JP2000103804A - Preparation of monodispersed minute particles, minute particles, and spacer for use in liquid crystal display element - Google Patents

Preparation of monodispersed minute particles, minute particles, and spacer for use in liquid crystal display element

Info

Publication number
JP2000103804A
JP2000103804A JP10277451A JP27745198A JP2000103804A JP 2000103804 A JP2000103804 A JP 2000103804A JP 10277451 A JP10277451 A JP 10277451A JP 27745198 A JP27745198 A JP 27745198A JP 2000103804 A JP2000103804 A JP 2000103804A
Authority
JP
Japan
Prior art keywords
fine particles
polymerization
chain transfer
weight
transfer agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10277451A
Other languages
Japanese (ja)
Inventor
Hiroko Minamino
裕子 南野
Yasuhiko Nagai
康彦 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP10277451A priority Critical patent/JP2000103804A/en
Publication of JP2000103804A publication Critical patent/JP2000103804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for preparing monodispersed minute particles which can produce monodispersed minute particles suitable for seed particles for use in the seed polymerization of a polymer with a low mol.wt., having a uniform particle size and a high swell rate. SOLUTION: This is a method for preparing monodispersed minute particles, by dispersing a polymerizable unsatd. monomer, a polymerization initiator and a chain transfer agent in water, followed by a polymerization reaction by means of heating the dispersion wherein the chain transfer agent is an alkyl mercaptan type chain transfer agent with an n number of 1-10, and the chain transfer agent is added in an amt. 5-60 times as much as that of the polymerization initiator.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、単分散微粒子の製
造方法、上記単分散微粒子の製造方法により得られる単
分散微粒子を種粒子に用いてシード重合を行う微粒子の
製造方法、及び、上記単分散微粒子の製造方法により得
られる単分散微粒子を種粒子に用いてシード重合を行う
液晶表示素子用スペーサの製造方法に関する。
[0001] The present invention relates to a method for producing monodisperse fine particles, a method for producing fine particles by performing seed polymerization using the monodisperse fine particles obtained by the above method for producing monodisperse fine particles as seed particles, and The present invention relates to a method for producing a spacer for a liquid crystal display element, which performs seed polymerization using monodisperse fine particles obtained by the method for producing dispersed fine particles as seed particles.

【0002】[0002]

【従来の技術】液晶表示素子用スペーサ、カラム用の充
填剤、診断薬用の担体等に用いられる重合体微粒子は、
その粒子径が均一であることが要求される。従来、粒子
径が均一である粒子を得る方法としては、懸濁重合によ
り得られた粒子を分級する方法があった。しかし、この
方法は、得られる粒子の収率が低く、しかも、粒子径の
均一性も充分満足できるものではなかった。
2. Description of the Related Art Polymer fine particles used for spacers for liquid crystal display elements, fillers for columns, carriers for diagnostic agents, and the like are:
It is required that the particle size be uniform. Conventionally, as a method of obtaining particles having a uniform particle size, there has been a method of classifying particles obtained by suspension polymerization. However, in this method, the yield of the obtained particles is low, and the uniformity of the particle diameter is not sufficiently satisfactory.

【0003】また、スチレン系重合体等の単分散微粒子
にビニル系単量体を吸収させた後重合を行い、その粒子
径を増大させるシード重合法が提案されている。この方
法は、微小な重合体粒子に単量体を吸収、重合させる工
程を何回か繰り返すことにより、粒子径が1〜10μm
程度の微粒子を得るという方法である。しかし、この方
法では、生成する微粒子の粒子径の均一性が低下し、更
に、重合速度も低下するという問題点があった。
[0003] Also, a seed polymerization method has been proposed in which a vinyl-based monomer is absorbed into monodisperse fine particles such as a styrene-based polymer and then polymerized to increase the particle diameter. In this method, the particle diameter is 1 to 10 μm by repeating the process of absorbing and polymerizing the monomer in the fine polymer particles several times.
This is a method of obtaining fine particles of the order. However, in this method, there is a problem that the uniformity of the particle diameter of the generated fine particles is reduced, and the polymerization rate is also reduced.

【0004】特公昭57−24369号公報等には、2
段階膨潤シード重合法により均一な粒子径の重合体を得
る方法が開示されている。この方法は、予めシード粒子
中に膨潤助剤と呼ばれる疎水性有機化合物を吸収させ、
シード粒子の膨潤能力を増大させた後にビニル系単量体
で膨潤させ重合を行う方法である。しかし、この方法
は、膨潤助剤の吸収と単量体の吸収という2つの吸収過
程を繰り返すため作業が煩雑になり、更に、重合に関与
しない膨潤助剤が重合後の微粒子から溶出するという問
題点があった。
Japanese Patent Publication No. 57-24369 and the like disclose 2
A method for obtaining a polymer having a uniform particle size by a stepwise swelling seed polymerization method is disclosed. In this method, a hydrophobic organic compound called a swelling aid is previously absorbed in seed particles,
This is a method of increasing the swelling ability of the seed particles and then swelling with a vinyl monomer to carry out polymerization. However, in this method, since the two absorption processes of absorption of the swelling aid and absorption of the monomer are repeated, the work becomes complicated, and further, the swelling aid not involved in the polymerization is eluted from the fine particles after the polymerization. There was a point.

【0005】このような問題点を解決するために、重合
度の低いシード粒子が有する高い膨潤能力を利用して、
膨潤助剤を用いずに1段階で1〜10μmの粒子を得る
方法が提案されている。また、特開昭54−97582
号公報には、乳化重合時に連鎖移動剤を添加し、分子量
1万以下の種粒子を作ってシード重合する方法が開示さ
れている。しかし、単に連鎖移動剤を加えただけでは、
分子量の低下は起こるものの、粒子径分布も広がる傾向
にあるという問題点があった。
[0005] In order to solve such a problem, utilizing the high swelling ability of the seed particles having a low degree of polymerization,
A method of obtaining particles of 1 to 10 μm in one step without using a swelling aid has been proposed. Also, Japanese Patent Application Laid-Open No.
Japanese Patent Application Laid-Open Publication No. H11-157, discloses a method in which a chain transfer agent is added at the time of emulsion polymerization to produce seed particles having a molecular weight of 10,000 or less to perform seed polymerization. However, just by adding a chain transfer agent,
Although the molecular weight is reduced, there is a problem that the particle size distribution tends to be widened.

【0006】このように、高膨潤倍率のシード重合で、
1〜10μmの粒子を得るためには、シード重合の種粒
子として、分子量が2万以下で、かつ、粒子径の均一な
粒子を用いるのが最適であるが、このような微粒子の合
成方法は、確立されていないのが現状である。
[0006] Thus, by the seed polymerization of high swelling ratio,
In order to obtain particles having a particle size of 1 to 10 μm, it is optimal to use, as seed particles for seed polymerization, particles having a molecular weight of 20,000 or less and having a uniform particle diameter. It has not been established yet.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記に鑑
み、低分子量で、かつ、粒子径が均一であり、高膨潤倍
率のシード重合の種粒子に適する単分散微粒子の製造方
法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above, the present invention provides a method for producing monodisperse fine particles having a low molecular weight, a uniform particle diameter, and suitable for seed polymerization seed particles having a high swelling ratio. The purpose is to:

【0008】[0008]

【課題を解決するための手段】本発明1は、水中に重合
性不飽和単量体、重合開始剤及び連鎖移動剤を分散し、
この分散液を加熱することにより重合反応を行う単分散
微粒子の製造方法であって、上記連鎖移動剤として、炭
素数が1〜10のアルキルメルカプタン系連鎖移動剤を
用いるとともに、上記連鎖移動剤を上記重合開始剤に対
して、5〜60倍量添加することを特徴とする単分散微
粒子の製造方法である。以下に、本発明を詳述する。
According to the first aspect of the present invention, a polymerizable unsaturated monomer, a polymerization initiator and a chain transfer agent are dispersed in water,
A method for producing monodisperse fine particles in which a polymerization reaction is carried out by heating this dispersion liquid, wherein, as the chain transfer agent, an alkylmercaptan-based chain transfer agent having 1 to 10 carbon atoms is used, and the chain transfer agent is used. A method for producing monodisperse fine particles, characterized by adding 5 to 60 times the amount of the polymerization initiator. Hereinafter, the present invention will be described in detail.

【0009】本発明1の単分散微粒子の製造方法におい
ては、水中に重合性不飽和単量体、重合開始剤及び連鎖
移動剤を分散し、この分散液を加熱することにより重合
反応を行う。上記重合性不飽和単量体としては、単官能
モノマーで水に著しく溶解しないものであれば特に限定
されず、例えば、スチレン、α−メチルスチレン、p−
メチルスチレン、p−クロロスチレン、クロロメチルス
チレン等のスチレン誘導体;酢酸ビニル、プロピオン酸
ビニル等のビニルエステル類;アクリロニトリル等の不
飽和ニトリル類;(メタ)アクリル酸メチル、(メタ)
アクリル酸エチル、(メタ)アクリル酸ブチル、(メ
タ)アクリル酸−2−エチルヘキシル、(メタ)アクリ
ル酸ステアリル、エチレングリコール(メタ)アクリレ
ート、トリフルオロエチル(メタ)アクリレート、ペン
タフルオロプロピル(メタ)アクリレート、シクロヘキ
シル(メタ)アクリレート、メトキシポリエチレングリ
コール(メタ)アクリレート等の(メタ)アクリル酸エ
ステル誘導体等が挙げられる。これらのなかでは、スチ
レン誘導体が好ましい。
In the method for producing monodisperse fine particles of the present invention 1, a polymerizable unsaturated monomer, a polymerization initiator and a chain transfer agent are dispersed in water, and the dispersion is heated to carry out a polymerization reaction. The polymerizable unsaturated monomer is not particularly limited as long as it is a monofunctional monomer that does not significantly dissolve in water. For example, styrene, α-methylstyrene, p-
Styrene derivatives such as methylstyrene, p-chlorostyrene and chloromethylstyrene; vinyl esters such as vinyl acetate and vinyl propionate; unsaturated nitriles such as acrylonitrile; methyl (meth) acrylate, (meth)
Ethyl acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate, ethylene glycol (meth) acrylate, trifluoroethyl (meth) acrylate, pentafluoropropyl (meth) acrylate And (meth) acrylate derivatives such as cyclohexyl (meth) acrylate and methoxypolyethylene glycol (meth) acrylate. Of these, styrene derivatives are preferred.

【0010】上記重合開始剤としては、通常、乳化重
合、ソープフリー重合等で用いられるものであれば特に
限定されず、例えば、過硫酸カリウム、アゾ系開始剤等
が挙げられる。
The polymerization initiator is not particularly limited as long as it is generally used in emulsion polymerization, soap-free polymerization and the like, and includes, for example, potassium persulfate, azo-based initiator and the like.

【0011】本発明1では、上記連鎖移動剤として、炭
素数が1〜10のアルキルメルカプタン系連鎖移動剤を
用いる。上記炭素数が10を超えると、連鎖移動の効果
が低下し、望ましい分子量まで低下させるのに大量の連
鎖移動剤の添加を必要とする場合があるので、上記範囲
に限定される。上記炭素数は、臭気が少ないため作業性
が良いことから、6〜10が好ましい。
In the present invention 1, an alkyl mercaptan chain transfer agent having 1 to 10 carbon atoms is used as the chain transfer agent. When the number of carbon atoms exceeds 10, the effect of chain transfer is reduced, and it may be necessary to add a large amount of a chain transfer agent to reduce the molecular weight to a desired molecular weight. The carbon number is preferably 6 to 10 since the workability is good due to low odor.

【0012】上記アルキルメルカプタン系連鎖移動剤と
しては、上記範囲の炭素数を有するものであれば特に限
定されず、例えば、n−オクチルメルカプタン、n−デ
シルメルカプタン等が挙げられる。
The alkyl mercaptan chain transfer agent is not particularly limited as long as it has a carbon number within the above range, and examples thereof include n-octyl mercaptan and n-decyl mercaptan.

【0013】上記アルキルメルカプタン系連鎖移動剤の
配合量は、上記重合開始剤に対して、5〜60倍量であ
る。上記配合量が5倍量未満では、分子量の低下効果が
充分でない場合があり、60倍量を超えると、分子量は
低下するものの、オリゴマーが多くなることがあるため
上記範囲に限定される。好ましくは、10〜50倍量で
あり、より好ましくは、15〜40倍量であり、更に好
ましくは、20〜30倍量である。
The amount of the alkyl mercaptan chain transfer agent is 5 to 60 times the amount of the polymerization initiator. If the amount is less than 5 times, the effect of lowering the molecular weight may not be sufficient. If the amount is more than 60 times, the molecular weight may decrease but the number of oligomers may increase, so that the amount is limited to the above range. Preferably, it is 10 to 50 times, more preferably 15 to 40 times, even more preferably 20 to 30 times.

【0014】上記重合反応では、上記分散液に、更に、
電解質を添加し重合反応を行うのが好ましい。電解質と
しては特に限定されず、例えば、塩化ナトリウム、塩化
カリウム等が挙げられる。上記電解質の添加量は、上記
重合性不飽和単量体100重量部に対して、0.5〜5
重量部が好ましい。上記添加量が5重量部を超えると、
添加した電解質により粒子表面の電荷が打ち消され、不
安定になるために粒子の凝集が発生しやすくなり、粒子
径のCV値が低下することがあり、0.5重量部未満で
あると、後述する電解質添加の効果を得ることができな
い場合がある。
In the above-mentioned polymerization reaction, the above-mentioned dispersion is further added to:
It is preferable to carry out the polymerization reaction by adding an electrolyte. The electrolyte is not particularly limited, and examples thereof include sodium chloride and potassium chloride. The amount of the electrolyte added is 0.5 to 5 parts by weight based on 100 parts by weight of the polymerizable unsaturated monomer.
Parts by weight are preferred. If the amount exceeds 5 parts by weight,
The charge on the particle surface is canceled by the added electrolyte, and the aggregation tends to occur due to the instability, and the CV value of the particle diameter may be reduced. In some cases, the effect of adding electrolyte cannot be obtained.

【0015】上記重合反応を行う際の、上記重合性不飽
和単量体と分散媒である水との配合比率は特に限定され
ないが、収量や粒子径分布の点から、重量比で5:95
〜20:80が好ましい。上記重合性不飽和単量体の配
合量が5重量%未満では、仕込み量に対する収量が著し
く少ないことがあるため、生産上不利益であり、20重
量%を超えると充分制御された粒子径分布のものが得ら
れにくいことがある。
The mixing ratio of the above polymerizable unsaturated monomer and water as a dispersion medium in performing the above polymerization reaction is not particularly limited, but from the viewpoint of yield and particle size distribution, the weight ratio is 5:95.
~ 20: 80 is preferred. If the amount of the polymerizable unsaturated monomer is less than 5% by weight, the yield relative to the charged amount may be extremely small, which is disadvantageous in production. If it exceeds 20% by weight, the particle size distribution is sufficiently controlled. May be difficult to obtain.

【0016】上記重合反応を行う方法としては、例え
ば、水、重合性不飽和単量体、連鎖移動剤及び重合開始
剤を容器に入れ、その後、窒素ガスを流し入れて重合雰
囲気を置換した後、昇温する方法等が挙げられる。上記
重合反応において、重合開始剤は、水に溶かしたものを
用いるのが好ましい。また、昇温後の温度は特に限定さ
れず、用いられる重合性不飽和単量体、連鎖移動剤及び
重合開始剤等の配合物の種類や濃度に応じて適宜選択す
ればよく、通常、60〜90℃が好ましい。上記重合反
応を行う時間は特に限定されず、反応条件に応じて適宜
選択すればよく、通常、12〜36時間が好ましい。
As a method for carrying out the above polymerization reaction, for example, water, a polymerizable unsaturated monomer, a chain transfer agent and a polymerization initiator are placed in a container, and then a nitrogen gas is poured thereinto to replace the polymerization atmosphere. A method of raising the temperature and the like can be given. In the above polymerization reaction, it is preferable to use a polymerization initiator dissolved in water. In addition, the temperature after the temperature is raised is not particularly limited, and may be appropriately selected depending on the type and concentration of the compound such as the polymerizable unsaturated monomer, the chain transfer agent, and the polymerization initiator to be used. ~ 90 ° C is preferred. The time for performing the above polymerization reaction is not particularly limited, and may be appropriately selected depending on the reaction conditions, and is usually preferably 12 to 36 hours.

【0017】上記重合反応は、ソープフリー重合であ
り、該ソープフリー重合により製造される微粒子は、粒
子径分布の幅が極めて狭いものである。また、上記重合
反応は、連鎖移動剤を添加することにより、狭い粒子径
分布の幅を崩すことなく、分子量の低減をはかることが
できる。更に、上記重合反応は、電解質を添加すること
により、生成する微粒子の表面電荷に起因する安定状態
を維持することができ、そのため、より狭い粒子径分布
の微粒子を安定に製造することができる。
The above polymerization reaction is soap-free polymerization, and the fine particles produced by the soap-free polymerization have a very narrow particle size distribution. In the above polymerization reaction, by adding a chain transfer agent, the molecular weight can be reduced without breaking the narrow particle size distribution width. Further, in the polymerization reaction, by adding an electrolyte, a stable state caused by the surface charge of the generated fine particles can be maintained, and therefore, fine particles having a narrower particle size distribution can be stably produced.

【0018】上記重合反応により製造された単分散微粒
子は、遠心分離により、分散媒から分離することがで
き、アルコール及び/又は水により繰り返し洗浄するこ
とにより、精製することができる。更に、洗浄後に噴霧
乾燥、減圧乾燥等の乾燥方法を用いて乾燥することによ
り、粉体として単離することができる。本発明1の単分
散微粒子の製造方法によれば、重量平均分子量2万以下
の低分子量で、かつ、粒子径の均一な単分散微粒子を製
造することができる。また、上記単分散微粒子の製造方
法により得られる単分散微粒子は、高膨潤倍率のシード
重合における種粒子として好適に用いることができる。
The monodispersed fine particles produced by the above polymerization reaction can be separated from the dispersion medium by centrifugation, and can be purified by repeatedly washing with alcohol and / or water. Further, after washing, the powder can be isolated as a powder by drying using a drying method such as spray drying or reduced pressure drying. According to the method for producing monodispersed fine particles of the first aspect of the present invention, monodispersed fine particles having a low average molecular weight of 20,000 or less and a uniform particle diameter can be produced. Further, the monodispersed fine particles obtained by the method for producing monodispersed fine particles can be suitably used as seed particles in seed polymerization having a high swelling ratio.

【0019】本発明2は、水中に重合性不飽和単量体、
重合開始剤及び電解質を分散し、この分散液を加熱する
ことにより重合反応を行う単分散微粒子の製造方法であ
って、上記重合性不飽和単量体100重量部に対して、
上記電解質を0.5〜5重量部添加することを特徴とす
る単分散微粒子の製造方法である。
The present invention 2 provides a polymerizable unsaturated monomer in water,
A method for producing monodisperse fine particles in which a polymerization initiator and an electrolyte are dispersed and a polymerization reaction is performed by heating the dispersion, based on 100 parts by weight of the polymerizable unsaturated monomer.
A method for producing monodisperse fine particles, comprising adding 0.5 to 5 parts by weight of the electrolyte.

【0020】上記重合性不飽和単量体及び上記重合開始
剤としては特に限定されず、本発明1の重合性不飽和単
量体及び重合開始剤と同様のものが挙げられる。
The polymerizable unsaturated monomer and the polymerization initiator are not particularly limited, and include the same as the polymerizable unsaturated monomer and the polymerization initiator of the present invention 1.

【0021】上記電解質としては特に限定されず、例え
ば、塩化ナトリウム、塩化カリウム等が挙げられる。上
記電解質の添加量は、上記重合性不飽和単量体100重
量部に対して、0.5〜5重量部である。上記添加量が
5重量部を超えると、添加した電解質により粒子表面の
電荷が打ち消され、不安定になるために粒子の凝集が発
生しやすくなり、粒子径のCV値が低下することがあ
り、0.5重量部未満であると、上述した電解質添加の
効果を得ることができない場合があるため上記範囲に限
定される。
The electrolyte is not particularly limited, and examples thereof include sodium chloride and potassium chloride. The amount of the electrolyte to be added is 0.5 to 5 parts by weight based on 100 parts by weight of the polymerizable unsaturated monomer. When the addition amount exceeds 5 parts by weight, the charge on the particle surface is canceled by the added electrolyte, and the particles are likely to aggregate due to instability, and the CV value of the particle diameter may decrease, When the amount is less than 0.5 part by weight, the above-mentioned effect of the addition of the electrolyte may not be obtained in some cases.

【0022】上記重合反応を行う際の、上記重合性不飽
和単量体と分散媒である水との配合比率は特に限定され
ず、本発明1の配合比率と同様の配合比率が好ましい。
上記重合反応を行う方法としては、本発明1の方法と同
様の方法が挙げられる。
The mixing ratio of the polymerizable unsaturated monomer and water as a dispersion medium in performing the above polymerization reaction is not particularly limited, and the same mixing ratio as that of the present invention 1 is preferable.
Examples of the method for performing the above polymerization reaction include the same method as the method of the first invention.

【0023】上記重合反応は、ソープフリー重合であ
り、上記重合反応もまた、狭い粒子径分布の微粒子を安
定に製造することができる。上記重合反応により製造さ
れた単分散微粒子は、本発明1と同様の方法により粉体
として単離することができる。
The above polymerization reaction is soap-free polymerization, and the polymerization reaction can also stably produce fine particles having a narrow particle size distribution. The monodispersed fine particles produced by the above polymerization reaction can be isolated as a powder by the same method as in the first aspect of the present invention.

【0024】本発明2の単分散微粒子の製造方法によれ
ば、粒子径の均一な単分散微粒子を製造することができ
る。また、上記単分散微粒子の製造方法により得られる
単分散微粒子は、高膨潤倍率のシード重合における種粒
子として好適に用いることができる。
According to the method for producing monodisperse fine particles of the present invention 2, monodisperse fine particles having a uniform particle diameter can be produced. Further, the monodispersed fine particles obtained by the method for producing monodispersed fine particles can be suitably used as seed particles in seed polymerization having a high swelling ratio.

【0025】本発明1及び本発明2の製造方法により製
造される単分散微粒子を種粒子として、シード重合を行
うことにより、微粒子を製造することができる。上記シ
ード重合を行う方法としては、単分散微粒子を種粒子と
して用いる方法であれば特に限定されず、従来から用い
られている公知の方法を用いることができ、例えば、上
記の工程により製造された単分散微粒子を種粒子として
水中に分散させ、これに重合性単量体と重合開始剤をエ
マルジョンとして微分散させたものを添加し、種粒子に
吸収させた後重合し、微粒子を合成する方法等が挙げら
れる。上記シード重合を用いる微粒子の製造方法もまた
本発明の1つである。なお、得られた微粒子は、カラム
用充填剤、診断薬用の担体等に適用することができる。
Fine particles can be produced by performing seed polymerization using the monodisperse fine particles produced by the production methods of the present invention 1 and the present invention 2 as seed particles. The method for performing the seed polymerization is not particularly limited as long as the method uses monodispersed fine particles as seed particles, and a conventionally known method can be used. A method of dispersing monodispersed fine particles as water as seed particles in water, adding a finely dispersed emulsion of a polymerizable monomer and a polymerization initiator as an emulsion, absorbing the seed particles, polymerizing the particles, and synthesizing the fine particles. And the like. The method for producing fine particles using the above seed polymerization is also one of the present invention. In addition, the obtained fine particles can be applied to a column filler, a carrier for a diagnostic agent, and the like.

【0026】また、上記単分散微粒子を種粒子として、
シード重合を行うことにより、液晶表示素子用スペーサ
を製造することができる。上記シード重合を用いる液晶
表示素子用スペーサの製造方法もまた本発明の1つであ
る。
Further, the above monodisperse fine particles are used as seed particles,
By performing seed polymerization, a spacer for a liquid crystal display element can be manufactured. A method for producing a spacer for a liquid crystal display element using the above-mentioned seed polymerization is also one aspect of the present invention.

【0027】[0027]

【実施例】以下に実施例を掲げて本発明を更に詳しく説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0028】実施例1 重合性単量体としてスチレン10重量部、重合媒体とし
てイオン交換水90重量部、連鎖移動剤としてn−オク
チルメルカプタン2.5重量部をフラスコ容器に入れ混
合した。次に、この容器に冷却管、攪拌羽根及び窒素導
入管を取り付け、1時間窒素を流し入れて重合雰囲気の
窒素置換を行った。続いて、攪拌羽根を180rpmで
回転させ、70℃まで昇温し、更に、1時間窒素置換を
行った。この後、0.1重量部の過硫酸カリウムを少量
の水に溶かし、注射器を用いて系中に注ぎ込んだ。この
後、70℃のまま24時間反応を続けた後、温度を室温
まで下げて反応を停止させた。反応終了時の重合転化率
は80%であった。生成した重合液を遠心分離にかけ、
重合媒体と微粒子との固液分離を行った。続いて、エタ
ノール、エタノールと水との混合媒体、水の順序で各2
回ずつ洗浄と遠心分離を行い、微粒子から余分な重合開
始剤、単量体、連鎖移動剤を取り除いた。
Example 1 10 parts by weight of styrene as a polymerizable monomer, 90 parts by weight of ion-exchanged water as a polymerization medium, and 2.5 parts by weight of n-octyl mercaptan as a chain transfer agent were mixed in a flask. Next, a cooling tube, a stirring blade, and a nitrogen introducing tube were attached to the container, and nitrogen was introduced thereinto for 1 hour to replace the polymerization atmosphere with nitrogen. Subsequently, the stirring blade was rotated at 180 rpm, the temperature was raised to 70 ° C., and the atmosphere was replaced with nitrogen for 1 hour. Thereafter, 0.1 parts by weight of potassium persulfate was dissolved in a small amount of water, and poured into the system using a syringe. Thereafter, the reaction was continued at 70 ° C. for 24 hours, and then the temperature was lowered to room temperature to stop the reaction. At the end of the reaction, the polymerization conversion was 80%. The resulting polymerization solution is centrifuged,
Solid-liquid separation of the polymerization medium and the fine particles was performed. Then, in order of ethanol, a mixed medium of ethanol and water, and water in this order,
Washing and centrifugation were performed each time, and an excessive polymerization initiator, monomer, and chain transfer agent were removed from the fine particles.

【0029】洗浄した微粒子を適当な媒体に分散し、金
属メッシュに支持されたコロジオン膜に沈着固定した。
これを透過型電子顕微鏡を用いて観察した。この観察に
より撮影された写真の任意粒子50〜100個の粒子径
を計り、数平均粒子径(Dn)と重量平均粒子径(D
w)を求めた。更に、粒子径の均一性の指標として、D
w/Dnについても算出した。結果を表1に示した。
The washed fine particles were dispersed in an appropriate medium and deposited and fixed on a collodion film supported on a metal mesh.
This was observed using a transmission electron microscope. The particle diameters of 50 to 100 arbitrary particles in the photograph taken by this observation were measured, and the number average particle diameter (Dn) and weight average particle diameter (D
w) was determined. Further, as an index of particle size uniformity, D
w / Dn was also calculated. The results are shown in Table 1.

【0030】また、洗浄した微粒子を単離、乾燥した後
に、テトラヒドロフランに溶解させ、GPCにより分子
量を測定した。結果を表1に示した。
After the washed fine particles were isolated and dried, they were dissolved in tetrahydrofuran, and the molecular weight was measured by GPC. The results are shown in Table 1.

【0031】[0031]

【表1】 [Table 1]

【0032】実施例2 n−オクチルメルカプタンに代えて、n−デシルメルカ
プタン2.0重量部を用いた以外は、実施例1と同様に
して微粒子を得た。得られた微粒子の粒子径、粒子径の
均一性、及び、重量平均分子量を実施例1と同様に測定
し、結果を表1に示した。
Example 2 Fine particles were obtained in the same manner as in Example 1 except that 2.0 parts by weight of n-decyl mercaptan was used instead of n-octyl mercaptan. The particle size, particle size uniformity, and weight average molecular weight of the obtained fine particles were measured in the same manner as in Example 1, and the results are shown in Table 1.

【0033】実施例3 スチレンの配合量を5重量部に、過硫酸カリウムの配合
量を0.05重量部に代えた以外は、実施例1と同様に
して微粒子を得た。得られた微粒子の粒子径、粒子径の
均一性、及び、重量平均分子量を実施例1と同様に測定
し、結果を表1に示した。
Example 3 Fine particles were obtained in the same manner as in Example 1 except that the amount of styrene was changed to 5 parts by weight and the amount of potassium persulfate was changed to 0.05 part by weight. The particle size, particle size uniformity, and weight average molecular weight of the obtained fine particles were measured in the same manner as in Example 1, and the results are shown in Table 1.

【0034】実施例4 n−オクチルメルカプタンの配合量を0.5重量部に代
えた以外は、実施例1と同様にして微粒子を得た。得ら
れた微粒子の粒子径、粒子径の均一性、及び、重量平均
分子量を実施例1と同様に測定し、結果を表1に示し
た。
Example 4 Fine particles were obtained in the same manner as in Example 1 except that the amount of n-octyl mercaptan was changed to 0.5 part by weight. The particle size, particle size uniformity, and weight average molecular weight of the obtained fine particles were measured in the same manner as in Example 1, and the results are shown in Table 1.

【0035】実施例5 n−オクチルメルカプタンに代えて、n−デシルメルカ
プタン4.0重量部を用いた以外は、実施例1と同様に
して微粒子を得た。得られた微粒子の粒子径、粒子径の
均一性、及び、重量平均分子量を実施例1と同様に測定
し、結果を表1に示した。
Example 5 Fine particles were obtained in the same manner as in Example 1 except that 4.0 parts by weight of n-decyl mercaptan was used instead of n-octyl mercaptan. The particle size, particle size uniformity, and weight average molecular weight of the obtained fine particles were measured in the same manner as in Example 1, and the results are shown in Table 1.

【0036】比較例1 連鎖移動剤を加えない以外は、実施例1と同様にして微
粒子を得た。得られた微粒子の粒子径、粒子径の均一
性、及び、重量平均分子量を実施例1と同様に測定し、
結果を表1に示した。
Comparative Example 1 Fine particles were obtained in the same manner as in Example 1 except that no chain transfer agent was added. The particle diameter of the obtained fine particles, the uniformity of the particle diameter, and the weight average molecular weight were measured in the same manner as in Example 1,
The results are shown in Table 1.

【0037】比較例2 n−オクチルメルカプタンの配合量を0.1重量部に代
えた以外は、実施例1と同様にして微粒子を得た。得ら
れた微粒子の粒子径、粒子径の均一性、及び、重量平均
分子量を実施例1と同様に測定し、結果を表1に示し
た。
Comparative Example 2 Fine particles were obtained in the same manner as in Example 1 except that the blending amount of n-octyl mercaptan was changed to 0.1 part by weight. The particle size, particle size uniformity, and weight average molecular weight of the obtained fine particles were measured in the same manner as in Example 1, and the results are shown in Table 1.

【0038】比較例3 n−オクチルメルカプタンに代えて、炭素数12である
n−ドデシルメルカプタン1.0重量部を用いた以外
は、実施例1と同様にして微粒子を得た。得られた微粒
子の粒子径、粒子径の均一性、及び、重量平均分子量を
実施例1と同様に測定し、結果を表1に示した。
Comparative Example 3 Fine particles were obtained in the same manner as in Example 1, except that 1.0 part by weight of n-dodecyl mercaptan having 12 carbon atoms was used instead of n-octyl mercaptan. The particle size, particle size uniformity, and weight average molecular weight of the obtained fine particles were measured in the same manner as in Example 1, and the results are shown in Table 1.

【0039】実施例6 連鎖移動剤を配合せず、塩化ナトリウムを0.02重量
部配合した以外は、実施例1と同様にして微粒子を得
た。得られた微粒子の粒子径、及び、重量平均分子量を
実施例1と同様に測定し、更に、粒子径分布の指標とし
て、粒子径のCV値を以下に示す方法を用いて測定し
た。結果を表2に示した。
Example 6 Fine particles were obtained in the same manner as in Example 1 except that the chain transfer agent was not used and 0.02 parts by weight of sodium chloride was used. The particle size and weight average molecular weight of the obtained fine particles were measured in the same manner as in Example 1, and as an index of the particle size distribution, the CV value of the particle size was measured by the following method. The results are shown in Table 2.

【0040】CV値の測定方法 下記の式(1); CV値(%)=(σ/Dn)×100・・・・(1) (式中、σは、粒子径の標準偏差を表し、Dnは、数平
均粒子径を表す)を用いて算出した。上記標準偏差は、
数平均粒子径と同様に、任意粒子50〜100個の粒子
径を計り、算出した。
Method for measuring CV value The following formula (1); CV value (%) = (σ / Dn) × 100 (1) (where σ represents the standard deviation of the particle diameter, Dn represents the number average particle diameter). The standard deviation is
Similar to the number average particle diameter, the particle diameter of 50 to 100 arbitrary particles was measured and calculated.

【0041】[0041]

【表2】 [Table 2]

【0042】実施例7 n−オクチルメルカプタンを1.5重量部配合し、更
に、塩化ナトリウムの配合量を0.1重量部に代えた以
外は、実施例6と同様にして微粒子を得た。得られた微
粒子の粒子径、粒子径のCV値、重量平均分子量を実施
例6と同様に測定し、結果を表2に示した。
Example 7 Fine particles were obtained in the same manner as in Example 6 except that 1.5 parts by weight of n-octyl mercaptan was added and the amount of sodium chloride was changed to 0.1 part by weight. The particle diameter, CV value of particle diameter, and weight average molecular weight of the obtained fine particles were measured in the same manner as in Example 6, and the results are shown in Table 2.

【0043】実施例8 n−オクチルメルカプタンの配合量を2.5重量部に代
え、塩化ナトリウムの配合量を0.02重量部に代えた
以外は、実施例7と同様にして微粒子を得た。得られた
微粒子の粒子径、粒子径のCV値、及び、重量平均分子
量を実施例6と同様に測定し、結果を表2に示した。
Example 8 Fine particles were obtained in the same manner as in Example 7, except that the amount of n-octyl mercaptan was changed to 2.5 parts by weight and the amount of sodium chloride was changed to 0.02 parts by weight. . The particle diameter, the CV value of the particle diameter, and the weight average molecular weight of the obtained fine particles were measured in the same manner as in Example 6, and the results are shown in Table 2.

【0044】実施例9 n−オクチルメルカプタンの配合量を0.5重量部に代
えた以外は、実施例7と同様にして微粒子を得た。得ら
れた微粒子の粒子径、粒子径のCV値、及び、重量平均
分子量を実施例6と同様に測定し、結果を表2に示し
た。
Example 9 Fine particles were obtained in the same manner as in Example 7 except that the amount of n-octyl mercaptan was changed to 0.5 part by weight. The particle diameter, the CV value of the particle diameter, and the weight average molecular weight of the obtained fine particles were measured in the same manner as in Example 6, and the results are shown in Table 2.

【0045】実施例10 スチレンの配合量を5.0重量部に代え、塩化ナトリウ
ムの配合量を0.2重量部に代え、過硫酸カリウムの配
合量を0.05重量部に代え、更に、n−オクチルメル
カプタンに代えて、n−デシルメルカプタン4.0重量
部を用いた以外は、実施例7と同様にして微粒子を得
た。得られた微粒子の粒子径、粒子径のCV値、及び、
重量平均分子量を実施例6と同様に測定し、結果を表2
に示した。
Example 10 The amount of styrene was changed to 5.0 parts by weight, the amount of sodium chloride was changed to 0.2 parts by weight, and the amount of potassium persulfate was changed to 0.05 parts by weight. Fine particles were obtained in the same manner as in Example 7, except that 4.0 parts by weight of n-decyl mercaptan was used instead of n-octyl mercaptan. The particle diameter of the obtained fine particles, the CV value of the particle diameter, and
The weight average molecular weight was measured in the same manner as in Example 6, and the results were shown in Table 2.
It was shown to.

【0046】比較例4 塩化ナトリウムの配合量を3.0重量部に代えた以外
は、実施例7と同様にして微粒子を得た。得られた微粒
子の粒子径、粒子径のCV値、及び、重量平均分子量を
実施例6と同様に測定し、結果を表2に示した。
Comparative Example 4 Fine particles were obtained in the same manner as in Example 7, except that the amount of sodium chloride was changed to 3.0 parts by weight. The particle diameter, the CV value of the particle diameter, and the weight average molecular weight of the obtained fine particles were measured in the same manner as in Example 6, and the results are shown in Table 2.

【0047】[0047]

【発明の効果】本発明1の単分散微粒子の製造方法は、
上述の構成からなるので、低分子量で、かつ、粒子径が
均一であり、高膨潤倍率のシード重合の種粒子に適する
単分散微粒子を製造することができる。本発明2の単分
散微粒子の製造方法は、上述の構成からなるので、粒子
径が均一であり、高膨潤倍率のシード重合の種粒子に適
する単分散微粒子を製造することができる。また、本発
明1及び本発明2の微粒子の製造方法は、上述の構成か
らなるので、粒子径の均一な微粒子を製造することがで
きる。更に、本発明1及び本発明2の液晶表示素子用ス
ペーサの製造方法は、上述の構成からなるので、粒子径
の均一な液晶表示素子用スペーサを製造することができ
る。
The method for producing monodisperse fine particles of the present invention 1
With the above configuration, it is possible to produce monodisperse fine particles having a low molecular weight and a uniform particle size, and having high swelling ratio and suitable for seed particles for seed polymerization. Since the method for producing monodisperse fine particles of the second aspect of the present invention has the above-described structure, monodisperse fine particles having a uniform particle diameter and suitable for seed particles for seed polymerization having a high swelling ratio can be produced. Further, since the method for producing fine particles of the present invention 1 and the present invention 2 has the above-described configuration, fine particles having a uniform particle diameter can be produced. Furthermore, since the method for manufacturing a spacer for a liquid crystal display element according to the first and second aspects of the present invention has the above-described configuration, a spacer for a liquid crystal display element having a uniform particle diameter can be manufactured.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J011 AA05 AA08 BA08 BB06 DA03 JA12 JB07 JB08 JB16 NA25 NB03 4J026 AA17 AA19 AA37 AA38 AA45 AA46 AA47 AA48 AA49 BA00 BA05 BA08 BA19 BA20 BA27 BA28 BA29 BA30 BA31 CA10 DA03 DA07 DA09 DA12 DA14 DA16 DB03 DB08 DB11 DB22 DB29 DB32 FA03 FA04 GA06 ──────────────────────────────────────────────────続 き Continued on front page F-term (reference) 4J011 AA05 AA08 BA08 BB06 DA03 JA12 JB07 JB08 JB16 NA25 NB03 4J026 AA17 AA19 AA37 AA38 AA45 AA46 AA47 AA48 AA49 BA00 BA05 BA08 BA19 BA20 BA27 DA10 DA16 DB03 DB08 DB11 DB22 DB29 DB32 FA03 FA04 GA06

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 水中に重合性不飽和単量体、重合開始剤
及び連鎖移動剤を分散し、この分散液を加熱することに
より重合反応を行う単分散微粒子の製造方法であって、
前記連鎖移動剤として、炭素数が1〜10のアルキルメ
ルカプタン系連鎖移動剤を用いるとともに、前記連鎖移
動剤を前記重合開始剤に対して、5〜60倍量添加する
ことを特徴とする単分散微粒子の製造方法。
1. A method for producing monodispersed fine particles, comprising dispersing a polymerizable unsaturated monomer, a polymerization initiator and a chain transfer agent in water, and heating the dispersion to carry out a polymerization reaction,
Monodisperse, wherein, as the chain transfer agent, an alkylmercaptan-based chain transfer agent having 1 to 10 carbon atoms is used, and the chain transfer agent is added in an amount of 5 to 60 times the amount of the polymerization initiator. A method for producing fine particles.
【請求項2】 連鎖移動剤は、炭素数が6〜10のアル
キルメルカプタン系連鎖移動剤であることを特徴とする
請求項1記載の単分散微粒子の製造方法。
2. The method according to claim 1, wherein the chain transfer agent is an alkyl mercaptan-based chain transfer agent having 6 to 10 carbon atoms.
【請求項3】 重合性不飽和単量体100重量部に対し
て、0.5〜5重量部の電解質を添加することを特徴と
する請求項1又は2記載の単分散微粒子の製造方法。
3. The method according to claim 1, wherein 0.5 to 5 parts by weight of an electrolyte is added to 100 parts by weight of the polymerizable unsaturated monomer.
【請求項4】 水中に重合性不飽和単量体、重合開始剤
及び電解質を分散し、この分散液を加熱することにより
重合反応を行う単分散微粒子の製造方法であって、前記
重合性不飽和単量体100重量部に対して、前記電解質
を0.5〜5重量部添加することを特徴とする単分散微
粒子の製造方法。
4. A method for producing monodispersed fine particles, comprising dispersing a polymerizable unsaturated monomer, a polymerization initiator and an electrolyte in water, and heating the dispersion to carry out a polymerization reaction. A method for producing monodisperse fine particles, comprising adding 0.5 to 5 parts by weight of the electrolyte to 100 parts by weight of a saturated monomer.
【請求項5】 請求項1、2、3又は4記載の単分散微
粒子の製造方法により得られた単分散微粒子を種粒子と
して、シード重合を行うことを特徴とする微粒子の製造
方法。
5. A method for producing fine particles, comprising performing seed polymerization using the monodisperse fine particles obtained by the method for producing monodisperse fine particles according to claim 1, 2, 3 or 4 as seed particles.
【請求項6】 請求項1、2、3又は4記載の単分散微
粒子の製造方法により得られた単分散微粒子を種粒子と
して、シード重合を行うことを特徴とする液晶表示素子
用スペーサの製造方法。
6. A method for producing a spacer for a liquid crystal display element, comprising performing seed polymerization using the monodispersed fine particles obtained by the method for producing monodispersed fine particles according to claim 1, 2, 3 or 4 as seed particles. Method.
JP10277451A 1998-09-30 1998-09-30 Preparation of monodispersed minute particles, minute particles, and spacer for use in liquid crystal display element Pending JP2000103804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10277451A JP2000103804A (en) 1998-09-30 1998-09-30 Preparation of monodispersed minute particles, minute particles, and spacer for use in liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10277451A JP2000103804A (en) 1998-09-30 1998-09-30 Preparation of monodispersed minute particles, minute particles, and spacer for use in liquid crystal display element

Publications (1)

Publication Number Publication Date
JP2000103804A true JP2000103804A (en) 2000-04-11

Family

ID=17583772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10277451A Pending JP2000103804A (en) 1998-09-30 1998-09-30 Preparation of monodispersed minute particles, minute particles, and spacer for use in liquid crystal display element

Country Status (1)

Country Link
JP (1) JP2000103804A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016490A1 (en) * 2004-08-12 2006-02-16 Kaneka Corporation Process for producing polyorganosiloxane latex, graft copolymer obtained from the latex, and resin composition containing the graft copolymer
JP2011137096A (en) * 2009-12-28 2011-07-14 Sekisui Plastics Co Ltd Resin particle for light-diffusing film, method for producing the same, and light-diffusing film
KR101170962B1 (en) * 2010-05-10 2012-08-07 인하대학교 산학협력단 Manufacturing Method of Monodispersed Cross-Linked Particle Using 1 Step Process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016490A1 (en) * 2004-08-12 2006-02-16 Kaneka Corporation Process for producing polyorganosiloxane latex, graft copolymer obtained from the latex, and resin composition containing the graft copolymer
JP2011137096A (en) * 2009-12-28 2011-07-14 Sekisui Plastics Co Ltd Resin particle for light-diffusing film, method for producing the same, and light-diffusing film
KR101170962B1 (en) * 2010-05-10 2012-08-07 인하대학교 산학협력단 Manufacturing Method of Monodispersed Cross-Linked Particle Using 1 Step Process

Similar Documents

Publication Publication Date Title
JP4779186B2 (en) Monodispersed particle size, method for producing the same, and use using the same
EP1602670A1 (en) Production method of porous spherical particles of vinyl polymer
JP4106240B2 (en) Polymer fine particle having living radical polymerization initiating group and method for producing the same
Chang et al. Polysiloxane/poly (fluorinated acrylate) core–shell latexes and surface wettability of films
JPH0333162B2 (en)
JP2000103804A (en) Preparation of monodispersed minute particles, minute particles, and spacer for use in liquid crystal display element
JP2000191818A (en) Preparation of porous particulate
JP5541474B2 (en) Monodispersed crosslinked polymer fine particles and method for producing the same
JP3432413B2 (en) Method for producing monodisperse fine particles
KR100257293B1 (en) Method for manufacturing porous polymer particle
JP3391979B2 (en) Method for synthesizing monodisperse fine particles
JP4113290B2 (en) Liquid crystal display element spacer and liquid crystal display element
JP4917821B2 (en) Method for producing polymer particles
JPH011702A (en) Method for producing polymer particles
WO2019171480A1 (en) Core/shell type polymer microparticles, dispersion of particles, and method for producing said microparticles
JP2662952B2 (en) Method for producing polymer particles having a narrow particle size distribution
JPH0692443B2 (en) Method for producing polymer particles
JP4178872B2 (en) Method for producing crosslinked polymer particles
JPH0689082B2 (en) Method for producing monodisperse polymer
JP2003252912A (en) Monodispersed fine particle
JPH0597905A (en) Production of fine polymer particle
JPH048710A (en) Production of amino group-containing polymer particle
JP6913901B2 (en) Core-shell type polymer fine particles, particle dispersion, and method for producing the fine particles
JPH08239406A (en) Production of fine polymer particle
KR100556628B1 (en) Monodispersed Polymer Particles with Low Molecular Weight and Method of Preparing the Same