JP2624827B2 - Half mirror - Google Patents
Half mirrorInfo
- Publication number
- JP2624827B2 JP2624827B2 JP1083394A JP8339489A JP2624827B2 JP 2624827 B2 JP2624827 B2 JP 2624827B2 JP 1083394 A JP1083394 A JP 1083394A JP 8339489 A JP8339489 A JP 8339489A JP 2624827 B2 JP2624827 B2 JP 2624827B2
- Authority
- JP
- Japan
- Prior art keywords
- refractive index
- thin film
- layer
- half mirror
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Optical Elements Other Than Lenses (AREA)
- Optical Filters (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、ハーフミラーに係り、特に光の波長依存性
と入射角度依存性の少ない特性をもつ優れたハーフミラ
ーに関する。本発明のハーフミラーは、光機器等の光部
品に主として用いられるが、その他の用途にも幅広く利
用される。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a half mirror, and more particularly, to an excellent half mirror having characteristics of less dependence on light wavelength and incident angle. The half mirror of the present invention is mainly used for optical components such as optical devices, but is also widely used for other purposes.
[従来の技術] ハーフミラーの一例として、例えば屈折率が1.5程度
のガラス基板の片面に基板から順次、ZrO2とTiO2との混
合物(屈折率2.15)からなる光学的膜厚λ0/2(λ0は
設計の中心となる波長である)の第1層の薄膜、MgF
2(屈折率1.38)からなる光学的膜厚λ0/4の第2層の薄
膜、TiO2(屈折率2.30)からなる光学的膜厚λ0/4の第
3層の薄膜を積層して構成されるハーフミラーがある。As an example of the prior art] half mirror, for example, the refractive index sequentially from the substrate on one surface of a glass substrate of about 1.5, an optical film thickness lambda 0 consisting of a mixture of ZrO 2 and TiO 2 (refractive index 2.15) / 2 (Λ 0 is the center wavelength of the design)
2 by laminating a thin film of the second layer of the optical film thickness lambda 0/4 consisting of (refractive index 1.38), the thin film of the third layer of optical thickness lambda 0/4 consisting of TiO 2 (refractive index 2.30) There is a half mirror configured.
[従来技術の問題点] 上述の従来技術のハーフミラーの、光の入射角30゜,4
5゜及び60゜における分光透過率・反射率曲線を第2図
に示す(但し設計中心波長λ0は510nmである)。とこ
ろでハーフミラーは可視光全域に亘る広い波長域で50%
の透過光と50%の反射光に分離することが理想とされて
いるが、第2図から明らかなように、上述の従来技術の
ハーフミラーは、光の波長依存性が大きく、波長によっ
て透過と反射の比率が大きく異なるためにハーフミラー
面に色がつく欠点があった。[Problems of the prior art] The incident angle of light of 30 °, 4
FIG. 2 shows the spectral transmittance / reflectance curves at 5 ° and 60 ° (provided that the design center wavelength λ 0 is 510 nm). By the way, the half mirror is 50% in a wide wavelength range over the entire visible light range.
Although it is ideal to separate the transmitted light into 50% reflected light and the reflected light of 50%, as is apparent from FIG. 2, the above-described prior art half mirror has a large wavelength dependency of light, and the half mirror transmits light depending on the wavelength. There is a drawback that the half mirror surface is colored due to the large difference between the reflection ratio and the reflection ratio.
また同図から明らかなように、光の入射角が45゜の場
合よりも30゜及び60゜の場合に光の波長依存性が大きく
なるため、前記のハーフミラー面に色がつく欠点がさら
に大きくなり、光の入射角度依存性も認められる。Further, as is apparent from the figure, the wavelength dependence of the light becomes larger when the incident angle of the light is 30 ° and 60 ° than when the incident angle is 45 °. It becomes large, and the incident angle dependence of light is also recognized.
[発明が解決しようとする課題] 本発明の目的は従来技術のハーフミラーの上述の如き
問題点を解消し、光の波長依存性と入射角度依存性の少
ない特性をもつ優れたハーフミラーを提供することにあ
る。[Problems to be Solved by the Invention] An object of the present invention is to solve the above-mentioned problems of the half mirror of the prior art, and to provide an excellent half mirror having characteristics that are less dependent on light wavelength and incident angle. Is to do.
[課題を解決するための手段] 本発明は上述の目的を達成するためになされたもので
あり、本発明のハーフミラーは、 基材の片面に、基材側から順次、 屈折率が1.8〜2.4、光学的膜厚が0.20λ0〜0.30λ0
(λ0は設計の中心となる波長である)の第1層の薄
膜、 屈折率が1.9〜2.5、光学的膜厚が0.20λ0〜0.30λ0
の第2層の薄膜、 屈折率が1.3〜1.5、光学的膜厚が0.20λ0〜0.32λ0
の第3層の薄膜、 屈折率が1.9〜2.5、光学的膜厚が0.22λ0〜0.34λ0
の第4層の薄膜 を積層してなり、 前記第1層の薄膜の屈折率が、前記第2層の薄膜の屈
折率よりも低いことを特徴とするものである。Means for Solving the Problems The present invention has been made to achieve the above-mentioned object, and the half mirror according to the present invention has a refractive index of 1.8 to 1.8 on one surface of a substrate in order from the substrate side. 2.4, an optical film thickness of 0.20λ 0 ~0.30λ 0
(Λ 0 is the central wavelength of the design), the first layer thin film, the refractive index is 1.9 to 2.5, and the optical film thickness is 0.20λ 0 to 0.30λ 0
Having a refractive index of 1.3 to 1.5 and an optical thickness of 0.20λ 0 to 0.32λ 0
Having a refractive index of 1.9 to 2.5 and an optical thickness of 0.22λ 0 to 0.34λ 0
Wherein the refractive index of the thin film of the first layer is lower than the refractive index of the thin film of the second layer.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明のハーフミラーにおいては、基材上に最初に設
けられる第1層の薄膜は屈折率が1.8〜2.4、光学的膜厚
が0.20λ0〜0.30λ0の薄膜層である。第1層の薄膜の
光学的膜厚を0.20λ0〜0.30λ0に限定した実験的根拠
を第3図に基づいて説明する。すなわち、第3図は、基
材としてガラス基板(屈折率1.51)を用い、第2層の薄
膜の膜物質、光学的膜厚をそれぞれTiO2(屈折率2.
3)、0.25λ0、第3層の薄膜の膜物質、光学的膜厚を
それぞれSiO2(屈折率1.46)、0.27λ0、第4層の薄膜
の膜物質、光学的膜厚をそれぞれTiO2(屈折率2.3)、
0.27λ0と一定にして、第1層の薄膜であるZrO2とAl2O
3の混合膜(屈折率1.95)の光学的膜厚を変化させた時
の入射角45゜における分光透過率・反射率特性図であ
り、図中の曲線No.1,No.2,No.3は第1層の薄膜の光学的
膜厚が0.18λ0,0.25λ0,0.32λ0である場合の分光透過
率・反射率曲線をそれぞれ示す(但し設計の中心となる
波長λ0は520nmである)。これらの曲線の対比から明
らかなように、光学的膜厚が0.25λ0である曲線No.2の
場合、可視光全域に亘ってほぼフラットな分光透過率・
反射率特性が得られるのに対し、光学的膜厚が0.18λ0
の曲線No.1および光学的膜厚が0.32λ0の曲線No.3の場
合、いずれもリップルが認められ、フラットな分光透過
率・反射率曲線が得られなくなる。また、図示していな
いが、入射角を30゜及び60゜に変化させた時の分光透過
率・反射率特性も、上記膜構成において第1の薄膜を0.
25λ0とした場合、フラットな分光透過率・反射率特性
が得られるのに対し、0.18λ0および0.32λ0の時は、
いずれもリップルが認められ、フラットな分光透過率・
反射率特性が得られなくなる。In the half mirror of the present invention, a thin film of the first layer is first provided on the substrate has a refractive index of 1.8 to 2.4, an optical film thickness is a thin film layer of 0.20λ 0 ~0.30λ 0. It will be described based on experimental evidence for limiting the optical thickness of the thin film of the first layer to 0.20λ 0 ~0.30λ 0 in Figure 3. That is, in FIG. 3, a glass substrate (refractive index 1.51) is used as a base material, and the film material and the optical film thickness of the thin film of the second layer are respectively TiO 2 (refractive index 2.
3), 0.25λ 0 , the film material and optical thickness of the third layer thin film are SiO 2 (refractive index 1.46), 0.27λ 0 , the film material of the fourth layer thin film, and the optical thickness are TiO, respectively. 2 (refractive index 2.3),
ZrO 2 and Al 2 O, which are the thin films of the first layer, are fixed at 0.27λ 0
3 is a graph showing spectral transmittance / reflectance characteristics at an incident angle of 45 ° when the optical film thickness of the mixed film (refractive index: 1.95) of FIG. 3 is changed; curves No. 1, No. 2, No. 3 shows a spectral transmittance / reflectance curve when the optical thickness of the thin film of the first layer is 0.18λ 0 , 0.25λ 0 , 0.32λ 0 (the wavelength λ 0 at the center of the design is 520 nm). Is). As evident from comparison of these curves, if the optical thickness of the curve No.2 is 0.25 [lambda 0, almost flat spectral transmittance over the entire visible light region,
While the reflectance characteristics can be obtained, the optical thickness of 0.18λ 0
If curves No.1 and optical thickness of the curve No.3 of 0.32Ramuda 0 of both observed ripple, is not obtained flat spectral transmittance and reflectance curves. Further, although not shown, the spectral transmittance and reflectance characteristics when the incident angle was changed to 30 ° and 60 ° were the same as those of the first thin film in the above film configuration.
If the 25Ramuda 0, whereas flat spectral transmittance and reflectance characteristics are obtained when the 0.18Ramuda 0 and 0.32λ 0, the
In each case, ripples were observed and flat spectral transmittance
Reflectivity characteristics cannot be obtained.
従って本発明のハーフミラーにおいて第1層の薄膜の
光学的膜厚は0.20λ0〜0.30λ0に限定される。Thus the optical thickness of the thin film of the first layer in the half mirror of the present invention is limited to 0.20λ 0 ~0.30λ 0.
また、第1層の薄膜の屈折率および光学的膜厚と、第
2,第3,第4層の薄膜のそれぞれの屈折率および光学的膜
厚との間には密接な関係があり、第1層の薄膜が屈折率
1.8〜2.4、光学的膜厚0.20λ0〜0.30λ0である場合、
第2層の薄膜は、屈折率が1.9〜2.5,光学的膜厚が0.20
λ0〜0.30λ0,第3層の薄膜は屈折率が1.3〜1.5,光学
的膜厚が0.20λ0〜0.32λ0,第4層の薄膜は屈折率が1.
9〜2.5,光学的膜厚が0.22λ0〜0.34λ0に限定され、
さらに第1層の薄膜の屈折率は第2層の薄膜の屈折率よ
りも低いことが必要とされる。その理由として、4層の
うち少なくとも1つでも上記条件を満たさないと、フラ
ットな分光透過率・反射率特性が得られなくなるからで
ある。In addition, the refractive index and the optical thickness of the thin film of the first layer,
There is a close relationship between the refractive index and the optical thickness of each of the thin films of the second, third and fourth layers.
1.8 to 2.4, when the optical film thickness is 0.20λ 0 to 0.30λ 0 ,
The thin film of the second layer has a refractive index of 1.9 to 2.5 and an optical thickness of 0.20.
λ 0 to 0.30λ 0 , the third layer thin film has a refractive index of 1.3 to 1.5, the optical thickness is 0.20λ 0 to 0.32λ 0 , and the fourth layer thin film has a refractive index of 1.
9 to 2.5, the optical thickness is limited to 0.22λ 0 ~0.34λ 0,
Furthermore, the refractive index of the thin film of the first layer needs to be lower than the refractive index of the thin film of the second layer. The reason is that if at least one of the four layers does not satisfy the above condition, flat spectral transmittance / reflectance characteristics cannot be obtained.
なお、屈折率が1.8〜2.4の第1層の薄膜、屈折率が1.
9〜2.5の第2層の薄膜及び屈折率が1.9〜2.5の第4層の
薄膜の材料としては、SiO,TiO2,Ta2O5,ZrO2,HfO2,CeO2,
ZnS等の高屈折率物質及びこれらの混合物が用いられ
る。また屈折率が1.8以下の物質、例えばCeF3やAl2O
3も、高屈折率物質と併用して、上記屈折率範囲の第1
層、第2層及び第4層の薄膜を形成することができれば
使用することができる。In addition, the refractive index of 1.8-2.4 thin film of the first layer, the refractive index is 1.
As a material of the thin film of the fourth layer of the thin film and the refractive index of the second layer is 1.9 to 2.5 of 9~2.5, SiO, TiO 2, Ta 2 O 5, ZrO 2, HfO 2, CeO 2,
High refractive index substances such as ZnS and mixtures thereof are used. Further, a substance having a refractive index of 1.8 or less, for example, CeF 3 or Al 2 O
3 is also used in combination with a high refractive index material to form the first in the above refractive index range.
It can be used if a thin film of layers, second and fourth layers can be formed.
また屈折率が1.3〜1.5の第3層の薄膜の材料として
は、SiO2,MgF2等の低屈折率物質及びこれらの混合物が
用いられる。上記低屈折率物質とともに他の物質を用い
て屈折率が1.3〜1.5の第3層の薄膜を形成しても良い。As the material of the thin film of the third layer having a refractive index of 1.3 to 1.5, a low refractive index substance such as SiO 2 or MgF 2 or a mixture thereof is used. A third layer thin film having a refractive index of 1.3 to 1.5 may be formed by using another material together with the low refractive index material.
本発明において用いられる基材としては、透明基材が
好ましいが、この基材は両面が平面を有する基板や少な
くとも一面が凸面又は凹面を有する基板(例えば平凹
板,平凸板、凹凸板、両凹板、両凸板など)であるのが
好ましい。好ましい材質としてはガラスやプラスチック
が挙げられるが、その他の材質のものを用いることもで
きる。As the substrate used in the present invention, a transparent substrate is preferable, and the substrate is a substrate having a flat surface on both sides or a substrate having at least one surface having a convex surface or a concave surface (for example, a plano-concave plate, a plano-convex plate, a concavo-convex plate, Bi-concave plate, bi-convex plate, etc.). Preferred materials include glass and plastic, but other materials can also be used.
本発明のハーフミラーの形成方法としては、蒸着法、
スパッタ法、イオンプレーティング法等の物理的コーテ
ィング法あるいはCVD法、有機溶液からの薄膜形成法等
のコーティング方法が挙げられる。As a method for forming the half mirror of the present invention, a vapor deposition method,
Examples include a physical coating method such as a sputtering method and an ion plating method, and a coating method such as a CVD method and a method of forming a thin film from an organic solution.
なお、一般にハーフミラーの場合は、ハーフミラー面
とは逆の面からの反射があるため、目視等で使用する場
合、2重像に写り、見づらくなる。よって、逆の面には
反射防止膜を施すことにより、2重像の写り込みを失く
すことも有効である。In general, in the case of a half mirror, there is reflection from a surface opposite to the half mirror surface. Therefore, when the device is used for visual observation or the like, a double image is formed and the image is difficult to see. Therefore, it is also effective to lose the reflection of the double image by applying an antireflection film to the opposite surface.
[実施例] 以下実施例を挙げて本発明の好ましい具体例を説明す
るが、本発明はこれらの実施例に限定されるものではな
い。EXAMPLES Hereinafter, preferred specific examples of the present invention will be described with reference to examples, but the present invention is not limited to these examples.
実施例1 第1図は本発明のハーフミラーの好ましい実施例の要
部拡大断面図であり、本実施例のハーフミラーは、基板
1、第1層の薄膜2、第2層の薄膜3、第3層の薄膜4
及び第4層の薄膜5により構成され、それぞれの材質、
屈折率、光学的膜厚を示すと以下の通りである。Embodiment 1 FIG. 1 is an enlarged sectional view of a main part of a preferred embodiment of a half mirror according to the present invention. The half mirror according to this embodiment comprises a substrate 1, a first layer thin film 2, a second layer thin film 3, Third layer thin film 4
And the thin film 5 of the fourth layer.
The refractive index and the optical film thickness are as follows.
基板1…ガラス(屈折率1.51) 第1層の薄膜2…ZrO2とAl2O3との混合物(屈折率1.9
5)光学的膜厚0.25λ0(130nm) 第2層の薄膜3…TiO2(屈折率2.30)光学的膜厚0.25λ
0(130nm) 第3層の薄膜4…SiO2(屈折率1.46)光学的膜厚0.27λ
0(140nm) 第4層の薄膜5…TiO2(屈折率2.30)光学的膜厚0.27λ
0(140nm) (但し設計中心波長λ0は520nmである) 第4図は、本実施例のハーフミラーの入射角45゜にお
ける分光透過率・反射率曲線を示す。なお、比較のた
め、屈折率1.51のガラス基板上に屈折率2.15の光学的膜
厚λ0/2の第1の層の薄膜、屈折率1.38の光学膜厚λ0/4
の第2層の薄膜及び屈折率2.30の光学膜厚λ0/4の第3
層の薄膜を設けた、前記従来技術のハーフミラーの同一
入射角における分光透過率・反射率曲線(第2図の入射
角45゜についての曲線と同一である)も、第4図に併せ
て示した。第4図から明らかなように、本実施例のハー
フミラーは、入射角56゜において分光透過率・反射率特
性が前記従来技術のハーフミラーに比べフラットであ
り、波長依存性が少ないことが判る。また第5図は本実
施例のハーフミラーの入射角30゜,45゜,60゜における分
光透過率・反射率特性である。同図から明らかなよう
に、本実施例のハーフミラーは、従来技術のハーフミラ
ー(第2図参照)と比較して、入射角度依存による影響
が少ないことがわかる。Substrate 1: Glass (refractive index: 1.51) First layer thin film 2: Mixture of ZrO 2 and Al 2 O 3 (refractive index: 1.9
5) Optical film thickness 0.25λ 0 (130 nm) Second layer thin film 3 ... TiO 2 (refractive index 2.30) Optical film thickness 0.25λ
0 (130 nm) Third layer thin film 4 ... SiO 2 (refractive index 1.46) Optical thickness 0.27λ
0 (140 nm) Fourth layer thin film 5 ... TiO 2 (refractive index 2.30) Optical film thickness 0.27λ
0 (140 nm) (however, the design center wavelength λ 0 is 520 nm) FIG. 4 shows a spectral transmittance / reflectance curve at an incident angle of 45 ° of the half mirror of the present embodiment. For comparison, a thin film of the first layer of optical thickness lambda 0/2 of the refractive index 2.15 on a glass substrate having a refractive index of 1.51, optical film thickness of the refractive index 1.38 λ 0/4
The third of the second layer of the thin film and the refractive index 2.30 optical thickness lambda 0/4 of the
The spectral transmittance / reflectance curve (same as the curve for the incident angle of 45 ° in FIG. 2) at the same incident angle of the half mirror of the prior art provided with the thin film of the layer is also shown in FIG. Indicated. As is clear from FIG. 4, the half mirror of the present embodiment has a flat spectral transmittance / reflectance characteristic at an incident angle of 56 ° as compared with the half mirror of the prior art, and has less wavelength dependency. . FIG. 5 shows the spectral transmittance / reflectance characteristics of the half mirror of the present embodiment at incident angles of 30 °, 45 °, and 60 °. As can be seen from the drawing, the half mirror of the present embodiment is less affected by the incident angle dependence than the half mirror of the prior art (see FIG. 2).
実施例2 本実施例のハーフミラーも第1図に要部拡大断面図を
示した実施例1のハーフミラーと同様の層構成からなる
ものであり、各層の詳細を示すと以下の通りである。Embodiment 2 The half mirror of this embodiment also has the same layer configuration as the half mirror of Embodiment 1 whose principal part enlarged cross-sectional view is shown in FIG. 1. The details of each layer are as follows. .
基板1…ガラス(1.51) 第1層の薄膜2…ZrO2(屈折率2.05)光学的膜厚0.25λ
0(130nm) 第2層の薄膜3…TiO2(屈折率2.30)光学的膜厚0.23λ
0(130nm) 第3層の薄膜4…SiO2(屈折率1.46)光学的膜厚0.27λ
0(140nm) 第4層の薄膜5…TiO2(屈折率2.30)光学的膜厚0.27λ
0(140nm) (但し設計中心波長λ0は520nmである) 第6図は、このように形成した本実施例のハーフミラ
ーの入射角30゜,45゜,60゜における分光透過率・反射率
特性を示す。同図により、本実施例のハーフミラーも、
実施例1とハーフミラーと同様に波長依存および角度依
存による影響が少なく、フラットな透過率・反射率特性
が得られることが明らかである。Substrate 1: Glass (1.51) First layer thin film 2: ZrO 2 (refractive index: 2.05) Optical thickness: 0.25λ
0 (130 nm) Second layer thin film 3 ... TiO 2 (refractive index 2.30) Optical film thickness 0.23λ
0 (130 nm) Third layer thin film 4 ... SiO 2 (refractive index 1.46) Optical thickness 0.27λ
0 (140 nm) Fourth layer thin film 5 ... TiO 2 (refractive index 2.30) Optical film thickness 0.27λ
0 (140 nm) (however, the design center wavelength λ 0 is 520 nm) FIG. 6 shows the spectral transmittance and reflectance of the half mirror of the present embodiment thus formed at incident angles of 30 °, 45 °, and 60 °. Show characteristics. According to the figure, the half mirror of this embodiment is also
As in the case of Example 1 and the half mirror, it is clear that the influence of the wavelength dependence and the angle dependence is small, and flat transmittance / reflectance characteristics can be obtained.
実施例3 本実施例のハーフミラーも、第1図に要部拡大図を示
した実施例1のハーフミラーと同様の層構成からなるも
のであり、各層の詳細を示すと以下の通りである。Embodiment 3 The half mirror of this embodiment also has the same layer configuration as the half mirror of Embodiment 1 whose principal part enlarged view is shown in FIG. 1. The details of each layer are as follows. .
基板1…ガラス(屈折率1.51) 第1層の薄膜2…ZrO2(屈折率2.05)光学的膜厚0.25λ
0(125nm) 第2層の薄膜3…TiO2(屈折率2.30)光学的膜厚0.25λ
0(125nm) 第3層の薄膜4…MgF2(屈折率1.38)光学的膜厚0.25λ
0(125nm) 第4層の薄膜5…TiO2(屈折率2.30)光学的膜厚0.29λ
0(145nm) (但し設計中心波長λ0は500nmである) 第7図は、このように形成した本実施例のハーフミラ
ーの入射30゜,45゜,60゜における分光透過率・反射率特
性を示す。同図より、本実施例のハーフミラーも、実施
例1のハーフミラーと同様に波長依存および角度依存に
よる影響が少なく、フラットな透過率・反射率特性が得
られることがわかる。Substrate 1: glass (refractive index: 1.51) Thin film of first layer 2: ZrO 2 (refractive index: 2.05) Optical film thickness: 0.25λ
0 (125 nm) Second layer thin film 3 ... TiO 2 (refractive index 2.30) Optical film thickness 0.25λ
0 (125 nm) Third layer thin film 4 ... MgF 2 (refractive index 1.38) Optical thickness 0.25λ
0 (125 nm) Fourth layer thin film 5 ... TiO 2 (refractive index 2.30) Optical thickness 0.29λ
0 (145 nm) (however, the design center wavelength λ 0 is 500 nm) FIG. 7 shows the spectral transmittance / reflectance characteristics of the half mirror thus formed at the incidence of 30 °, 45 °, and 60 ° according to the present embodiment. Is shown. As can be seen from the figure, the half mirror according to the present embodiment is less affected by the wavelength dependence and the angle dependence as in the half mirror according to the first embodiment, and can obtain flat transmittance / reflectance characteristics.
実施例4 本実施例のハーフミラーも、第1図に要部拡大図した
実施例1のハーフミラーと同様の層構成からなるもので
あり、各層の詳細を示すと以下の通りである。Embodiment 4 The half mirror of this embodiment also has the same layer configuration as the half mirror of Embodiment 1 whose main part is enlarged in FIG. 1. Details of each layer are as follows.
基板1…ガラス(屈折率1.51) 第1層の薄膜2…ZrO2とAl2O3との混合物(屈折率1.9
5)光学的膜厚0.25λ0(130nm) 第2層の薄膜3…TiO2とZrO2との混合物(屈折率2.15)
光学的膜厚0.25λ0(130nm) 第3層の薄膜4…SiO2(屈折率1.46)光学的膜厚0.27λ
0(140nm) 第4層の薄膜5…TiO2(屈折率2.30)光学的膜厚0.27λ
0(140nm) (但し設計中心波長λ0は520nmである) 第8図は、このように形成した本実施例のハーフミラ
ーの入射角が30゜,45゜,60゜における分光透過率・反射
率特性を示す。同図により、本実施例のハーフミラー
も、実施例1のハーフミラーと同様に波長依存および角
度依存による影響が少なく、フラットな透過率・反射率
特性が得られることがわかる。Substrate 1: Glass (refractive index: 1.51) First layer thin film 2: Mixture of ZrO 2 and Al 2 O 3 (refractive index: 1.9
5) Optical film thickness 0.25λ 0 (130 nm) Second layer thin film 3 ... mixture of TiO 2 and ZrO 2 (refractive index 2.15)
Optical thickness 0.25λ 0 (130 nm) Third layer thin film 4 ... SiO 2 (refractive index 1.46) Optical thickness 0.27λ
0 (140 nm) Fourth layer thin film 5 ... TiO 2 (refractive index 2.30) Optical film thickness 0.27λ
0 (140 nm) (However, the design center wavelength λ 0 is 520 nm) FIG. 8 shows the spectral transmittance and reflection of the half mirror of the present embodiment thus formed at incident angles of 30 °, 45 °, and 60 °. The rate characteristics are shown. From the figure, it is understood that the half mirror according to the present embodiment is less affected by the wavelength dependence and the angle dependence as in the half mirror according to the first embodiment, and flat transmittance / reflectance characteristics can be obtained.
実施例5 本実施例のハーフミラーも、第1図に要部拡大断面図
を示した実施例1のハーフミラーと同様の層構成からな
るものであり、各層の詳細を示すと以下の通りである。Embodiment 5 The half mirror of this embodiment also has the same layer configuration as the half mirror of Embodiment 1 whose principal part enlarged cross-sectional view is shown in FIG. 1. The details of each layer are as follows. is there.
基板1…ガラス(屈折率1.51) 第1層の薄膜2…ZrO2とAl2O3との混合物(屈折率1.9
5)光学的膜厚0.25λ0(130nm) 第2層の薄膜3…TiO2(屈折率2.30)光学的膜厚0.25λ
0(130nm) 第3層の薄膜4…SiO2(屈折率1.46)光学的膜厚0.27λ
0(140nm) 第4層の薄膜5…TiO2とZrO2との混合物(屈折率2.15)
光学的膜厚0.27λ0(140nm) (但し設計中心波長λ0は520nmである) 第9図は、このように形成した本実施例のハーフミラ
ーの入射角30゜,45゜,60゜における分光透過率・反射率
特性を示す。同図より、本実施例のハーフミラーも、実
施例1のハーフミラーと同様に波長依存および角度依存
による影響が少なく、フラットな透過率・反射率特性が
得られることがわかる。Substrate 1: Glass (refractive index: 1.51) First layer thin film 2: Mixture of ZrO 2 and Al 2 O 3 (refractive index: 1.9
5) Optical film thickness 0.25λ 0 (130 nm) Second layer thin film 3 ... TiO 2 (refractive index 2.30) Optical film thickness 0.25λ
0 (130 nm) Third layer thin film 4 ... SiO 2 (refractive index 1.46) Optical thickness 0.27λ
0 (140 nm) Fourth layer thin film 5: mixture of TiO 2 and ZrO 2 (refractive index 2.15)
Optical film thickness 0.27λ 0 (140 nm) (However, the design center wavelength λ 0 is 520 nm) FIG. 9 shows the half mirror of the present embodiment thus formed at an incident angle of 30 °, 45 °, and 60 °. This shows the spectral transmittance / reflectance characteristics. As can be seen from the figure, the half mirror according to the present embodiment is less affected by the wavelength dependence and the angle dependence as in the half mirror according to the first embodiment, and can obtain flat transmittance / reflectance characteristics.
実施例6 本実施例のハーフミラーも、第1図に要部拡大断面図
を示した実施例1のハーフミラーと同様の層構成からな
るものであり、各層の詳細を示すと以下の通りである。Embodiment 6 The half mirror of this embodiment also has the same layer configuration as the half mirror of Embodiment 1 whose principal part enlarged cross-sectional view is shown in FIG. 1. The details of each layer are as follows. is there.
基板1…ガラス(屈折率1.51) 第1層の薄膜2…ZrO2とAl2O3との混合物(屈折率1.9
5)光学的膜厚0.25λ0(130nm) 第2層の薄膜3…TiO2とZrO2との混合物(屈折率2.15)
光学的膜厚0.25λ0(130nm) 第3層の薄膜4…SiO2(屈折率1.46)光学的膜厚0.27λ
0(140nm) 第4層の薄膜5…TiO2とZrO2との混合物(屈折率2.15)
光学的膜厚0.27λ0(140nm) (但し設計中心波長λ0は520nmである) 第10図は、このように形成した本実施例のハーフミラ
ーの入射角30゜,45゜,60゜における分光透過率・反射率
特性を示す。同図より本実施例のハーフミラーは、実施
例1のハーフミラーと同一に波長依存および角度依存に
よる影響が少なく、フラットな透過率・反射率特性が得
られることがわかる。Substrate 1: Glass (refractive index: 1.51) First layer thin film 2: Mixture of ZrO 2 and Al 2 O 3 (refractive index: 1.9
5) Optical film thickness 0.25λ 0 (130 nm) Second layer thin film 3 ... mixture of TiO 2 and ZrO 2 (refractive index 2.15)
Optical thickness 0.25λ 0 (130 nm) Third layer thin film 4 ... SiO 2 (refractive index 1.46) Optical thickness 0.27λ
0 (140 nm) Fourth layer thin film 5: mixture of TiO 2 and ZrO 2 (refractive index 2.15)
Optical film thickness 0.27λ 0 (140 nm) (However, the design center wavelength λ 0 is 520 nm) FIG. 10 shows the half mirror of the present embodiment thus formed at an incident angle of 30 °, 45 °, and 60 °. This shows the spectral transmittance / reflectance characteristics. As can be seen from the figure, the half mirror according to the present embodiment is less affected by the wavelength dependence and the angle dependence as in the half mirror according to the first embodiment, and can obtain flat transmittance / reflectance characteristics.
[発明の効果] 以上述べたように、本発明によればハーフミラーを構
成する第1〜4層の薄膜の各屈折率と光学的膜厚をそれ
ぞれ所定範囲に規定し、かつ、第1層の薄膜の屈折率が
第2層の薄膜の屈折率よりも低い構成にすることによ
り、波長依存と角度依存の少ないフラットな分光透過率
・反射率特性をもつ優れたハーフミラーが得られる。[Effects of the Invention] As described above, according to the present invention, each refractive index and optical film thickness of the first to fourth thin films constituting the half mirror are defined in a predetermined range, respectively, and the first layer is formed. By adopting a structure in which the refractive index of the thin film is lower than the refractive index of the thin film of the second layer, an excellent half mirror having flat spectral transmittance / reflectance characteristics with little wavelength dependence and angle dependence can be obtained.
第1図は本発明のハーフミラーの要部拡大図、第2図は
従来のハーフミラーの入射角30゜,45゜,60゜における分
光透過率・反射率特性図、第3図は基板上に4層の薄膜
を設けたハーフミラーの第1層の薄膜の光学的膜厚を3
水準に変動させた場合の比較分光透過率・反射率特性
図、第4図は本発明のハーフミラーと従来技術のハーフ
ミラーとの入射角45゜の比較分光透過率・反射率特性
図、第5図、第6図、第7図、第8図、第9図及び第10
図は本発明のハーフミラーの入射角30゜,45゜,60゜にお
ける分光透過率・反射率特性図である。 1……ガラス基板、2……第1層の薄膜、3……第2層
の薄膜、4……第3層の薄膜、5……第4層の薄膜。FIG. 1 is an enlarged view of a main part of a half mirror of the present invention, FIG. 2 is a spectral transmittance / reflectance characteristic diagram of a conventional half mirror at incident angles of 30 °, 45 °, and 60 °, and FIG. The optical film thickness of the first layer thin film of the half mirror provided with the four layer thin films is 3
FIG. 4 is a comparative spectral transmittance / reflectance characteristic diagram when the half mirror according to the present invention is compared with a half mirror according to the prior art at an incident angle of 45 °. FIG. 5, FIG. 6, FIG. 7, FIG. 8, FIG.
The figure is a spectral transmittance / reflectance characteristic diagram of the half mirror of the present invention at incident angles of 30 °, 45 °, and 60 °. 1 ... glass substrate, 2 ... first layer thin film, 3 ... second layer thin film, 4 ... third layer thin film, 5 ... fourth layer thin film.
Claims (1)
0(λ0は設計の中心となる波長である)の第1層の薄
膜、 屈折率が1.9〜2.5、光学的膜厚が0.20λ0〜0.30λ0の
第2層の薄膜、 屈折率が1.3〜1.5、光学的膜厚が0.20λ0〜0.32λ0の
第3層の薄膜、 屈折率が1.9〜2.5、光学的膜厚が0.22λ0〜0.34λ0の
第4層の薄膜 を積層してなり、 前記第1層の薄膜の屈折率が、前記第2層の薄膜の屈折
率よりも低いことを特徴とするハーフミラー。1. A substrate having a refractive index of 1.8 to 2.4 and an optical film thickness of 0.20λ 0 to 0.30λ on one side of a substrate in order from the substrate side.
0 (λ 0 is the wavelength at the center of the design) of the first layer, a refractive index of 1.9 to 2.5, an optical film thickness of 0.20λ 0 to 0.30λ 0, a second layer of thin film, 1.3-1.5, a thin film of a third layer of optical thickness is 0.20λ 0 ~0.32λ 0, the refractive index is 1.9 to 2.5, the optical thickness of the thin film of the fourth layer of 0.22λ 0 ~0.34λ 0 lamination A half mirror, wherein a refractive index of the thin film of the first layer is lower than a refractive index of the thin film of the second layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1083394A JP2624827B2 (en) | 1989-03-31 | 1989-03-31 | Half mirror |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1083394A JP2624827B2 (en) | 1989-03-31 | 1989-03-31 | Half mirror |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02262106A JPH02262106A (en) | 1990-10-24 |
JP2624827B2 true JP2624827B2 (en) | 1997-06-25 |
Family
ID=13801216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1083394A Expired - Lifetime JP2624827B2 (en) | 1989-03-31 | 1989-03-31 | Half mirror |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2624827B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010008789A (en) * | 2008-06-27 | 2010-01-14 | Nikon Corp | Optical member, optical system having the same, and optical device |
-
1989
- 1989-03-31 JP JP1083394A patent/JP2624827B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02262106A (en) | 1990-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3829197A (en) | Antireflective multilayer coating on a highly refractive substrate | |
US5460888A (en) | Multi-layered optical film | |
US4367921A (en) | Low polarization beam splitter | |
JPS5860701A (en) | Reflection preventing film | |
JPH03109503A (en) | Antireflection film of optical parts made of plastic and formation thereof | |
JPH0679092B2 (en) | Colored mirror | |
JPS6135521B2 (en) | ||
US6280848B1 (en) | Antireflection coating | |
JP2566634B2 (en) | Multi-layer antireflection film | |
JP2624827B2 (en) | Half mirror | |
US20030179455A1 (en) | Fingerprint resistant anti-reflection coatings for plastic substrates | |
JPS5498257A (en) | Aspherical antireflection film | |
JP2001074903A (en) | Antireflection film and optical device | |
JP3550894B2 (en) | Anti-reflective coating | |
JPS60130704A (en) | Antireflection film for plastic substrate | |
JPH10123303A (en) | Antireflection optical parts | |
JPH0756004A (en) | Conductive antireflection film | |
JPS6381404A (en) | Reflection reducing coating of plastic optical parts | |
JP3113371B2 (en) | Multi-layer anti-reflective coating | |
JP2763071B2 (en) | Eyeglass lenses | |
JPS62127701A (en) | Antireflection film | |
JPS6042445B2 (en) | Multilayer thin film optical system | |
JP3113376B2 (en) | Multi-layer anti-reflective coating | |
JP3502150B2 (en) | Anti-reflective coating | |
JP2725043B2 (en) | Broadband half mirror |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090411 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |