
JP3432413B2 (en) Method for producing monodisperse fine particles
JP2000103804A (en) Preparation of monodispersed minute particles, minute particles, and spacer for use in liquid crystal display element
JP4178872B2 (en) Method for producing crosslinked polymer particles
JPH07238105A (en) Particle of highly crosslinked polymer and production thereof
JPH08134115A (en) Production of highly monodisperse fine particle
JP3334207B2 (en) Method for producing spherical polymer particles
JP3487665B2 (en) Method for producing polymer fine particles
JP3629215B2 (en) Production method of polymer particles
JPH011702A (en) Method for producing polymer particles
JP2003252912A (en) Monodispersed fine particle
JPH0597905A (en) Production of fine polymer particle
US6025443A (en) Process for the production of spherical polymers
JPH0692443B2 (en) Method for producing polymer particles
JPS6372713A (en) Production of solvent-resistant fine particle of uniform particle diameter
JP6913901B2 (en) Core-shell type polymer fine particles, particle dispersion, and method for producing the fine particles
JP2001048935A (en) Fumarate diester-based polymer and its production
JP2746275B2 (en) Method for producing polymer particles
KR100556628B1 (en) Monodispersed Polymer Particles with Low Molecular Weight and Method of Preparing the Same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080124

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120124

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140124

Year of fee payment: 11

EXPY Cancellation because of completion of term