JPH09297214A - Polarizing element - Google Patents

Polarizing element

Info

Publication number
JPH09297214A
JPH09297214A JP8113442A JP11344296A JPH09297214A JP H09297214 A JPH09297214 A JP H09297214A JP 8113442 A JP8113442 A JP 8113442A JP 11344296 A JP11344296 A JP 11344296A JP H09297214 A JPH09297214 A JP H09297214A
Authority
JP
Japan
Prior art keywords
film
obliquely
polarizing element
substrate
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8113442A
Other languages
Japanese (ja)
Inventor
Seijiro Okada
誠治郎 岡田
Hiroshi Shiraiwa
弘 白岩
Hidehiko Wada
秀彦 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8113442A priority Critical patent/JPH09297214A/en
Publication of JPH09297214A publication Critical patent/JPH09297214A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Polarising Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain both of adhesion and antireflection of an oblique vapor deposition film by using the same material of the oblique vapor deposition film for the first layer of an antireflection film having at least two layers. SOLUTION: An oblique vapor deposition film 3 is formed into a columnar structure which grows as tilted from the substrate surface by arranging the substrate 1 tilted to the entering direction of an optical material in a vapor deposition device. Further, a first layer 4 of an antireflection film is formed on the oblique vapor deposition film 3 by using the same material as for the oblique vapor deposition film 3. Then a second layer 5 is formed under antireflection conditions. For example, light of 795nm wavelength is used for the optical element, the substrate 1 consists of glass and Ta2 O5 is used to form the oblique vapor deposition film 3. A Ta2 O5 film of 97nm thickness and a SiO2 film of 136nm thickness are formed by vapor deposition for the first layer 4 and second layer 5, respectively. The adhesion between the oblique vapor deposition film 3 and the first layer 4 of the antireflection film is firm because these films consist of the same material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は斜め蒸着膜を使用し
た偏光素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarizing element using a diagonal vapor deposition film.

【0002】[0002]

【従来の技術】従来、斜め蒸着膜を用いた偏光素子とし
て特開平5−132768号公報に記載されたものが知
られている。図3は斜め蒸着膜を用いた偏光素子の一例
としてこの公報に記載の発明を模式的断面図として示し
たものであり、基板21にアンダーコート22をあらか
じめ形成し、蒸着装置内において光学材料の飛来方向に
対して基板21を傾斜させて配置し、基板表面から斜め
方向に成長する柱状組織として形成された斜め蒸着膜2
3と通常に形成した反射防止膜24で構成されている。
2. Description of the Related Art Conventionally, as a polarizing element using an obliquely vapor-deposited film, one described in JP-A-5-132768 is known. FIG. 3 shows a schematic cross-sectional view of the invention described in this publication as an example of a polarizing element using an obliquely vapor-deposited film. An undercoat 22 is formed on a substrate 21 in advance, and an undercoat 22 is formed in the vapor deposition apparatus. The obliquely deposited film 2 is formed as a columnar structure in which the substrate 21 is arranged to be inclined with respect to the flying direction and grows obliquely from the substrate surface.
3 and the antireflection film 24 that is normally formed.

【0003】斜め蒸着膜は光の偏波面に対する屈折率異
方性(複屈折)を有し、例えば1/4波長板等の偏光素
子として利用されている。
The obliquely deposited film has a refractive index anisotropy (birefringence) with respect to the plane of polarization of light and is used as a polarizing element such as a quarter wavelength plate.

【0004】[0004]

【発明が解決しようとする課題】蒸着もしくはスパッタ
等を用いた通常の光学薄膜(反射防止膜等)において、
薄膜どうし又は基板(ガラス、透明プラスチック等)と
の密着性は問題ないものの、斜め蒸着膜は、柱状組織と
して形成されるため大きな内部応力を持ち、温度変化等
による膨張、収縮によって異種材料から成る基板や反射
防止膜との密着性が劣化し剥離するという問題があっ
た。金属酸化物を用いた斜め蒸着膜とガラスや、金属酸
化物と金属フッ化物のどちらかが斜め蒸着膜で残りが反
射防止膜である場合は特に密着性が悪く簡単に剥離して
しまう。
In an ordinary optical thin film (antireflection film, etc.) using vapor deposition or sputtering,
Although the adhesiveness between thin films or substrates (glass, transparent plastic, etc.) is not a problem, the obliquely deposited film has a large internal stress because it is formed as a columnar structure, and is composed of different materials due to expansion and contraction due to temperature change etc. There is a problem that the adhesiveness with the substrate or the antireflection film is deteriorated and peeling occurs. When either the obliquely vapor-deposited film using a metal oxide and glass or the metal oxide or the metal fluoride is an obliquely vapor-deposited film and the rest is an antireflection film, the adhesion is particularly poor and the film is easily peeled off.

【0005】従来の構成では金属酸化物を用いた斜め蒸
着膜に対して、密着性を改善するため、基板に酸化珪素
系アンダーコートをしたり、金属酸化物を用いた反射防
止膜を使用する事が開示されている。
In the conventional structure, in order to improve the adhesion with respect to the obliquely vapor-deposited film using a metal oxide, a silicon oxide undercoat is used on the substrate or an antireflection film using a metal oxide is used. Things have been disclosed.

【0006】しかしながら反射防止膜等の光学材料とし
ては、古くからMgF2 等の金属フッ化物やSiO2 等
の金属酸化膜が使われており、金属酸化物を反射防止膜
に用いる事は公知である。さらに、例えばアンダーコー
トをすれば密着力は改善されるものの、光学素子では境
界面による光の反射を防止するため、基板の屈折率をN
s、斜め蒸着膜の屈折率をNoとするとアンダーコートは
屈折率Nu が(Ns *No )1/2の物を選定し、光学厚
み(膜厚d*Nu )は波長の1/4にする必要がある。
使用波長795nm、基板にガラス(BK7、屈折率
1.51)、斜め蒸着膜にTa2O5(斜め蒸着時の屈折
率1.6)を使用した場合、アンダーコートの最適屈折
率は1.55であり酸化珪素(SiO2 、屈折率1.4
7)を使用した場合反射率は0.3%となりアンダーコ
ートの無い場合の反射率0.1%より大きくなってしま
うという問題がある。
However, as an optical material such as an antireflection film, a metal fluoride such as MgF2 or a metal oxide film such as SiO2 has been used for a long time, and it is known to use a metal oxide for the antireflection film. Further, for example, an undercoat improves the adhesion, but in an optical element, the refractive index of the substrate is N
s, assuming that the refractive index of the obliquely vapor-deposited film is No, an undercoat having a refractive index Nu of (Ns * No) 1/2 is selected, and the optical thickness (film thickness d * Nu) is set to 1/4 of the wavelength. There is a need.
When the wavelength used is 795 nm, the substrate is glass (BK7, refractive index 1.51), and the oblique deposition film is Ta2O5 (refractive index 1.6 at oblique deposition), the optimum refractive index of the undercoat is 1.55. Silicon oxide (SiO2, refractive index 1.4
When 7) is used, the reflectance is 0.3%, which is higher than the reflectance of 0.1% without the undercoat.

【0007】又、反射防止膜の場合も同様に斜め蒸着膜
に金属酸化物であるTa2O5(斜め蒸着時の屈折率1.
6)を使用した場合、最適屈折率は1.26であり金属
フッ化物であるフッ化マグネシウム(MgF2 、屈折率
1.38)が最適である(反射率0.7%)ものの密着
性が悪く、金属酸化物では酸化珪素(SiO2 、屈折率
1.47)が近いが反射率が大きくなる(反射率2.2
%)という問題があった。
Also in the case of the antireflection film, similarly, Ta2O5 which is a metal oxide is formed on the obliquely evaporated film (refractive index 1.
When 6) is used, the optimum refractive index is 1.26, and magnesium fluoride (MgF2, refractive index 1.38), which is a metal fluoride, is optimum (reflectance 0.7%), but adhesion is poor. In the case of metal oxides, silicon oxide (SiO2, refractive index 1.47) is close, but the reflectance is large (reflectance 2.2
%).

【0008】すなわちこのような従来の技術では、境界
面による光の反射を防止するためには構成材料の屈折率
ひいては材料に制約があり、単に金属酸化物を選択した
だけでは、密着性と反射防止を両立する事は困難であっ
た。
That is, in such a conventional technique, in order to prevent the reflection of light by the boundary surface, there is a restriction on the refractive index of the constituent material and thus on the material, and if the metal oxide is simply selected, the adhesion and the reflection can be reduced. It was difficult to achieve both prevention.

【0009】本発明は、斜め蒸着膜の密着性と反射防止
を両立できる偏光素子を提供することを目的としてなさ
れたものである。
The present invention has been made for the purpose of providing a polarizing element capable of achieving both adhesion of an obliquely vapor-deposited film and antireflection.

【0010】[0010]

【課題を解決するための手段】この課題を解決するため
に本発明の偏光素子は、少なくとも2層から成る反射防
止膜の第1層目を斜め蒸着膜と同一材料を用いた構成に
したもの、もしくは物理厚みに屈折率を掛けた光学厚み
が(以下光学厚みと略す)、使用する波長の1/2とな
るようにアンダーコートを形成したもの、もしくは斜め
蒸着膜とほぼ等しい屈折率を持つ金属酸化物でアンダー
コートを形成したものである。
In order to solve this problem, the polarizing element of the present invention has a structure in which the first layer of the antireflection film consisting of at least two layers is made of the same material as the obliquely evaporated film. , Or an optical thickness obtained by multiplying the physical thickness by the refractive index (hereinafter abbreviated as optical thickness) with an undercoat formed to be 1/2 of the wavelength used, or a refractive index almost equal to that of the obliquely evaporated film An undercoat is formed of a metal oxide.

【0011】これにより、反射による光量の損失がほと
んど無く斜め蒸着膜の密着性を確保する事が出来る。
As a result, the adhesion of the obliquely vapor-deposited film can be ensured with almost no loss of light amount due to reflection.

【0012】[0012]

【発明の実施の形態】本発明の請求項1に記載の発明
は、光学材料を斜めに蒸着せしめ、複屈折を有する斜め
蒸着膜と反射防止膜を有する偏光素子において、反射防
止膜は少なくとも2層から成り、斜め蒸着膜に接する反
射防止膜は斜め蒸着膜と同一材料である偏光素子で、2
層以上からなる反射防止膜は、反射防止膜材料の組み合
わせが比較的自由に選択出来るため、反射防止膜の第1
層目を斜め蒸着膜と同一材料とした2層以上からなる反
射防止膜を施す事によって反射防止のみならず密着性を
確保する事ができるという作用を有する。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention is a polarizing element having an oblique vapor deposition film having birefringence and an antireflection film in which an optical material is obliquely vapor-deposited, and the antireflection film is at least 2 The antireflection film, which consists of layers and is in contact with the obliquely evaporated film, is a polarizing element made of the same material as the obliquely evaporated film.
The anti-reflection film consisting of more than one layer can be selected as the first anti-reflection film because the combination of anti-reflection film materials can be selected relatively freely.
By providing an antireflection film composed of two or more layers in which the second layer is the same material as the obliquely evaporated film, not only the antireflection but also the adhesion can be secured.

【0013】請求項2に記載の発明は、基板上に金属酸
化物を斜めに蒸着せしめ複屈折を有する斜め蒸着膜とを
有する偏光素子において、斜め蒸着膜と基板の間に、光
学厚みが使用する波長の1/2となる金属酸化物を有す
る偏光素子であり、反射光の強さは斜め蒸着膜と基板も
しくは反射防止膜が直接に接触した場合と同じであり、
反射による光量の損失がほとんど無く密着性を確保でき
るという作用を有する。
According to a second aspect of the present invention, in a polarizing element having an obliquely evaporated film having birefringence by obliquely evaporating a metal oxide on a substrate, an optical thickness is used between the obliquely evaporated film and the substrate. Is a polarizing element having a metal oxide having a wavelength of ½, and the intensity of reflected light is the same as when the oblique deposition film and the substrate or the antireflection film are in direct contact,
There is an effect that the adhesiveness can be secured with almost no loss of light amount due to reflection.

【0014】請求項3に記載の発明は、金属酸化物を斜
めに蒸着せしめ複屈折を有する斜め蒸着膜と、反射防止
膜とを有する偏光素子において、斜め蒸着膜と反射防止
膜との間に、光学厚みが使用する波長の1/2となる金
属酸化物を有する偏光素子であり、反射光の強さは斜め
蒸着膜と基板もしくは反射防止膜が直接に接触した場合
と同じであり、請求項2に記載の発明と同様に反射によ
る光量の損失がほとんど無く密着性を確保できるという
作用を有する。
According to a third aspect of the present invention, in a polarizing element having an obliquely vapor-deposited film having birefringence by obliquely vapor-depositing a metal oxide and an antireflection film, between the obliquely vapor-deposited film and the antireflection film. , A polarizing element having a metal oxide whose optical thickness is 1/2 of the wavelength used, and the intensity of reflected light is the same as when the obliquely vapor-deposited film and the substrate or the antireflection film are in direct contact. As in the case of the invention described in Item 2, there is an effect that the adhesiveness can be secured with almost no loss of light amount due to reflection.

【0015】請求項4に記載の発明は、基板上に光学材
料を斜めに蒸着せしめ複屈折を有する斜め蒸着膜とを有
する偏光素子において、斜め蒸着膜と基板の間に、光学
厚みが使用する波長の1/2となり、斜め蒸着膜と同一
材料の膜を有する偏光素子であり、請求項2に記載の発
明と同様に反射による光量の損失がほとんど無く、同一
材料であるために密着性を改善できる上、金属酸化物の
みならず金属フッ化物、金属薄膜にも有効であるという
作用を有する。
According to a fourth aspect of the present invention, in a polarizing element having an obliquely evaporated film having birefringence by obliquely evaporating an optical material on a substrate, the optical thickness is used between the obliquely evaporated film and the substrate. It is a half of the wavelength, and is a polarizing element having a film made of the same material as the obliquely vapor-deposited film. As with the invention described in claim 2, there is almost no loss of light quantity due to reflection, and since it is the same material, the adhesiveness is In addition to being improved, it has an effect that it is effective not only for metal oxides but also for metal fluorides and metal thin films.

【0016】請求項5に記載の発明は、光学材料を斜め
に蒸着せしめ複屈折を有する斜め蒸着膜と、反射防止膜
とを有する偏光素子において、斜め蒸着膜と反射防止膜
との間に、光学厚みが使用する波長の1/2となり、斜
め蒸着膜と同一材料の膜を有する偏光素子であり、請求
項2に記載の発明と同様に反射による光量の損失がほと
んど無く、同一材料であるためより密着性を改善できる
上、金属酸化物のみならず金属フッ化物、金属薄膜にも
有効であるという作用を有する。
According to a fifth aspect of the present invention, in a polarizing element having an obliquely vapor-deposited film having an optical material obliquely vapor-deposited and having a birefringence and an antireflection film, between the obliquely vapor-deposited film and the antireflection film, It is a polarizing element having an optical thickness of ½ of the wavelength used and having a film made of the same material as the obliquely vapor-deposited film, and there is almost no loss of light quantity due to reflection as in the invention of claim 2, and the same material. Therefore, the adhesiveness can be further improved, and it is effective not only for metal oxides but also for metal fluorides and metal thin films.

【0017】請求項6、あるいは7に記載の発明は、斜
め蒸着膜と基板の間、もしくは斜め蒸着上の少なくとも
一方に、斜め蒸着膜とほぼ等しい屈折率を持つ金属酸化
物を有する、あるいは基板と同一の屈折率を持つ金属酸
化物を有する偏光素子であり、光学的には斜め蒸着膜も
しくは基板が厚くなった事になるが、斜め蒸着膜と基板
は波長に比べ非常に厚いため無視する事ができ、反射に
よる光量の損失がほとんど無く密着性を確保できるとい
う作用を有する。
The invention according to claim 6 or 7 has a metal oxide having a refractive index substantially equal to that of the obliquely-deposited film between the obliquely-deposited film and the substrate, or at least on the obliquely-deposited film, or the substrate. It is a polarizing element that has a metal oxide with the same refractive index as the above. Optically, it means that the obliquely deposited film or substrate is thick, but it is ignored because the obliquely deposited film and the substrate are very thick compared to the wavelength. This has the effect that the adhesiveness can be secured with almost no loss of the light amount due to reflection.

【0018】以下本発明の実施の形態について、図1と
図2を用いて説明する。 (実施の形態1)図1は本発明の請求項1の実施の形態
における偏光素子の模式的断面を示し、図1において、
1は基板、3は斜め蒸着膜、4は1層目の反射防止膜、
5は2層目の反射防止膜をそれぞれ示し、蒸着装置内に
おいて光学材料の飛来方向に対して基板1を傾斜させて
配置して蒸着を行う事によって、基板表面から斜め方向
に成長する柱状組織として斜め蒸着膜3が形成される。
さらに斜め蒸着膜3の上には斜め蒸着膜3と同じ材料を
用いた反射防止膜の第1層目と、無反射条件から選択し
た反射防止膜の第2層から構成している。
Embodiments of the present invention will be described below with reference to FIGS. 1 and 2. (Embodiment 1) FIG. 1 shows a schematic cross section of a polarizing element according to an embodiment of claim 1 of the present invention.
1 is a substrate, 3 is an obliquely evaporated film, 4 is a first antireflection film,
Reference numeral 5 denotes a second-layer antireflection film, which is a columnar structure that grows in an oblique direction from the surface of the substrate by performing vapor deposition by arranging the substrate 1 in a vapor deposition apparatus with the substrate 1 inclined with respect to the flying direction of the optical material. As a result, the obliquely deposited film 3 is formed.
Furthermore, on the obliquely vapor-deposited film 3, a first layer of an antireflection film made of the same material as the obliquely vapor-deposited film 3 and a second layer of the antireflection film selected from non-reflective conditions are formed.

【0019】以上のように構成された偏光素子につい
て、以下その動作について説明する。実施例として、使
用波長795nm、基板にガラス(BK7、屈折率1.
51)、斜め蒸着膜にTa2O5(斜め蒸着時の屈折率
1.6)を使用し、反射防止膜の第1層目にはTa2O5
(屈折率2.0)を97nm、反射防止膜の第2層目に
はSiO2 (屈折率1.47)を136nm蒸着するこ
とによって反射率は0.5%となり、斜め蒸着膜と反射
防止膜の密着性も同一材料であるため強固である。
The operation of the polarizing element having the above structure will be described below. As an example, the wavelength used is 795 nm, the substrate is made of glass (BK7, refractive index 1.
51), Ta2O5 is used for the obliquely evaporated film (refractive index of 1.6 when obliquely evaporated), and Ta2O5 is used for the first layer of the antireflection film.
(Refractive index 2.0) is deposited to 97 nm, and SiO2 (refractive index 1.47) is deposited to 136 nm to the second layer of the antireflection film so that the reflectance becomes 0.5%. The adhesiveness of is also strong because it is made of the same material.

【0020】以上のように本実施形態によれば、反射に
よる光量の損失がほとんど無く斜め蒸着膜と反射防止膜
との密着性を確保できることとなる。
As described above, according to this embodiment, it is possible to secure the adhesion between the obliquely vapor-deposited film and the antireflection film with almost no loss of light amount due to reflection.

【0021】(実施の形態2)次に、図2は請求項2の
実施の形態における偏光素子の模式的断面を示し、図2
において、1は基板、2は密着性改善のためのアンダー
コート、3は斜め蒸着膜、6は反射防止膜をそれぞれ示
し、基板1にあらかじめ金属酸化物からなるアンダーコ
ート2を形成した後、蒸着装置内において光学材料の飛
来方向に対して基板1を傾斜させて配置して金属酸化物
を蒸着する事によって、基板表面から斜め方向に成長す
る柱状組織として斜め蒸着膜3が形成される。さらに斜
め蒸着膜3の上には前記アンダーコートと同仕様でアン
ダーコートを形成した後、斜め蒸着膜と空気の屈折率か
ら求めた無反射条件で形成した反射防止膜6から構成し
ている。
(Embodiment 2) Next, FIG. 2 shows a schematic cross section of a polarizing element according to an embodiment of claim 2, and FIG.
In FIG. 1, 1 is a substrate, 2 is an undercoat for improving adhesion, 3 is a diagonal vapor deposition film, and 6 is an antireflection film, respectively. After the undercoat 2 made of a metal oxide is formed on the substrate 1 in advance, vapor deposition is performed. By obliquely arranging the substrate 1 in the apparatus with respect to the flying direction of the optical material and vapor-depositing the metal oxide, the oblique vapor deposition film 3 is formed as a columnar structure that grows in an oblique direction from the substrate surface. Further, an undercoat having the same specifications as the above undercoat is formed on the obliquely vapor-deposited film 3, and then the obliquely vapor-deposited film and an antireflection film 6 formed under a non-reflective condition obtained from the refractive index of air are used.

【0022】以上のように構成された偏光素子につい
て、以下その動作について説明する。実施例として、使
用波長795nm、基板にガラス(BK7、屈折率1.
51)、斜め蒸着膜にTa2O5(斜め蒸着時の屈折率
1.6)を使用し、アンダーコートとしてSiO2 (屈
折率1.47)を光学厚みの1/2である270nm蒸
着し反射防止膜にはフッ化マグネシウム(MgF2 、屈
折率1.38)を光学厚みの1/4である144nm蒸
着することによって反射率は0.7%になりアンダーコ
ート(SiO2 )が無い場合と同じである。又、斜め蒸
着膜とアンダーコートの密着性は同じ酸化物であるため
強固であるとともに、アンダーコートと反射防止膜は蒸
着もしくはスパッタ等を用いた通常の光学薄膜(基板に
対して略90度で成膜する)であるため、アンダーコー
トと基板やアンダーコートと反射防止膜との密着性は強
固である。
The operation of the polarizing element having the above structure will be described below. As an example, the wavelength used is 795 nm, the substrate is made of glass (BK7, refractive index 1.
51), Ta2O5 (refractive index of 1.6 at the time of oblique deposition) is used for the obliquely evaporated film, and SiO2 (refractive index of 1.47) is evaporated as an undercoat at 270 nm which is 1/2 of the optical thickness to form an antireflection film. Is the same as when there is no undercoat (SiO2) because the reflectance becomes 0.7% by vapor-depositing magnesium fluoride (MgF2, refractive index 1.38) which is ¼ of the optical thickness. Also, since the adhesion between the obliquely deposited film and the undercoat is the same oxide, the adhesion is strong, and the undercoat and the antireflection film are ordinary optical thin films using vapor deposition or sputtering (about 90 degrees to the substrate. Since the film is formed), the adhesion between the undercoat and the substrate and the adhesion between the undercoat and the antireflection film are strong.

【0023】以上のように本実施の形態によれば、反射
による光量の損失が少ないものの密着性が悪くて使用で
きなかった反射防止膜材料を光量の損失がほとんど無
く、斜め蒸着膜と反射防止膜もしくは斜め蒸着膜と基板
との密着性を確保できることとなる。
As described above, according to the present embodiment, the antireflection film material, which has a small loss of light amount due to reflection but cannot be used due to poor adhesion, has almost no loss of light amount, and the oblique vapor deposition film and the antireflection film are not used. The adhesion between the film or the obliquely evaporated film and the substrate can be secured.

【0024】さらにアンダーコートとして斜め蒸着膜材
料と同じものを使用すればさらに密着性を改善できる。
またアンダーコートとして斜め蒸着膜材料と同じ屈折率
のものを使用すればアンダーコートの厚みとは無関係に
光量の損失が無く、斜め蒸着膜と反射防止膜もしくは斜
め蒸着膜と基板との密着性を確保できることとなる。し
かし一般に使用されている光学材料の中で屈折率がまっ
たく同じ物はありえないため、屈折率の差が20%以下
の光学材料を用いる事が望ましい(屈折率の差が20%
でも反射率は1%以下であり問題は無い)。例えば斜め
蒸着膜にTa2O5(斜め蒸着時の屈折率1.6)を、ア
ンダーコートとしてAl2O5(屈折率1.65)を使用
すればアンダーコートの厚みが変わっても反射率は0.
4%以下となり光量の損失がほとんど無く、斜め蒸着膜
と反射防止膜もしくは斜め蒸着膜と基板との密着性を確
保できることとなる。
Further, if the same material as the obliquely vapor-deposited film material is used as the undercoat, the adhesion can be further improved.
Also, if an undercoating material having the same refractive index as that of the obliquely evaporated film material is used, there is no loss of light quantity regardless of the thickness of the undercoating film, and the adhesion between the obliquely evaporated film and the antireflection film or the obliquely evaporated film and the substrate is improved. It can be secured. However, among the commonly used optical materials, it is not possible to have the same refractive index. Therefore, it is desirable to use an optical material having a refractive index difference of 20% or less (a refractive index difference of 20%).
However, the reflectance is less than 1% and there is no problem). For example, if Ta2O5 (refractive index of 1.6 during oblique deposition) is used for the obliquely evaporated film and Al2O5 (refractive index of 1.65) is used as the undercoat, the reflectance is 0.
It becomes 4% or less, and there is almost no loss of light quantity, and the adhesion between the obliquely evaporated film and the antireflection film or the obliquely evaporated film and the substrate can be secured.

【0025】また斜め蒸着膜は蒸着のみならずスパッタ
等で形成した物も同様であり、斜め蒸着膜や反射防止
膜、アンダーコート材料として従来の光学材料(金属酸
化物:TiO2 、CeO2 、WO2 等 金属膜:Cr、
Au、Cu等)を用いる事ができる事はいうまでもな
い。
The obliquely vapor-deposited film is the same as that formed by not only vapor deposition but also sputtering, and conventional optical materials (metal oxides: TiO2, CeO2, WO2, etc.) are used as the obliquely vapor-deposited film, the antireflection film and the undercoat material. Metal film: Cr,
It goes without saying that Au, Cu, etc.) can be used.

【0026】[0026]

【発明の効果】以上のように本発明によれば、光量の損
失がほとんど無く、斜め蒸着膜と反射防止膜もしくは斜
め蒸着膜と基板との密着性を確保でき、さらには反射に
よる光量の損失が少ないものの密着性が悪くて使用でき
なかった反射防止膜材料を使用する事ができるという有
利な効果が得られる。
As described above, according to the present invention, there is almost no loss of light amount, the adhesion between the obliquely vapor-deposited film and the antireflection film or the obliquely vapor-deposited film and the substrate can be secured, and further, the loss of the light amount due to reflection is achieved. However, the advantageous effect that an antireflection film material which cannot be used due to poor adhesiveness can be used can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の請求項1の実施の形態における偏光素
子の模式的断面図
FIG. 1 is a schematic sectional view of a polarizing element according to an embodiment of claim 1 of the present invention.

【図2】本発明の請求項1の実施の形態における偏光素
子の模式的断面図
FIG. 2 is a schematic sectional view of a polarizing element according to an embodiment of claim 1 of the present invention.

【図3】従来の偏光素子の模式的断面図FIG. 3 is a schematic sectional view of a conventional polarizing element.

【符号の説明】[Explanation of symbols]

1,21 基板 2,22 アンダーコート 3,23 斜め蒸着膜 4 1層目の反射防止膜 5 2層目の反射防止膜 6,24 反射防止膜 1, 21 Substrate 2, 22 Undercoat 3, 23 Oblique vapor deposition film 4 1st layer antireflection film 5 2nd layer antireflection film 6, 24 Antireflection film

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 光学材料を斜めに蒸着せしめ複屈折を有
する斜め蒸着膜と、反射防止膜を有する偏光素子におい
て、前記反射防止膜は少なくとも2層から成り、前記斜
め蒸着膜に接する反射防止膜は前記斜め蒸着膜と同一材
料であることを特徴とする偏光素子。
1. A polarizing element having an obliquely vapor-deposited film having birefringence formed by obliquely vapor-depositing an optical material and an antireflection film, wherein the antireflection film comprises at least two layers, and the antireflection film is in contact with the obliquely vapor-deposited film. Is the same material as the obliquely deposited film, and is a polarizing element.
【請求項2】 基板上に金属酸化物を斜めに蒸着せしめ
複屈折を有する斜め蒸着膜を有する偏光素子において、
前記斜め蒸着膜と基板の間に、物理厚みに屈折率を掛け
た光学厚みが使用する波長の1/2となる金属酸化物を
有することを特徴とする偏光素子。
2. A polarizing element having an obliquely evaporated film having birefringence obtained by obliquely evaporating a metal oxide on a substrate,
A polarizing element comprising a metal oxide having an optical thickness obtained by multiplying a physical thickness by a refractive index to be 1/2 of a wavelength used, between the obliquely deposited film and the substrate.
【請求項3】 金属酸化物を斜めに蒸着せしめ複屈折を
有する斜め蒸着膜と、反射防止膜とを有する偏光素子に
おいて、前記斜め蒸着膜と反射防止膜との間に、物理厚
みに屈折率を掛けた光学厚みが使用する波長の1/2と
なる金属酸化物を有することを特徴とする偏光素子。
3. A polarizing element having an obliquely vapor-deposited film having birefringence obtained by obliquely vapor-depositing a metal oxide, and an antireflection film, wherein a refractive index in physical thickness is provided between the obliquely vapor-deposited film and the antireflection film. A polarizing element comprising a metal oxide having an optical thickness multiplied by ½ of a wavelength used.
【請求項4】 基板上に光学材料を斜めに蒸着せしめ複
屈折を有する斜め蒸着膜を有する偏光素子において、前
記斜め蒸着膜と基板の間に、物理厚みに屈折率を掛けた
光学厚みが使用する波長の1/2であり、前記斜め蒸着
膜と同一材料の膜を有することを特徴とする偏光素子。
4. A polarizing element having an obliquely evaporated film having birefringence by obliquely evaporating an optical material on a substrate, wherein an optical thickness obtained by multiplying a physical thickness by a refractive index is used between the obliquely evaporated film and the substrate. A polarizing element having a film of the same material as that of the obliquely evaporated film, which is half the wavelength of the polarized light.
【請求項5】 光学材料を斜めに蒸着せしめ複屈折を有
する斜め蒸着膜と、反射防止膜とを有する偏光素子にお
いて、前記斜め蒸着膜と反射防止膜との間に、物理厚み
に屈折率を掛けた光学厚みが使用する波長の1/2であ
り、前記斜め蒸着膜と同一材料の膜を有することを特徴
とする偏光素子。
5. A polarizing element having an obliquely vapor-deposited film having birefringence formed by obliquely vapor-depositing an optical material, and an antireflection film, wherein a refractive index is provided in physical thickness between the obliquely vapor-deposited film and the antireflection film. A polarizing element, characterized in that the multiplied optical thickness is ½ of the wavelength used and has a film made of the same material as the obliquely evaporated film.
【請求項6】 基板上に金属酸化物を斜めに蒸着せしめ
複屈折を有する斜め蒸着膜を有する偏光素子において、
前記斜め蒸着膜と基板の間もしくは前記斜め蒸着膜上の
少なくとも一方に、前記斜め蒸着膜とほぼ等しい屈折率
を持つ金属酸化物を有することを特徴とする偏光素子。
6. A polarizing element having an obliquely evaporated film having birefringence obtained by obliquely evaporating a metal oxide on a substrate,
A polarizing element comprising a metal oxide having a refractive index substantially equal to that of the obliquely evaporated film between at least one of the obliquely evaporated film and the substrate or on the obliquely evaporated film.
【請求項7】 基板上に金属酸化物を斜めに蒸着せしめ
複屈折を有する斜め蒸着膜を有する偏光素子において、
前記斜め蒸着膜と基板の間に、前記基板と同一の屈折率
を持つ金属酸化物を有することを特徴とする偏光素子。
7. A polarizing element having an obliquely evaporated film having birefringence obtained by obliquely evaporating a metal oxide on a substrate,
A polarizing element comprising a metal oxide having the same refractive index as that of the substrate between the obliquely deposited film and the substrate.
JP8113442A 1996-05-08 1996-05-08 Polarizing element Pending JPH09297214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8113442A JPH09297214A (en) 1996-05-08 1996-05-08 Polarizing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8113442A JPH09297214A (en) 1996-05-08 1996-05-08 Polarizing element

Publications (1)

Publication Number Publication Date
JPH09297214A true JPH09297214A (en) 1997-11-18

Family

ID=14612338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8113442A Pending JPH09297214A (en) 1996-05-08 1996-05-08 Polarizing element

Country Status (1)

Country Link
JP (1) JPH09297214A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187445B1 (en) 1998-05-29 2001-02-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Birefringent plate
KR100358223B1 (en) * 1998-03-20 2002-12-18 주식회사 엘지화학 Cholesteric filter
JP2008216644A (en) * 2007-03-05 2008-09-18 Asahi Glass Co Ltd Birefringent plate and optical head device
JP2010072126A (en) * 2008-09-17 2010-04-02 Canon Inc Optical element and optical apparatus
JP2011221272A (en) * 2010-04-09 2011-11-04 Seiko Epson Corp Reflective screen, projection system, front projection tv and method for manufacturing reflective screen
WO2014050408A1 (en) * 2012-09-28 2014-04-03 富士フイルム株式会社 Optical compensation plate
JP2015082010A (en) * 2013-10-22 2015-04-27 デクセリアルズ株式会社 Inorganic optical element
CN104755967A (en) * 2012-10-25 2015-07-01 富士胶片株式会社 Antireflective multilayer film
JP2015222442A (en) * 2015-08-12 2015-12-10 デクセリアルズ株式会社 Phase difference element and manufacturing method for the same
US9376744B2 (en) 2011-05-16 2016-06-28 Dexerials Corporation Phase-difference element having birefringent film containing TiO2 and Ta2O5
CN113215534A (en) * 2021-05-07 2021-08-06 业成科技(成都)有限公司 Optical element and method for manufacturing the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100358223B1 (en) * 1998-03-20 2002-12-18 주식회사 엘지화학 Cholesteric filter
US6187445B1 (en) 1998-05-29 2001-02-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Birefringent plate
JP2008216644A (en) * 2007-03-05 2008-09-18 Asahi Glass Co Ltd Birefringent plate and optical head device
JP2010072126A (en) * 2008-09-17 2010-04-02 Canon Inc Optical element and optical apparatus
JP2011221272A (en) * 2010-04-09 2011-11-04 Seiko Epson Corp Reflective screen, projection system, front projection tv and method for manufacturing reflective screen
US9946001B2 (en) 2011-05-16 2018-04-17 Dexerials Corporation Phase difference element having birefringent film containing titanium oxide tantalum oxide
US9376744B2 (en) 2011-05-16 2016-06-28 Dexerials Corporation Phase-difference element having birefringent film containing TiO2 and Ta2O5
JP5816378B2 (en) * 2012-09-28 2015-11-18 富士フイルム株式会社 Optical compensator
CN104737040A (en) * 2012-09-28 2015-06-24 富士胶片株式会社 Optical compensation plate
CN104737040B (en) * 2012-09-28 2017-02-01 富士胶片株式会社 Optical compensation plate
DE112013004797B4 (en) * 2012-09-28 2017-02-02 Fujifilm Corporation Optical compensation plate
WO2014050408A1 (en) * 2012-09-28 2014-04-03 富士フイルム株式会社 Optical compensation plate
US10101516B2 (en) 2012-09-28 2018-10-16 Fujifilm Corporation Optical compensation plate
CN104755967A (en) * 2012-10-25 2015-07-01 富士胶片株式会社 Antireflective multilayer film
CN104755967B (en) * 2012-10-25 2016-08-24 富士胶片株式会社 Antireflection multilayer film
WO2015060213A1 (en) * 2013-10-22 2015-04-30 デクセリアルズ株式会社 Inorganic optical element and method for manufacturing same
JP2015082010A (en) * 2013-10-22 2015-04-27 デクセリアルズ株式会社 Inorganic optical element
US9964670B2 (en) 2013-10-22 2018-05-08 Dexerials Corporation Inorganic optical element having a birefringent film with a columnar structure and a protective film formed thereon and method for manufacturing same
JP2015222442A (en) * 2015-08-12 2015-12-10 デクセリアルズ株式会社 Phase difference element and manufacturing method for the same
CN113215534A (en) * 2021-05-07 2021-08-06 业成科技(成都)有限公司 Optical element and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US4367921A (en) Low polarization beam splitter
JPH09297214A (en) Polarizing element
JP3458763B2 (en) Birefringent plate
JPH07111484B2 (en) Antireflection film for plastic optical parts and method for forming the same
JP2001228330A (en) Birefringent plate
JPH02109003A (en) Reflection mirror
JPH1020102A (en) Antireflection film
JP2537773B2 (en) Plastic mirror lenses
JPH0462363B2 (en)
JP2001074903A (en) Antireflection film and optical device
JPH1068801A (en) Antireflection film
JPS60130704A (en) Antireflection film for plastic substrate
JP2624827B2 (en) Half mirror
JP2001108802A (en) Antireflection film
JPH08122523A (en) Phase difference plate
JP3113371B2 (en) Multi-layer anti-reflective coating
JPS62127701A (en) Antireflection film
JP2777937B2 (en) Resin optical element and method of manufacturing the same
JPH07270601A (en) Optical thin film
JP3113376B2 (en) Multi-layer anti-reflective coating
JPH06250001A (en) Multilayer antireflection film and optical system provided with the same
JPH04156501A (en) Reflection preventing film for optical part made of synthetic resin
JPH0291603A (en) Optical multilayered film
JPS6381402A (en) Reflection reducing coating of plastic optical parts
JPH10195636A (en) Antireflection material excellent in durability