JPH0135091B2 - - Google Patents

Info

Publication number
JPH0135091B2
JPH0135091B2 JP60167467A JP16746785A JPH0135091B2 JP H0135091 B2 JPH0135091 B2 JP H0135091B2 JP 60167467 A JP60167467 A JP 60167467A JP 16746785 A JP16746785 A JP 16746785A JP H0135091 B2 JPH0135091 B2 JP H0135091B2
Authority
JP
Japan
Prior art keywords
fiber bundle
fine particles
manufacturing
precursor
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60167467A
Other languages
Japanese (ja)
Other versions
JPS6228412A (en
Inventor
Tooru Sawaki
Tsutomu Nakamura
Jiro Sadanobu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP16746785A priority Critical patent/JPS6228412A/en
Priority to US06/790,102 priority patent/US4840762A/en
Publication of JPS6228412A publication Critical patent/JPS6228412A/en
Publication of JPH0135091B2 publication Critical patent/JPH0135091B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高性能炭素繊維の製造方法に関するも
のである。更に詳しくは、ピツチ繊維束を不融
化、焼成処理して高強力高モジユラスの炭素繊維
を製造する方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing high performance carbon fibers. More specifically, the present invention relates to an improvement in a method for producing high-strength, high-modulus carbon fibers by infusibleizing and firing pitch fiber bundles.

従来技術 炭素繊維は、当初レーヨンを原料として製造さ
れていたが、その後、各種の原料、製造法等の研
究、開発が行われた結果、その特性や経済性の面
で、現在ではほとんどがポリアクリロニトリルを
原料とするPAN系炭素繊維と石炭系又は石油系
のピツチ類を原料とするピツチ系炭素繊維とによ
つて占められている。
Prior Art Carbon fiber was originally manufactured using rayon as a raw material, but as a result of research and development into various raw materials and manufacturing methods, it is now mostly made of polycarbonate due to its characteristics and economic efficiency. They are dominated by PAN-based carbon fibers made from acrylonitrile and pitch-based carbon fibers made from coal-based or petroleum-based pitches.

ところが最近に至り、ピツチを原料として高性
能グレードの炭素繊維を製造する技術に関心が高
まり、例えば(a)メソフエーズを溶融紡糸したピツ
チ繊維を酸化性雰囲気中で不融化処理し、さらに
高温の不活性ガス雰囲気中で焼成処理することに
より、高強度高モジユラスの炭素繊維を製造する
方法(特開昭49−19127号、特開昭53−65425号、
特開昭53−119326号)、(b)紡糸時に容易にメソフ
エースに転化し得る「ドーマントメソフエースピ
ツチ」を用いて、紡糸―不融化処理―焼成処理を
行う方法(特開昭57−100186号)、更には、(c)焼
成時にメソフエース化する「プリメソフエースピ
ツチ」を用いる方法(特開昭58−1842号)等が提
案されている。
However, recently there has been growing interest in the technology to produce high-performance grade carbon fibers using pitch as a raw material. A method for producing high-strength, high-modulus carbon fibers by firing in an active gas atmosphere (JP-A-49-19127, JP-A-53-65425,
JP-A No. 53-119326), (b) A method of performing spinning, infusibility treatment, and firing treatment using a "dormant mesophace pitch" that can be easily converted into mesophace during spinning (Japanese Patent Laid-Open No. 57-100186) ), and (c) a method using "prime meso phase pitch" which converts into meso phase during firing (Japanese Patent Application Laid-open No. 1842-1983) has been proposed.

しかし、前述の方法で高性能炭素繊維を製造し
ようとする場合、何れの方法でも得られる前駆体
繊維の強度が極めて弱く、且つ不融化段階で発生
する種々の欠陥が焼成処理後の炭素繊維における
強度劣化の大きな要因となつている。すなわち、
脆弱な前駆体繊維を取扱う為には、それを収束し
て取扱うことが望ましい。しかるに、不融化段階
では前駆体繊維を酸化性雰囲気中で該繊維の融点
もしくは分解点に近い比較的高温で種々の反応を
生ぜしめ、融点を無くし、引続く焼成処理に耐え
うる繊維に変化させるが、ここで繊維束(マルチ
フイラメントヤーン)における分繊性が悪い場合
には繊維が不融化する前に溶融又は軟化して繊維
間に融着が生じる。
However, when trying to produce high-performance carbon fibers using the above-mentioned methods, the strength of the precursor fibers obtained by either method is extremely weak, and various defects that occur during the infusibility stage cause problems in the carbon fibers after firing. This is a major cause of strength deterioration. That is,
In order to handle fragile precursor fibers, it is desirable to handle them in a concentrated manner. However, in the infusibility step, the precursor fiber undergoes various reactions in an oxidizing atmosphere at a relatively high temperature close to the melting point or decomposition point of the fiber, thereby eliminating the melting point and converting it into a fiber that can withstand subsequent calcination treatment. However, if the fiber bundle (multifilament yarn) has poor splitting properties, the fibers melt or soften before becoming infusible, causing fusion between the fibers.

この融着は、繊維束を硬く且つもろくし、焼成
処理段階での毛羽、断糸等を惹起し、全体の強
度、伸度の低下原因となる。更に単繊維に着目し
ても、そのような融着部位は表面欠陥となるため
強度劣化をきたし、高強度の発現に大きなマイナ
スとなる。
This fusion makes the fiber bundle hard and brittle, causing fuzz, yarn breakage, etc. during the firing process, and causes a decrease in overall strength and elongation. Furthermore, even when focusing on single fibers, such fused sites become surface defects, resulting in deterioration of strength, which is a big disadvantage in developing high strength.

このような脆弱な体駆体繊維束を安定に取扱い
且つ不融化処理中に生じる融着を解消するための
有効で実用的な方法は未だ知られていない。すな
わち、融着に着目し、これを解消するための試み
は従来にもいくつか提案されている。例えば(イ)不
融化前に石炭粉末をフイラメントに吹付ける方法
(ソ連特許第168848号)、(ロ)酸化剤を含浸した活性
炭粉末を吹付ける方法(米国特許第3997645号)、
(ハ)水溶性酸化及び界面活性剤を溶解した水中に黒
鉛又はカーボンブラツクを分散した液で前駆体繊
維を処理する方法(特開昭55−128020号)等があ
げられる。
An effective and practical method for stably handling such fragile precursor fiber bundles and eliminating the fusion that occurs during the infusibility treatment is not yet known. That is, focusing on fusion, several attempts to solve this problem have been proposed in the past. For example, (a) a method of spraying coal powder onto the filament before infusibility (USSR Patent No. 168848); (b) a method of spraying activated carbon powder impregnated with an oxidizing agent (US Pat. No. 3997645);
(c) A method in which precursor fibers are treated with a solution in which graphite or carbon black is dispersed in water in which a water-soluble oxidation agent and a surfactant are dissolved (Japanese Patent Application Laid-Open No. 128020/1984), etc. can be mentioned.

しかしながら、本発明者らが、前述の各方法を
実施してみたところ、炭素質微粉末は不融化段階
での融着防止には効果が認められるものの、焼成
後の炭素繊維の強度、伸度に対しては明らかにマ
イナスに作用していることが判つた。すなわち、
前述の各方法では、たしかに融着は防止されるも
のの、微粉末を付与せずに不融化、焼成処理した
ものに比べて、強度、伸度が悪化するという現象
がみられた。この理由は明らかではないが炭素質
微粉末により何らかの新たな欠陥が発生するもの
と推定される。さらに、脆弱な前駆体繊維の取扱
に関しては単糸切れによる毛羽発生防止等の観点
から満足すべきものとは言い難い。
However, when the present inventors implemented each of the above-mentioned methods, it was found that although carbonaceous fine powder is effective in preventing fusion in the infusibility stage, the strength and elongation of carbon fibers after firing are It was found that there was a clear negative effect on That is,
In each of the above-mentioned methods, although fusion was certainly prevented, there was a phenomenon in which the strength and elongation deteriorated compared to those in which fine powder was not applied and the material was made infusible and fired. Although the reason for this is not clear, it is presumed that some new defects are generated by the carbonaceous fine powder. Furthermore, the handling of fragile precursor fibers is not satisfactory from the viewpoint of preventing the generation of fuzz due to single filament breakage.

また、ピツチを原料としない炭素繊維の製造
法、すなわちPAN系炭素繊維の製造法において
は原糸油剤に関し多数の提案がなされ、アミノ変
性シリコーン等が使用されているが、PANは元
来溶融しない物質であり、溶融紡糸により作成し
たピツチ系前駆体繊維に適用することは不融化時
の融着の点で無理であつた。
In addition, in the production of carbon fibers that do not use pith as a raw material, that is, the production of PAN-based carbon fibers, many proposals have been made regarding raw fiber oils, and amino-modified silicones and the like have been used, but PAN does not inherently melt. It was impossible to apply it to pitch-based precursor fibers created by melt spinning because of the fusion during infusibility.

発明の目的 本発明の主たる目的は、ピツチ系炭素繊維の製
造工程において、脆弱な前駆体繊維束を安定に取
扱い且つ不融化処理を行う際に生ずる単繊維間の
融着を防止し、且つ、焼成処理後の繊維の強度、
伸度がすぐれたピツチ系高性能炭素繊維を製造す
る方法を提供することにある。本発明の他の目的
は、繊維束(マルチフイラメントヤーン)として
の開繊性及び柔軟性にすぐれ、強度及び伸度が高
く、且つ強度のバラツキが少なく、補強材として
特に好適なピツチ系高性能炭素繊維を工業的に製
造する方法を提供することにある。
Purpose of the Invention The main purpose of the present invention is to stably handle fragile precursor fiber bundles and prevent fusion between single fibers that occurs when performing infusibility treatment in the production process of pitch-based carbon fibers, and Strength of fiber after firing treatment,
An object of the present invention is to provide a method for producing pitch-based high-performance carbon fibers with excellent elongation. Another object of the present invention is to provide a high-performance pitch type yarn that is excellent in spreadability and flexibility as a fiber bundle (multifilament yarn), has high strength and elongation, and has little variation in strength, and is particularly suitable as a reinforcing material. An object of the present invention is to provide a method for industrially manufacturing carbon fiber.

発明の構成 前述の目的は本発明に従い、ピツチ系炭素繊維
の製造に際し前駆体繊維束に特定の無機微粒子の
分散液と特定のアルコール類を含む溶液とを付着
せしめた後、不融化処理及び焼成処理を行うこと
により達成される。
Structure of the Invention According to the present invention, the above-mentioned object is to apply a dispersion of specific inorganic fine particles and a solution containing a specific alcohol to a precursor fiber bundle during the production of pitch-based carbon fibers, and then perform infusibility treatment and sintering. This is achieved through processing.

すなわち、本発明は、ピツチ系炭素繊維の製造
において、前駆体繊維束に(A)ケイ素、アルミニウ
ム、チタン、ホウ素の酸化物又は炭化物より選ば
れた少くとも1種を含む無機微粒子と、(B)沸点
120〜300℃、融点10℃以下の二価アルコール類よ
り選ばれた少くとも1種のアルコールとを、付着
せしめた後、不融化処理し、さらに焼成処理する
ことを特徴とする高性能炭素繊維を製造する方法
である。
That is, in the production of pitch-based carbon fibers, the present invention provides a precursor fiber bundle containing (A) inorganic fine particles containing at least one selected from oxides or carbides of silicon, aluminum, titanium, and boron, and (B). )boiling point
A high-performance carbon fiber characterized by being coated with at least one type of alcohol selected from dihydric alcohols having a temperature of 120 to 300°C and a melting point of 10°C or less, then subjected to an infusible treatment, and then subjected to a firing treatment. This is a method of manufacturing.

本発明方法において、炭素繊維を製造するため
の前駆体繊維として、いずれのピツチ繊維を用い
てもよいが、より高性能の炭素繊維を製造するた
めには、石炭系又は石油系のピツチを熱処理して
形成した光学異方性成分を含有し、キノリン不溶
部が1〜60.(重量)%であるピツチを溶融紡糸し
て得たピツチ繊維を使用することが好ましい。紡
糸用ピツチのキノリン不溶部がこれよりも少い
と、得られる炭素繊維の物性は低いものとなり、
また、これよりも多いと紡糸性低下による物性低
下が生じる傾向がある。
In the method of the present invention, any pitch fiber may be used as the precursor fiber for producing carbon fibers, but in order to produce carbon fibers with higher performance, coal-based or petroleum-based pitch should be heat-treated. It is preferable to use pitch fibers obtained by melt spinning pitch, which contains an optically anisotropic component formed by the above method and has a quinoline insoluble portion of 1 to 60% (by weight). If the quinoline insoluble portion of the spinning pitch is less than this, the physical properties of the resulting carbon fiber will be poor.
Moreover, if the amount is more than this, there is a tendency for physical properties to decrease due to decrease in spinnability.

本発明におけるピツチ繊維を紡糸する方法とし
ては通常の溶融紡糸を採用できるが、高性能の炭
素繊維を得るためには、本発明者らが特願昭57−
147038号、特願昭59−125047号、特願昭59−
125048号等で提案した紡糸方法を用いて、ピツチ
繊維の構造を制御することが好ましい。
Although ordinary melt spinning can be used as a method for spinning pitch fibers in the present invention, in order to obtain high-performance carbon fibers, the present inventors have
No. 147038, Patent Application No. 125047, Patent Application No. 1983-
It is preferable to control the structure of pitch fibers using the spinning method proposed in No. 125048 or the like.

本発明は前記(A)、(B)2群の処理剤を順次又は同
時に前駆体繊維束に付与した後、該繊維を不融化
焼成処理を行うことによりなされるが、使用する
前記(A)の処理剤としてはケイ素、アルミニウム、
チタン、ホウ素の酸化物又は炭化物の微粒子が用
いられ、これらの中でも特に酸化ケイ素
(SiO2)、酸化アルミニウム(Al2O3)、酸化チタ
ン(TiO2)、炭化ホウ素(BC)が好適である。
これら微粒子は平均粒径が1ミクロン以下で、且
つできるだけ粒子径の揃つた微粒子が好ましい。
The present invention is achieved by sequentially or simultaneously applying the treatment agents of the above two groups (A) and (B) to a precursor fiber bundle, and then subjecting the fibers to an infusible firing treatment. Treatment agents include silicon, aluminum,
Fine particles of titanium, boron oxides or carbides are used, and among these, silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), titanium oxide (TiO 2 ), and boron carbide (BC) are particularly suitable. .
These fine particles preferably have an average particle size of 1 micron or less and are as uniform in particle size as possible.

これらの処理剤(A)は、分散液(a)として使用され
るが、分散媒としては、ピツチ前駆体繊維に対し
化学的に不活性であり且つ前記微粒子を凝集させ
ないものが好ましく、このような分散媒としては
水があげられる。さらに、微粒子の分散を助ける
等の目的で乳化剤を併用することも可能である。
ただし乳化剤として金属を含むものを使用するの
は避けることが望ましい。
These treatment agents (A) are used as a dispersion liquid (a), but the dispersion medium is preferably one that is chemically inert to the pitch precursor fibers and does not agglomerate the fine particles. Water is an example of a dispersion medium. Furthermore, it is also possible to use an emulsifier in combination for the purpose of aiding the dispersion of fine particles.
However, it is desirable to avoid using emulsifiers containing metals.

前記の無機微粒子は単一成分で使用してもよ
く、また2種以上併用してもよい。
The above-mentioned inorganic fine particles may be used as a single component, or two or more types may be used in combination.

本発明において使用する前記(B)群の処理剤とし
ては、沸点及び融点が所定の範囲にある二価アル
コール類であればいかなるものでもよいが、特
に、エチレングリコール、プロピレングリコー
ル、ジエチレングリコール等が好適である。
The treatment agent of group (B) used in the present invention may be any dihydric alcohol having a boiling point and melting point within a predetermined range, but ethylene glycol, propylene glycol, diethylene glycol, etc. are particularly preferred. It is.

本発明において前記処理剤は単独で使用しても
よく、2種以上併用してもよい。これらは通常溶
液(b)として用いるが溶媒としては、ピツチに対し
化学的に不活性である必要があり、通常は水が好
ましい。また乳化剤の併用も可能であるが、やは
り金属の混入は避けることが望ましい。
In the present invention, the processing agents may be used alone or in combination of two or more. These are usually used as a solution (b), but the solvent must be chemically inert to pitch, and water is usually preferred. It is also possible to use an emulsifier in combination, but it is still desirable to avoid contamination with metals.

本発明においては前記(A)と(B)の処理剤を含む液
を共に前駆体繊維束に付与することが必要である
が、その付与順序は、各々を順次付与しても良
く、又、個々に準備した液を同時に付与しても良
い。さらにあらかじめ前記(A)、(B)両処理剤を含む
分散液又は溶液を調製し繊維束に付与しても良
い。この場合(A)群の無機微粒子の分散媒として前
記(b)の溶液を使用することも可能である。
In the present invention, it is necessary to apply both the liquids containing the treatment agents (A) and (B) to the precursor fiber bundle, but the order of application may be such that each of them may be applied sequentially, or Individually prepared solutions may be applied at the same time. Furthermore, a dispersion or solution containing both the treatment agents (A) and (B) may be prepared in advance and applied to the fiber bundle. In this case, it is also possible to use the solution (b) above as a dispersion medium for the inorganic fine particles of group (A).

前駆体繊維束にこれらの処理剤を含む分散液又
は溶液を付与する方法としては、例えば(i)オイリ
ングローラを使用する方法、(ii)計量ポンプにて送
液される処理液をセラミツク等で作成したガイド
で付与する計量オイリングの方法、(iii)スプレーを
使用する方法等を採用することができる。
Examples of methods for applying a dispersion or solution containing these treatment agents to the precursor fiber bundle include (i) using an oiling roller, (ii) applying the treatment liquid fed by a metering pump to ceramics, etc. Methods such as metered oiling applied using a prepared guide, (iii) method using a spray, etc. can be adopted.

上記方法による付与は紡糸―不融化間の何処で
行つてもかまわないが、脆弱な前駆体繊維を安定
に取扱うと言う立場からは紡糸口金―巻取機間で
行うのが好ましく、この際、紡糸口金から吐出さ
れた脆弱な前駆体繊維束に最初に処理剤を付与す
るには、前記(ii)又は(iii)の手段が好ましい。
Application by the above method may be performed anywhere between spinning and infusibility, but from the standpoint of stably handling the fragile precursor fibers, it is preferable to perform it between the spinneret and the winder. In order to initially apply a treatment agent to the brittle precursor fiber bundle discharged from a spinneret, the means (ii) or (iii) above is preferred.

前駆体繊維に対する前記(A)の無機微粒子の付着
量は繊維重量に対して0.05(重量)%以上が好ま
しい。この付着量が少なすぎると本発明の効果の
うち融着防止効果が乏しくなる。また前記(B)の二
価アルコールの付着量は繊維重量に対して0.05〜
20(重量)%が好ましい。この付着量がこれより
少なすぎると、安定な前駆体繊維束の取扱が困難
となり、また、これより多すぎると融着が発生す
る場合があり好ましくない。
The amount of the inorganic fine particles (A) attached to the precursor fiber is preferably 0.05% (by weight) or more based on the weight of the fiber. If this amount of adhesion is too small, the effect of preventing fusion of the present invention will be poor. In addition, the amount of the dihydric alcohol (B) attached is 0.05 to 0.05 to the weight of the fiber.
20% (by weight) is preferred. If the amount of adhesion is too small, it becomes difficult to handle the precursor fiber bundle stably, and if it is too large, fusion may occur, which is not preferable.

このように、2種の特定の処理剤を付着せしめ
た前駆体繊維束は、必要に応じ乾燥、開繊後、常
法により純酸素又は空気のような酸素含有雰囲気
中で加熱することにより不融化させる。そして、
不融化した繊維は、次に不活性雰囲気中で、通常
1000〜1500℃に加熱することにより焼成処理し、
炭素繊維となる。
In this way, the precursor fiber bundle to which two types of specific treatment agents have been attached is dried and opened if necessary, and then heated in an oxygen-containing atmosphere such as pure oxygen or air using a conventional method to cure the fibers. melt. and,
The infusible fibers are then typically treated in an inert atmosphere.
Firing treatment is performed by heating to 1000-1500℃,
It becomes carbon fiber.

本発明では、不融化・焼成処理の条件は、それ
自体公知の条件を採用することができ、本発明の
特定の処理剤を付与したことによつて不融化・焼
成処理時に特別の配慮を払う必要はない。
In the present invention, the conditions for the infusibility/calcination treatment can be those that are known per se, and special consideration is taken during the infusibility/calcination treatment by applying the specific treatment agent of the present invention. There's no need.

また、本発明は前記方法によつて有用な効果を
発現するが、必要に応じて、第3成分としてジメ
チルシリコン、アミノ変性シリコン、フエニル変
性シリコンから選ばれたすくなくとも1種を前記
(A)、(B)の処理剤と併用することも可能である。
Further, although the present invention exhibits useful effects by the above-mentioned method, at least one selected from dimethyl silicone, amino-modified silicon, and phenyl-modified silicon may be added as a third component, if necessary.
It is also possible to use it in combination with the processing agents (A) and (B).

また、前記溶液(b)中にヨウ素を0.01〜0.05重量
%含有せしめることもでき、この場合は、不融化
処理に要する時間を短縮することが可能となる。
Moreover, 0.01 to 0.05% by weight of iodine can be contained in the solution (b), and in this case, the time required for the infusibility treatment can be shortened.

発明の効果 前述の如き本発明によれば、ピツチ系炭素繊維
の製造において脆弱な前駆体繊維の取扱いが安定
化され、且つ不融化する際の単繊維間の融着がほ
ぼ完全に防止されるので、容易に連続の炭素繊維
が製造され、且つ得られる糸条の開繊性及び柔軟
性はすぐれたものとなる。
Effects of the Invention According to the present invention as described above, handling of fragile precursor fibers in the production of pitch-based carbon fibers is stabilized, and fusion between single fibers during infusibility is almost completely prevented. Therefore, continuous carbon fibers can be easily produced, and the resulting yarn has excellent spreadability and flexibility.

その結果、強度及び伸度のレベルが高い上に、
強度のバラツキが小さく、高性能炭素繊維とし
て、ゴム、樹脂、金属等の補強材をはじめ、各種
の用途に広く使用することができる。
As a result, in addition to high levels of strength and elongation,
As a high-performance carbon fiber with small variations in strength, it can be widely used in a variety of applications, including reinforcing materials for rubber, resin, metal, etc.

実施例 以下、実施例及び比較例により本発明をさらに
詳細に説明するが、本発明はこれらによつて限定
されるものではない。
EXAMPLES The present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

実施例 1 市販のコールタールピツチを用い、特願昭59−
169199号に記載の方法に準じて、実質的に100%
光学異方性で、キノリン不溶部が31.4%の紡糸用
ピツチを調整した。この紡糸用ピツチを溶融脱泡
後ギヤポンプを介して48個の孔数を有する紡糸口
金より押し出し、800m2/分で巻取ることにより、
前駆体繊維束を得た。
Example 1 Using commercially available coal tar pitch, patent application 1982-
Substantially 100% according to the method described in No. 169199
A spinning pitch with optical anisotropy and a quinoline insoluble portion of 31.4% was prepared. After melting and defoaming, this spinning pitch is extruded from a spinneret with 48 holes via a gear pump and wound at a speed of 800 m 2 /min.
A precursor fiber bundle was obtained.

この操作において紡糸口金―巻取機間に、計量
ポンプで送液された処理剤(A)の分散液及び(B)の溶
液を糸条に付与するため紡出糸条の走行方向に沿
つて2個のセラミツクガイドをもつ計量オイリン
グ装置を設け、上流側で処理剤(A)として、平均粒
径30ミリミクロンのシリカを前駆体繊維に対し
1.5重量%、4%水分散液(a)の形態で付与し、次
いで処理剤(B)としてエチレングリコールを前駆体
繊維に対し1.0重量%、4%水溶液(b)の形態で付
与した。
In this operation, a dispersion of treatment agent (A) and a solution of treatment agent (B) are sent between the spinneret and the winder using a metering pump along the running direction of the spun yarn in order to apply it to the yarn. A metering oiling device with two ceramic guides is installed, and silica with an average particle size of 30 mm is applied to the precursor fibers as a treatment agent (A) on the upstream side.
It was applied in the form of a 1.5% by weight, 4% aqueous dispersion (a), and then ethylene glycol was applied as a treatment agent (B) in the form of a 1.0% by weight, 4% aqueous solution (b) to the precursor fibers.

かかる方法で巻取つた前駆体繊維は数日の放置
に対しても安定で毛羽発生は認められず、且つ容
易に解舒し連続的に不融化炉へ供給することが可
能であつた。
The precursor fibers wound in this manner were stable even after being left for several days, and no fluff was observed, and could be easily unwound and continuously fed to the infusibility furnace.

また最高温度350℃空気雰囲気に設定された不
融化炉中で不融化処理し、炉中から出てきた不融
化糸は柔軟であり単糸間の融着は認められなかつ
た。次いでこの不融化糸を窒素雰囲気中1300℃で
焼成したところ、強度415Kg/mm2、伸度1.82%の
炭素繊維が得られた。
In addition, the infusible yarn was treated in an infusible furnace set at a maximum temperature of 350°C in an air atmosphere, and the infusible yarn that came out of the furnace was flexible and no fusion was observed between the single yarns. This infusible yarn was then fired at 1300° C. in a nitrogen atmosphere, resulting in carbon fibers with a strength of 415 Kg/mm 2 and an elongation of 1.82%.

比較例 1 紡糸口金―巻取機間に設けた計量オイリング装
置を1個とし、実施例1で使用した処理剤(B)のみ
を付与した以外は実施例1と同様に操作した結
果、得られた前駆体繊維束の解舒は容易であつた
が、不融化処理後の糸は硬く、単糸間の融着が激
しかつた。この不融化糸を実施例1と同一条件で
焼成したところ、得られた炭素繊維の強度は224
Kg/mm2であつた。
Comparative Example 1 The same procedure as in Example 1 was performed except that only one measuring oiling device was installed between the spinneret and the winder, and only the treatment agent (B) used in Example 1 was applied. Although it was easy to unravel the precursor fiber bundle, the yarn after the infusibility treatment was hard and the fusion between single yarns was severe. When this infusible yarn was fired under the same conditions as in Example 1, the strength of the obtained carbon fiber was 224
It was Kg/ mm2 .

実施例 2 処理剤(a)及び(b)の混合液として平均粒径30ミリ
ミクロンのシリカとエチレングリコールを各々2
%と4%含む水分散液を紡糸口金―巻取機間に設
けた1個の計量オイリング装置で付与する以外は
実施例1と同様に処理した。
Example 2 As a mixed solution of treatment agents (a) and (b), two doses each of silica and ethylene glycol with an average particle size of 30 millimicrons were used.
The process was carried out in the same manner as in Example 1, except that the aqueous dispersions containing % and 4% were applied using one metering oiling device installed between the spinneret and the winder.

得られた前駆体繊維束の解舒は容易であり、且
つ不融化後の糸も柔軟であり単糸間の融着は認め
られなかつた。この不融化糸を実施例1と同一条
件で焼成したところ、得られた炭素繊維の強度は
399Kg/mm2であつた。
The obtained precursor fiber bundle was easily unwound, and the yarn after infusibility was also flexible, and no fusion between single yarns was observed. When this infusible yarn was fired under the same conditions as in Example 1, the strength of the obtained carbon fiber was
It was 399Kg/ mm2 .

比較例 2 紡糸口金―巻取機間に設けた計量オイリングを
1個とし、実施例1で使用した処理剤(A)のみを付
与した以外は比較例1と同様に操作した。得られ
た前駆体繊維束の解舒性は、実施例1と比べ劣る
ものであつた。
Comparative Example 2 The procedure was the same as in Comparative Example 1, except that only one metering oil ring was provided between the spinneret and the winder, and only the treatment agent (A) used in Example 1 was applied. The unwinding property of the obtained precursor fiber bundle was inferior to that of Example 1.

Claims (1)

【特許請求の範囲】 1 ピツチ系炭素繊維の製造において、前駆体ピ
ツチ繊維束に、 (A) ケイ素、アルミニウム、チタン、ホウ素の酸
化物又は炭化物より選ばれた少くとも1種の無
機微粒子、及び (B) 沸点120〜300℃でかつ融点10℃以下の二価ア
ルコール、 を同時的又は逐次的に付与した後、該繊維束を不
融化処理し、さらに焼成処理することを特徴とす
るピツチ系炭素繊維の製造方法。 2 前記(A)の無機微粒子が、酸化ケイ素、酸化ア
ルミニウム、酸化チタン及びホウ化炭素よりなる
群から選ばれた少くとも1種の平均粒径1ミクロ
ン以下の微粒子である特許請求の範囲第1項記載
の製造方法。 3 前記(A)の無機微粒子及び(B)の二価アルコール
の両方を含む分散液を、前駆体ピツチ繊維束に付
与する特許請求の範囲第1項記載の製造方法。 4 前記(A)の無機微粒子を水性分散液(a)とし、且
つ前記(B)のアルコールを水溶液(b)として、前駆体
ピツチ繊維束に逐次的に付与する特許請求の範囲
第1項記載の製造方法。 5 前記無機微粒子(A)の付与量を前駆体ピツチ繊
維束に対し0.05重量%以上とする特許請求の範囲
第1項記載の製造方法。 6 前記アルコール(B)の付与量を前駆体ピツチ繊
維束に対し0.05〜20重量%とする特許請求の範囲
第1項記載の製造方法。
[Claims] 1. In the production of pitch-based carbon fibers, the precursor pitch fiber bundle contains (A) at least one inorganic fine particle selected from oxides or carbides of silicon, aluminum, titanium, and boron; (B) A dihydric alcohol having a boiling point of 120 to 300°C and a melting point of 10°C or less, which is applied simultaneously or sequentially, and then the fiber bundle is treated to make it infusible and then fired. Carbon fiber manufacturing method. 2. Claim 1, wherein the inorganic fine particles of (A) are at least one type of fine particles with an average particle size of 1 micron or less selected from the group consisting of silicon oxide, aluminum oxide, titanium oxide, and carbon boride. Manufacturing method described in section. 3. The manufacturing method according to claim 1, wherein a dispersion containing both the inorganic fine particles (A) and the dihydric alcohol (B) is applied to the precursor pitch fiber bundle. 4. The inorganic fine particles of (A) as an aqueous dispersion (a) and the alcohol of (B) as an aqueous solution (b) are sequentially applied to the precursor pitch fiber bundle. manufacturing method. 5. The manufacturing method according to claim 1, wherein the amount of the inorganic fine particles (A) applied is 0.05% by weight or more based on the precursor pitch fiber bundle. 6. The manufacturing method according to claim 1, wherein the amount of the alcohol (B) applied is 0.05 to 20% by weight based on the precursor pitch fiber bundle.
JP16746785A 1984-01-24 1985-07-31 Production of pitch carbon fiber Granted JPS6228412A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16746785A JPS6228412A (en) 1985-07-31 1985-07-31 Production of pitch carbon fiber
US06/790,102 US4840762A (en) 1984-01-24 1985-10-22 Process for preparation of high-performance grade carbon fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16746785A JPS6228412A (en) 1985-07-31 1985-07-31 Production of pitch carbon fiber

Publications (2)

Publication Number Publication Date
JPS6228412A JPS6228412A (en) 1987-02-06
JPH0135091B2 true JPH0135091B2 (en) 1989-07-24

Family

ID=15850214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16746785A Granted JPS6228412A (en) 1984-01-24 1985-07-31 Production of pitch carbon fiber

Country Status (1)

Country Link
JP (1) JPS6228412A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156510A (en) * 1987-12-08 1989-06-20 Teijin Ltd Production of silicon carbide fiber
US5118560A (en) * 1991-03-01 1992-06-02 United Technologies Corporation Discontinuous carbon fiber reinforced glass matrix composites with secondary matrix reinforcement
US5192475A (en) * 1991-03-01 1993-03-09 United Technologies Corporation Method of making discontinuous carbon fiber reinforced glass matrix composites with secondary matrix reinforcement
US5552215A (en) * 1991-10-09 1996-09-03 United Technologies Corporation Fiber reinforced glass matrix composites with secondary matrix reinforcement

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246819A (en) * 1984-05-16 1985-12-06 Mitsubishi Chem Ind Ltd Preparation of carbon yarn of pitch type

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246819A (en) * 1984-05-16 1985-12-06 Mitsubishi Chem Ind Ltd Preparation of carbon yarn of pitch type

Also Published As

Publication number Publication date
JPS6228412A (en) 1987-02-06

Similar Documents

Publication Publication Date Title
US4378343A (en) Process for producing carbon fiber tows
US4276278A (en) Spin size and thermosetting aid for pitch fibers
JPH0135091B2 (en)
JPS6228411A (en) Production of pitch carbon fiber
US4840762A (en) Process for preparation of high-performance grade carbon fibers
EP0169023B1 (en) Method of manufacture of pitch-based carbon fiber
JPH0583642B2 (en)
JPH0133573B2 (en)
JPH042689B2 (en)
JPH01124621A (en) Alumina-based ultrafine continuous multifilament
JPH06102852B2 (en) Pitch-based carbon fiber manufacturing method
JPH02264011A (en) Acrylic fiber for graphite fibers
JP3697793B2 (en) Precursor for carbon fiber, method for producing the same, and method for producing carbon fiber
JPS6257929A (en) Infusibilization treatment of pitch fiber
JPH0364514A (en) Production of acrylic precursor yarn for carbon fiber
JPS621010B2 (en)
JPH01282312A (en) Pitch fiber and production thereof
JPH01124622A (en) Production of ultrafine ceramic continuous multifilament
JP2850676B2 (en) Precursor fiber bundle for carbon fiber
JP3272718B2 (en) Method for producing pitch-based carbon fiber
JP3644271B2 (en) Method for producing pitch-based carbon fiber
JPH0941226A (en) Precursor for carbon fiber production and its production
JPH05247730A (en) High-strength and high-modulus pitch-based carbon fiber with excellent openability and its production
JPH01282324A (en) Production of pitch-based carbon fiber
JPS61167024A (en) Production of carbon yarn tow