JPH09296327A - Heat treatment of silicon carbide continuous filament - Google Patents

Heat treatment of silicon carbide continuous filament

Info

Publication number
JPH09296327A
JPH09296327A JP11083796A JP11083796A JPH09296327A JP H09296327 A JPH09296327 A JP H09296327A JP 11083796 A JP11083796 A JP 11083796A JP 11083796 A JP11083796 A JP 11083796A JP H09296327 A JPH09296327 A JP H09296327A
Authority
JP
Japan
Prior art keywords
silicon carbide
heat
heat treatment
fiber
bobbin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11083796A
Other languages
Japanese (ja)
Inventor
Kiyoshi Kumakawa
潔 熊川
Hiroyuki Yamaoka
裕幸 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP11083796A priority Critical patent/JPH09296327A/en
Publication of JPH09296327A publication Critical patent/JPH09296327A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the occurrence of yarn breakage by heat-treating a silicon carbide continuous filament in a state thereof covered with a heat-resistant spherical material so as to embed the silicon carbide continuous filament therein and smoothing the winding of the resultant treated fiber useful as a reinforcing material for a matrix such as a plastic or ceramics onto a bobbin. SOLUTION: A silicon carbide-based continuous filament is unwound from a bobbin, placed in a receiver for heat treatment and heat-resistant spherical materials such as beads made of graphite are then placed in the receiver so as to cover the silicon carbide-based continuous filament thereunder to carry out the heat treatment. The heat-resistant spherical materials enter interstices among the silicon carbide-based continuous filaments to prevent the continuous filaments from being entangled when winding thereof onto a bobbin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は炭化ケイ素系連続繊
維を熱処理する方法に関する。
TECHNICAL FIELD The present invention relates to a method for heat treating a silicon carbide-based continuous fiber.

【0002】[0002]

【従来の技術】炭化ケイ素系繊維は、優れた耐熱性及び
力学的特性を有しており、プラスチックス、セラミック
スのようなマトリックスの強化材として利用されてい
る。炭化ケイ素系連続繊維の上記特性をより改善する方
法も提案されている。
2. Description of the Related Art Silicon carbide fibers have excellent heat resistance and mechanical properties and are used as a reinforcing material for matrices such as plastics and ceramics. A method for further improving the above properties of the silicon carbide-based continuous fiber has also been proposed.

【0003】提案の方法の一例は、ジャ−ナル・オブ・
マテリアル・サイエンス26巻970ペ−ジ(1991
年)に記載されているような、炭化ケイ素系繊維を一酸
化炭素雰囲気中で加熱処理して繊維の強度を向上させる
方法である。また、提案の方法の他の例は、特開平6−
184828号公報に記載されているような、炭化ケイ
素系繊維をホウ素等の揮発性焼結助剤を含有する雰囲気
中で加熱処理して、繊維の弾性率及び耐熱性をより改善
する方法である。
One example of the proposed method is the journal of the
Material Science Vol. 26, page 970 (1991)
Year)) and heat-treating silicon carbide fibers in a carbon monoxide atmosphere to improve the strength of the fibers. Another example of the proposed method is disclosed in Japanese Patent Laid-Open No. 6-
As disclosed in Japanese Patent No. 184828, a method of heat-treating a silicon carbide fiber in an atmosphere containing a volatile sintering aid such as boron to further improve the elastic modulus and heat resistance of the fiber. .

【0004】上記の提案の方法において、炭化ケイ素系
繊維を加熱処理して繊維の特性を改善するためには、一
般に長い滞留時間、例えば1時間以上、好ましくは3時
間以上の滞留時間が必要とされる。上記提案の方法を具
体的に操作する具体的手段としては、いくつかの方法が
考えられる。
In the method proposed above, in order to heat-treat the silicon carbide fiber to improve the properties of the fiber, generally a long residence time, for example, 1 hour or more, preferably 3 hours or more is required. To be done. Several methods are conceivable as specific means for specifically operating the proposed method.

【0005】その一つは、ボビンから連続繊維を巻き戻
し、加熱処理装置に導入し、処理繊維をボビンに巻き取
る方法である。この方法では、加熱処理に要する長い滞
留時間のため、処理効率が著しく悪くなる。
One of them is a method of rewinding continuous fibers from a bobbin, introducing them into a heat treatment apparatus, and winding the treated fibers around the bobbin. In this method, the treatment efficiency is significantly deteriorated due to the long residence time required for the heat treatment.

【0006】別の方法は、連続繊維をボビンから巻き戻
して耐熱性の管に巻き取った形態で加熱処理する方法で
ある。この場合には、連続繊維の巻き戻しを容易にする
ために付着させているサイジング剤が加熱処理中に熱分
解してしまい、加熱処理の後にボビンに巻き取る際に、
処理繊維がもつれ合って巻き取りが困難になり、糸切れ
を起こすことがある。
Another method is a method in which continuous fibers are unwound from a bobbin and heat-treated in the form of being wound into a heat resistant tube. In this case, the sizing agent attached to facilitate the unwinding of the continuous fiber is thermally decomposed during the heat treatment, and when wound on the bobbin after the heat treatment,
The treated fibers may become entangled with each other, making it difficult to wind them up and causing yarn breakage.

【0007】さらに別の方法として、連続繊維を耐熱性
の受器の上にル−プ状に配置して加熱処理する方法が考
えられる。この場合にも、上記第二の方法と同様に、、
サイジング剤の熱分解によって、処理繊維を受器からボ
ビンに巻き取る際に処理繊維がもつれ合って巻き取りが
困難になると共に、糸切れを起こすことがある。
As another method, a method of arranging continuous fibers in a loop shape on a heat-resistant receiver and subjecting them to heat treatment can be considered. Also in this case, like the second method,
Due to the thermal decomposition of the sizing agent, when the treated fiber is wound from the receiver to the bobbin, the treated fiber is entangled with each other, which makes it difficult to wind the treated fiber and may cause yarn breakage.

【0008】[0008]

【発明が解決しようとする課題】本発明は、炭化ケイ素
系連続繊維を加熱処理してその特性を改善する際に、加
熱処理後の連続繊維のボビンへの巻き取りを、糸切れの
問題なく、円滑に行うことができる方法を提供する。
DISCLOSURE OF THE INVENTION According to the present invention, when heat-treating a silicon carbide-based continuous fiber to improve its characteristics, the continuous fiber after the heat-treatment is wound around a bobbin without the problem of yarn breakage. , Provide a method that can be done smoothly.

【0009】[0009]

【課題を解決するために手段】本発明によれば、炭化ケ
イ素系連続繊維を耐熱性球状物質中に埋没させて熱処理
することを特徴とする炭化ケイ素系連続繊維の熱処理方
法が提供される。
According to the present invention, there is provided a method for heat treating a silicon carbide based continuous fiber, which comprises immersing the silicon carbide based continuous fiber in a heat resistant spherical material and heat treating the same.

【0010】本発明で用いられる炭化ケイ素系繊維の具
体例としては、炭素−ケイ素−酸素から構成される炭化
ケイ素繊維、例えば、日本カ−ボン製のニカロン(登録
商標)、炭素−チタン及び/又はジルコニウム−ケイ素
−酸素から構成される炭化ケイ素繊維、例えば、宇部興
産製のチラノ繊維(登録商標)が挙げられる。
Specific examples of the silicon carbide fiber used in the present invention include silicon carbide fibers composed of carbon-silicon-oxygen, for example, Nicalon (registered trademark), carbon-titanium and Alternatively, a silicon carbide fiber composed of zirconium-silicon-oxygen, for example, Tyranno fiber (registered trademark) manufactured by Ube Industries, Ltd. may be mentioned.

【0011】上記の炭化ケイ素系繊維は、ポリカルボシ
ラン、ポリチタノカルボシランあるはポリジルコノカル
ボシランのような有機ケイ素重合体を紡糸し、紡糸繊維
を酸素含有ガス雰囲気中での加熱あるいは電離放射線維
の照射によって不融化し、不融化繊維を一般的には10
00〜1400℃の範囲に温度に加熱することによって
調製することができる。
The above-mentioned silicon carbide-based fiber is formed by spinning an organosilicon polymer such as polycarbosilane, polytitanocarbosilane or polyzirconocarbosilane, and heating the spun fiber in an oxygen-containing gas atmosphere. Irradiation of the ionizing radiation fiber makes it infusible.
It can be prepared by heating to a temperature in the range of 00 to 1400 ° C.

【0012】本発明で用いられる耐熱性球状物質は、本
発明における加熱処理温度においてその形状を保持する
に充分な耐熱性を有し、かつ、炭化ケイ素系繊維と反応
しないものから選択される。その材質については特別の
制限はないが、通常は、アルミナ、炭化ケイ素、窒化ケ
イ素のようなセラミックス、黒鉛が挙げられる。これら
の中でも、黒鉛は比重が1.6〜1.8と最も小さく、
炭化ケイ素系連続繊維を加熱処理した後に、ボビンに巻
き取る際に、加熱処理繊維に損傷を与える可能性が殆ど
ないので、好ましく使用されうる。
The heat-resistant spherical substance used in the present invention is selected from those having heat resistance sufficient to maintain its shape at the heat treatment temperature in the present invention and not reacting with the silicon carbide fiber. There are no particular restrictions on the material, but typically, alumina, silicon carbide, ceramics such as silicon nitride, and graphite are mentioned. Among these, graphite has the smallest specific gravity of 1.6 to 1.8,
It can be preferably used because there is almost no possibility of damaging the heat-treated fiber when the silicon carbide-based continuous fiber is wound on a bobbin after being heat-treated.

【0013】耐熱性球状物質の直径は0.1〜2mmの
範囲であることが好ましい。その直径が0.1mmより
小さくなると、炭化ケイ素系繊維を構成するフィラメン
トの間に耐熱性球状物質が入り込み、加熱処理後の繊維
からの除去が困難になる。逆に、その直径が2mmより
大きくなると、耐熱性球状物質1個1個の重量が大きく
なり、炭化ケイ素系繊維に損傷を与える恐れがある。
The diameter of the heat resistant spherical material is preferably in the range of 0.1 to 2 mm. When the diameter is smaller than 0.1 mm, the heat-resistant spherical substance enters between the filaments constituting the silicon carbide based fiber, and it becomes difficult to remove it from the fiber after the heat treatment. On the other hand, if the diameter is larger than 2 mm, the weight of each heat-resistant spherical substance becomes large, which may damage the silicon carbide fibers.

【0014】本発明の一態様においては、炭化ケイ素系
連続繊維がボビンから巻き戻されて加熱処理用の受器に
入れられる。この際に、連続繊維の一端は加熱処理後の
連続繊維のボビンへの巻き取りを容易にするために、受
器の外に出しておくことが好ましい。。ついで、この受
器に耐熱性球状物質が入れられる。耐熱性球状物質は連
続繊維の間隙に入り込んでいく。耐熱性球状物質は、加
熱処理をする際に、連続繊維が隠れる程度に受器に充填
されていることが好ましい。受器の材質は、加熱処理温
度において形状を保持し、かつ炭化ケイ素系繊維と反応
しないものであればよいが、一般にはセラミックス又は
黒鉛である。
In one aspect of the present invention, continuous silicon carbide fibers are unwound from a bobbin and placed in a receiver for heat treatment. At this time, it is preferable that one end of the continuous fiber is taken out of the receiver in order to easily wind the continuous fiber after the heat treatment onto the bobbin. . Then, the heat-resistant spherical substance is put into this receiver. The heat-resistant spherical substance enters the gap between the continuous fibers. The heat-resistant spherical substance is preferably filled in the receiver so that the continuous fibers are hidden during the heat treatment. The material of the receiver may be any as long as it retains its shape at the heat treatment temperature and does not react with the silicon carbide-based fibers, but is generally ceramics or graphite.

【0015】ついで、炭化ケイ素系連続繊維及び耐熱性
球状物質が充填された受器が加熱処理装置、例えば加熱
炉に仕込まれ、炭化ケイ素系連続繊維の加熱処理が行わ
れる。加熱処理装置内の雰囲気は、処理の目的によって
適宜選択される。
Then, the receiver filled with the silicon carbide-based continuous fibers and the heat-resistant spherical substance is placed in a heat treatment apparatus, for example, a heating furnace, and the silicon carbide-based continuous fibers are heat-treated. The atmosphere in the heat treatment device is appropriately selected depending on the purpose of the treatment.

【0016】主として炭化ケイ素系連続繊維の表面に炭
素の被覆層を形成し、かつ強度を改善する場合には、一
酸化炭素含有ガスの雰囲気とすることが好ましい。加熱
処理温度は通常1200〜1500℃の範囲である。加
熱時間に通常3〜5時間である。
When a carbon coating layer is formed mainly on the surface of the silicon carbide-based continuous fiber and the strength is improved, the atmosphere of the carbon monoxide-containing gas is preferably used. The heat treatment temperature is usually in the range of 1200 to 1500 ° C. The heating time is usually 3 to 5 hours.

【0017】炭化ケイ素系連続繊維の弾性率及び耐熱性
をより向上させる場合には、炭化ケイ素の焼結助剤であ
り、加熱処理温度で揮発する物質の雰囲気とすることが
好ましい。この揮発性の焼結助剤の例としては、鉄、マ
グネシウム、リチウム、ベリリウム、ホウ素、アルミニ
ウム、トリウム、イットリウム、ランタン及びセリウム
の化合物が挙げられる。これらの中でも、ホウ素、酸化
ホウ素のようなホウ素化合物、アルミニウム及び酸化ア
ルミニウムのようなアルミニウム化合物が好ましく使用
される。揮発性焼結助剤雰囲気中で炭化ケイ素系連続繊
維を加熱する温度は通常1500〜2000℃であり、
加熱時間は通常1〜10時間である。
In order to further improve the elastic modulus and heat resistance of the silicon carbide-based continuous fiber, it is preferable to use an atmosphere of a substance that is a sintering aid for silicon carbide and that volatilizes at the heat treatment temperature. Examples of this volatile sintering aid include compounds of iron, magnesium, lithium, beryllium, boron, aluminum, thorium, yttrium, lanthanum and cerium. Among these, boron compounds such as boron and boron oxide, and aluminum compounds such as aluminum and aluminum oxide are preferably used. The temperature at which the silicon carbide-based continuous fiber is heated in a volatile sintering aid atmosphere is usually 1500 to 2000 ° C.,
The heating time is usually 1 to 10 hours.

【0018】加熱処理が終了した後、処理繊維はボビン
に巻き取られる。前記したように、加熱処理に先立っ
て、炭化ケイ素系連続繊維の一端を受器の外に出してお
くと、処理繊維のボビンへの巻き取りにあたり、頭出し
が容易になる。
After the heat treatment is finished, the treated fiber is wound on a bobbin. As described above, if one end of the silicon carbide-based continuous fiber is taken out of the receiver prior to the heat treatment, it is easy to find the cue when winding the treated fiber around the bobbin.

【0019】本発明においては、処理繊維のボビンへの
巻き取りの際に、受器に入れられた耐熱性球状物質のた
めに、処理繊維がもつれ合うことがなく、糸切れの発生
も抑制される。
In the present invention, when the treated fiber is wound on the bobbin, the treated fiber does not become entangled with each other and the occurrence of yarn breakage is suppressed due to the heat-resistant spherical substance put in the receiver. It

【0020】[0020]

【実施例】【Example】

実施例1 宇部興産製のチラノ繊維(登録商標)(平均フィラメン
ト径11μm、1600フィラメント/束、長さ100
0m、引張強度330kg/mm2 )を、直径300m
m、深さ50mmの黒鉛製の受器内にボビンから巻き戻
しながら落とし、その後、直径0.3mmの黒鉛製ビ−
ズを受器に繊維が隠れるまで入れた。その際、繊維の一
端を受器の外に出しておいた。
Example 1 Tyranno fiber (registered trademark) manufactured by Ube Industries (average filament diameter 11 μm, 1600 filaments / bundle, length 100)
0 m, tensile strength 330 kg / mm 2 ), diameter 300 m
m, 50 mm deep into the graphite receiver while being unwound from the bobbin, and then dropped into a graphite bead with a diameter of 0.3 mm.
I put them in the receiver until the fibers were hidden. At that time, one end of the fiber was exposed outside the receiver.

【0021】繊維及び黒鉛製ビ−ズが仕込まれた受器を
10段積み重ね、電気炉中に仕込み、炉内の雰囲気を一
酸化炭素で置換した。一酸化炭素を炉内に0.5m3
時間で流しながら400℃/時間の昇温速度で1400
℃まで昇温し、同温度に3時間保持して加熱処理した。
Ten receivers containing fibers and beads made of graphite were stacked and placed in an electric furnace, and the atmosphere in the furnace was replaced with carbon monoxide. 0.5 m 3 of carbon monoxide in the furnace
1400 at a heating rate of 400 ° C / hour while flowing for an hour
The temperature was raised to 0 ° C. and the temperature was maintained for 3 hours for heat treatment.

【0022】電気炉を放冷した後、受器の外に出してお
いた繊維の一端を利用して、受器から繊維を引き上げ紙
管に巻き取った。1000mの繊維すべてを、繊維がも
つれ合うことなく、また繊維が切断することなく、巻き
取ることができた。加熱処理繊維の引張強度は395k
g/mm2 であった。
After the electric furnace was allowed to cool, the fibers were pulled out from the receiver and wound on a paper tube by utilizing one end of the fibers that had been taken out of the receiver. All 1000 m of fibers could be wound up without the fibers becoming entangled and the fibers not breaking. Tensile strength of heat treated fiber is 395k
g / mm 2 .

【0023】比較例1 黒鉛製ビ−ズを受器に入れなかった以外は実施例1と同
様の方法を繰り返した。加熱処理繊維を紙管に巻き取ろ
うとしたところ、数m巻き取るたびに繊維がもつれ合
い、その都度もつれを解きほぐなければならなかった。
Comparative Example 1 The same procedure as in Example 1 was repeated except that the graphite beads were not placed in the receiver. When trying to wind the heat-treated fiber around a paper tube, the fiber was entangled every several m, and the entanglement had to be unraveled each time.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】炭化ケイ素系連続繊維を耐熱性球状物質中
に埋没させて熱処理することを特徴とする炭化ケイ素系
連続繊維の熱処理方法。
1. A heat treatment method for a silicon carbide-based continuous fiber, which comprises immersing the silicon carbide-based continuous fiber in a heat-resistant spherical material and heat-treating it.
【請求項2】熱処理雰囲気が一酸化炭素含有ガスからな
ることを特徴とする請求項1の熱処理方法。
2. The heat treatment method according to claim 1, wherein the heat treatment atmosphere comprises a carbon monoxide-containing gas.
【請求項3】熱処理雰囲気が揮発性の炭化ケイ素焼結助
剤含有ガスからなることを特徴とする請求項1の熱処理
方法。
3. The heat treatment method according to claim 1, wherein the heat treatment atmosphere comprises a gas containing a volatile silicon carbide sintering aid.
【請求項4】耐熱性球状物質が球状黒鉛であることを特
徴とする請求項1の熱処理方法。
4. The heat treatment method according to claim 1, wherein the heat-resistant spherical substance is spherical graphite.
【請求項5】耐熱性球状物質の直径が0.1〜2mmの
範囲であることを特徴とする請求項1の熱処理方法。
5. The heat treatment method according to claim 1, wherein the heat-resistant spherical substance has a diameter in the range of 0.1 to 2 mm.
JP11083796A 1996-05-01 1996-05-01 Heat treatment of silicon carbide continuous filament Pending JPH09296327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11083796A JPH09296327A (en) 1996-05-01 1996-05-01 Heat treatment of silicon carbide continuous filament

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11083796A JPH09296327A (en) 1996-05-01 1996-05-01 Heat treatment of silicon carbide continuous filament

Publications (1)

Publication Number Publication Date
JPH09296327A true JPH09296327A (en) 1997-11-18

Family

ID=14545931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11083796A Pending JPH09296327A (en) 1996-05-01 1996-05-01 Heat treatment of silicon carbide continuous filament

Country Status (1)

Country Link
JP (1) JPH09296327A (en)

Similar Documents

Publication Publication Date Title
JP3234360B2 (en) Method for producing polycrystalline silicon carbide fiber
Cooke Inorganic fibers—a literature review
KR101832810B1 (en) Method for producing carbonized film and method for producing graphite film
CA1327257C (en) Carbonaceous fiber or fiber assembly with inorganic coating
US20130029127A1 (en) Inorganic fiber for fiber bundles, process for producing the same, inorganic fiber bundle for composite material comprising the inorganic fiber for fiber bundles, and ceramic-based composite material reinforced with the fiber bundle
JPS62117820A (en) Production of carbon fiber chopped strand
US3723150A (en) Surface modification of carbon fibers
JPH06192917A (en) Production of silicon carbide fiber
JPH11174186A (en) Reactor control rod element
CN109402786A (en) Preparation method of near-stoichiometric SiC fibers
KR102229117B1 (en) SiC FINE FIBER HAVING CURL STRUCTURE, MANUFACTURING METHOD THEREOF, COMPLEX YARN USING THE SAME AND MANUFACTURING METHOD THEREOF
JPH09296327A (en) Heat treatment of silicon carbide continuous filament
KR100492651B1 (en) Continuous manufacturing method of silicon carbide fiber
JP2004003043A (en) Flameproof fiber material, carbon fiber material, graphite fiber material and method for producing the same
EP0098025B1 (en) Process for producing polyacrylonitrile-based carbon fiber
JP2769889B2 (en) Continuous ultra-high modulus carbon fiber
JPS6228411A (en) Production of pitch carbon fiber
JPH01156510A (en) Production of silicon carbide fiber
JPS62231020A (en) Production of pitch carbon yarn
CA1219410A (en) Process for improving carbon fibers
JPH0135091B2 (en)
JPH0314670A (en) Hybrid fiber, its preparation and metal reinforced with the same fiber
WO2002095100A1 (en) Flame-resistant fiber material, carbon fiber material, graphite fiber material and method for production thereof
JPH08284024A (en) Infusibilization of organosilicon polymer fiber
JPH08246250A (en) Production of carbon fiber