JPH01282312A - Pitch fiber and production thereof - Google Patents

Pitch fiber and production thereof

Info

Publication number
JPH01282312A
JPH01282312A JP11400588A JP11400588A JPH01282312A JP H01282312 A JPH01282312 A JP H01282312A JP 11400588 A JP11400588 A JP 11400588A JP 11400588 A JP11400588 A JP 11400588A JP H01282312 A JPH01282312 A JP H01282312A
Authority
JP
Japan
Prior art keywords
pitch
spinning
yarn
component
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11400588A
Other languages
Japanese (ja)
Inventor
Tadayuki Matsumoto
忠之 松本
Michihiro Shiokawa
塩川 満弘
Seiji Tanaka
田中 清次
Tatsuo Akimoto
秋本 龍夫
Shigenori Komatsu
重徳 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP11400588A priority Critical patent/JPH01282312A/en
Publication of JPH01282312A publication Critical patent/JPH01282312A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PURPOSE:To obtain the subject fiber having improved reeling and handling properties by conjugately spinning a macromolecular compound with a constant carbonization yield or a mixture of a pitch and another macromolecular compound and a pitch or a mixture of a macromolecular compound and a pitch. CONSTITUTION:(A) (i) A macromolecular compound with >=5% carbonization yield such as polyacrylonitrile or polyphenylene sulfide or (ii) a mixture of a pitch such as coal-based or petroleum-based pitch and another macromolecular compound and (B) (iii) a pitch or (iV) a mixture of a macromolecular compound and a pitch are conjugately spun to provide the objective pitch fiber having a seath and core conjugate structure. In addition, the above mentioned conjugate spinning is preferably carried out using a static kneader.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はピッチ繊維およびその製法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a pitch fiber and a method for producing the same.

[従来の技術] ピッチから炭素繊維を得る技術は、例えば特公昭43−
4550号、特開昭49−19127号などでよく知ら
れている。
[Prior art] The technology for obtaining carbon fiber from pitch is, for example, disclosed in Japanese Patent Publication No. 1973-
It is well known from publications such as No. 4550 and Japanese Unexamined Patent Publication No. 49-19127.

しかし、ピッチは、粘度の温度依存性が極めて大である
ため、通常の高分子化合物等とは異なり、紡糸時の溶融
粘度が100〜300poiseという低粘度状態で紡
糸する必要がある。そのため、口金から吐出された後、
急激に細化されるので、紡糸雰囲気の温度制御を十分に
行なっても、紡糸原料であるピッチの粘度変動の影響を
大きく受は糸切れが極めて起り易い。
However, since the viscosity of pitch has extremely high temperature dependence, it is necessary to spin the pitch in a low viscosity state with a melt viscosity of 100 to 300 poise during spinning, unlike ordinary polymer compounds. Therefore, after being discharged from the nozzle,
Since the yarn is rapidly thinned, even if the temperature of the spinning atmosphere is sufficiently controlled, it is greatly affected by viscosity fluctuations of pitch, which is the spinning raw material, and yarn breakage is extremely likely to occur.

さらに、上記低粘度で、しかもピッチ糸が脆弱であるた
め比較的低速度で紡糸すること、ピッチ糸は高分子の様
に延伸することができないため、5〜15μの低繊度に
紡糸する必要があることから吐出量が小さく、口金背面
圧が通常の高分子の紡糸に比べて極めて低い。そのため
、高粘度の異物があると、容易に口金づまりを起す。
Furthermore, since the pitch yarn has the low viscosity mentioned above and is fragile, it must be spun at a relatively low speed, and pitch yarn cannot be drawn like polymers, so it is necessary to spin it to a low fineness of 5 to 15μ. For this reason, the discharge amount is small, and the spinneret back pressure is extremely low compared to normal polymer spinning. Therefore, if there is a highly viscous foreign substance, the nozzle will easily become clogged.

従来、上記粘度ムラ、口金づまりを防止するため、粗原
料である石油系、石炭系の重質油中の固形分、高粘度分
を除去することが行なわれている。
Conventionally, in order to prevent the above-mentioned viscosity unevenness and nozzle clogging, solid content and high viscosity content in petroleum-based and coal-based heavy oils, which are crude raw materials, have been removed.

しかし、紡糸原料に用いるピッチは、上記固形分を除去
した後の、蒸溜、メソフェーズ化などの熱処理や、酸化
などの経時変化に起因して生成する、紡糸用ピッチより
高粘度でおるが、流動性を有する異物の生成を必ず伴っ
ていた。
However, pitch used as a spinning raw material has a higher viscosity than pitch for spinning, which is produced due to heat treatments such as distillation and mesophase formation after the solid content is removed, and changes over time such as oxidation. It was always accompanied by the formation of foreign substances with a certain sexiness.

そのため、溶融時に上記異物による糸切れや、口金づま
りを回避することができなかった。
Therefore, it has not been possible to avoid yarn breakage and nozzle clogging due to the foreign matter during melting.

ざらに、炭素繊維強伸度特性は、繊維径の依存性があり
、表面欠陥による悪影響を与えない範囲では、低24度
の方が高強力となるが、一般にピッチを細繊度化するの
は困難であり、通常10μ以下、特に8μ以下の繊維の
製糸は極めて困難であるという問題がおった。
Roughly speaking, the strength and elongation characteristics of carbon fibers depend on the fiber diameter, and as long as surface defects do not adversely affect the strength, the lower the 24 degrees, the higher the strength. The problem is that it is extremely difficult to spin fibers with a diameter of usually 10 μm or less, especially 8 μm or less.

また光学異方性ピッチを溶融紡糸する際、工業的に安定
製糸が可能な紡糸温度、口金および流路形状を採用する
必要がおる。その場合、通常は紡糸温度はできるだけ低
くして、特開昭62−85031号に記載された発泡を
回避し、安定製糸のため、口金穴径を小ざく、穴長を長
くする方向が好ましいが、その場合はピッチに加えられ
る剪断が大きくなるため、ラジアル構造の炭素繊維とな
りクランクが発生して物性が低くなるという問題がある
In addition, when melt-spinning optically anisotropic pitch, it is necessary to adopt a spinning temperature, spinneret, and flow path shape that enable industrially stable spinning. In that case, it is usually preferable to keep the spinning temperature as low as possible to avoid the foaming described in JP-A No. 62-85031, and to make the diameter of the spinneret hole smaller and the hole length longer to ensure stable yarn production. In that case, since the shear applied to the pitch becomes large, there is a problem that the carbon fiber has a radial structure and cranks occur, resulting in poor physical properties.

ラジアル構造を回避する手段として、紡糸温度を高くす
ると、上記した発泡の問題が生ずる。
If the spinning temperature is increased as a means to avoid the radial structure, the above-mentioned foaming problem will occur.

さらに、ピッチ糸は、強度、伸度共極めて低く、かつ脆
弱であるため、ハンドリング性が悪い、ハンドリング時
に表面欠陥を生じやすい等の理由で、生産性の低下や、
焼成後の炭素繊維強伸度特性を低下させる要因となって
いる。
Furthermore, pitch yarn has extremely low strength and elongation, and is brittle, so it has poor handling properties and is prone to surface defects during handling, resulting in decreased productivity.
This is a factor that reduces the strength and elongation properties of carbon fibers after firing.

さらに、ピッチ糸は焼成前に不融化する必要があるが、
不融化糸もピッチ糸と同様に極めて脆弱でありハンドリ
ング性が悪い。その上、ざらに、酸化性気体と共に加熱
して不融化する際に、低温域での不融化反応速度が極め
て小さいため、通常不融化の進行に合わせて昇温しなが
ら反応させる方法が用いられる。その際、不融化反応の
進行に伴う軟化点の上昇を越えない範囲で昇温させる必
要がある。
Furthermore, pitch yarn needs to be infusible before firing;
Like the pitch yarn, the infusible yarn is extremely fragile and has poor handling properties. Furthermore, when heating with an oxidizing gas to make it infusible, the rate of the infusibility reaction at low temperatures is extremely slow, so a method is usually used in which the reaction is carried out while increasing the temperature as the infusibility progresses. . At this time, it is necessary to raise the temperature within a range that does not exceed the increase in the softening point accompanying the progress of the infusibility reaction.

ピッチの不融化反応でおる酸化反応は発熱反応であるた
め、通常のマルチフィラメント、シート状、ボビン形態
など糸が集束された状態で不融化する際、局部的な蓄熱
が起り、不融化処理の温度管理を行なっても、隣接する
繊維同志の接着、融着が極めて起りやすいという問題を
有している。
The oxidation reaction that occurs during the infusibility reaction of pitch is an exothermic reaction, so when yarn is infusible in a bundled state such as a normal multifilament, sheet, or bobbin, local heat accumulation occurs and the infusibility treatment is delayed. Even if temperature control is performed, adhesion and fusion of adjacent fibers is extremely likely to occur.

この繊維の接着、融着は、表面欠陥となり糸物性を大幅
に低下させる。
This adhesion and fusing of fibers causes surface defects and significantly reduces the physical properties of the yarn.

その上、ピッチ糸表面には、紡糸時などに付着した軽質
分、タール、ゴミ等が存在し、また特に集束剤を使用し
た場合、これらの化学的、物理的作用により、前記接着
・融着の問題が極めて容易に起り易い問題を有する。
In addition, on the surface of the pitch yarn, there are light components, tar, dust, etc. that adhered during spinning, and especially when a sizing agent is used, the chemical and physical effects of these substances may cause the adhesion and fusion. This problem can easily occur.

上記性質のため、ピッチの不融化反応は、高温程反応速
度が速いにもかかわらず、極めてゆっくりとしだ昇温過
程を経て、不融化を完了させる必要がある。
Due to the above-mentioned properties, the infusibility reaction of pitch starts extremely slowly, even though the reaction rate is faster at higher temperatures, and it is necessary to complete the infusibility through a temperature raising process.

即ち、ピッチ糸は、ハンドリング性不良、不融化時の接
着・融着を生じやすいという欠点のため、不融化処理時
の糸速、糸を取扱う形態、昇温速度に上限がおるだめの
処理時間など全てに可能な限りマイルドな条件を採用す
る必要があり、つまりはこれらの問題点が生産性、経済
性、炭素繊維物性等を低下させるという大きな欠点を有
している。
In other words, pitch yarn has the drawbacks of poor handling and easy adhesion/fusion during infusibility treatment, so there is an upper limit to the yarn speed, yarn handling method, and heating rate during infusibility treatment. It is necessary to adopt conditions as mild as possible for all of the above, and in other words, these problems have a major drawback in that they reduce productivity, economic efficiency, carbon fiber physical properties, etc.

また、光学的異方性のピッチを用いて高強度、高弾性率
の炭素繊維を得る場合、特に上記ハンドリング、不融化
時に生ずる欠陥が物性低下の大きな要因となると共に、
焼成時の脱離成分の扱はヤ、炭素網面の発達による構造
形成に伴う収縮に起因して生じる内部歪が、特に表面近
傍において破壊の開始点となり易いという問題点を有し
ている。
In addition, when obtaining carbon fibers with high strength and high elastic modulus using optically anisotropic pitch, defects occurring during handling and infusibility are a major factor in deteriorating physical properties, and
The handling of eliminated components during firing has the problem that internal strain caused by shrinkage accompanying the formation of a structure due to the development of a carbon network surface tends to become a starting point for fracture, especially in the vicinity of the surface.

また、上記問題点を改善するために、ピッチ中に高分子
化合物をブレンドして製糸する方法も検討されているが
、従来の方法では、高分子化合物が繊維中にランダムに
存在するため十分な効果が得られていない。
In addition, in order to improve the above-mentioned problems, a method of blending a polymer compound into the pitch and spinning it into yarn is being considered, but in the conventional method, the polymer compound exists randomly in the fiber, so it is not enough. No effect has been obtained.

[発明が解決しようとする課題] 従って本発明の目的は、製糸性、ハンドリング性、不融
化生産性、得られる炭素繊維の物性などの改善されたピ
ッチ糸を提供することにある。
[Problems to be Solved by the Invention] Therefore, an object of the present invention is to provide a pitch yarn with improved spinning properties, handling properties, infusibility productivity, and physical properties of the resulting carbon fibers.

[課題を解決するための手段] 本発明は、次の構成を有する。[Means to solve the problem] The present invention has the following configuration.

(1)  炭化収率が5%以上でおる高分子化合物と、
ピッチ成分とが芯鞘複合構造を構成していることを特徴
とするピッチ繊維。
(1) A polymer compound with a carbonization yield of 5% or more,
A pitch fiber characterized in that a pitch component constitutes a core-sheath composite structure.

(2)  芯鞘複合構造が海島状である請求項1記載の
ピッチ系pA維。
(2) The pitch-based pA fiber according to claim 1, wherein the core-sheath composite structure has a sea-island shape.

(3)  炭化収率が5%以上である高分子化合物(a
)または、ピッチと高分子化合物の混合物(b)をA成
分とし、ピッチ(c)または、高分子化合物とピッチの
混合物(d)をB成分として複合紡糸することを特徴と
するピッチ繊維の製法。
(3) A polymer compound with a carbonization yield of 5% or more (a
) or a method for producing pitch fibers, which comprises performing composite spinning using a mixture of pitch and a polymer compound (b) as component A and pitch (c) or a mixture of a polymer compound and pitch (d) as component B. .

(4)複合紡糸が静止型混練装置を用いて行なわれる請
求項3記載のピッチ系繊維の製法。
(4) The method for producing pitch-based fibers according to claim 3, wherein the composite spinning is performed using a static kneading device.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明のピッチ繊維は、前記炭化収率が5%以上で必る
高分子化合物またはピッチ成分を、一方のA成分とし、
前記のピッチ成分を異なるB成分として芯鞘状に複合紡
糸することにより得られる。
In the pitch fiber of the present invention, one A component is a polymer compound or a pitch component that is necessary for the carbonization yield to be 5% or more,
It is obtained by composite spinning into a core-sheath shape using the pitch component as a different B component.

本発明でいう複合状態とは、例えば第1図〜第3図に示
す各種の芯鞘状の形態のもの、また、第4図〜第5図に
示す複数島成分からなる海島状の形態のもの、第6図に
示す放射状の形態のもの、第7図に示す異形芯鞘状のも
のなどを採用し得る。
The composite state referred to in the present invention includes, for example, various core-sheath forms shown in FIGS. 1 to 3, and sea-island forms consisting of multiple island components shown in FIGS. 4 to 5. A radial shape as shown in FIG. 6, a modified core-sheath shape as shown in FIG. 7, etc. may be adopted.

なお、芯または島は繊維軸方向に完全に連続したもの、
あるいは完全には連続していないが実質的に連続したス
ジ状に分散しているものを含む。
Note that the core or island is completely continuous in the fiber axis direction,
Alternatively, it includes those dispersed in a substantially continuous stripe shape, although not completely continuous.

本発明で用いるピッチ成分とは、石炭系、石油系、ナフ
タレンやポリ塩化ビニルからの合成ピッチ系であって、
等方性、光学的異方性ピッチ、およびこれらの混合物や
、高分子化合物などの添加物を添加したピッチを意味す
る。
The pitch component used in the present invention is a coal-based, petroleum-based, synthetic pitch based on naphthalene or polyvinyl chloride,
This refers to isotropic pitch, optically anisotropic pitch, mixtures thereof, and pitch to which additives such as polymer compounds are added.

光学的異方性ピッチは、紡糸時に液晶成分の配向性を有
している範囲のものが使用できる。光学的異方性成分の
量は、得られる炭素繊維の物性、製糸性から、60%以
上が好ましく、80%以上がより好ましい。
The optically anisotropic pitch can be within a range that provides orientation of the liquid crystal component during spinning. The amount of the optically anisotropic component is preferably 60% or more, more preferably 80% or more, from the viewpoint of the physical properties and spinning properties of the carbon fiber obtained.

上記ピッチ成分の炭化収率も5%以上でおる必要がある
が、経済性の面からは炭化収率は高い方が好ましく、4
0%以上、より好ましくは60%以上の炭化収率のピッ
チ成分を用いるのが良い。
The carbonization yield of the above-mentioned pitch component must also be 5% or more, but from an economic standpoint, a higher carbonization yield is preferable;
It is preferable to use a pitch component with a carbonization yield of 0% or more, more preferably 60% or more.

炭化収率が5%以上とは、通常の炭化処理を行なった際
の炭素化物が5%以上残存することを意味する。また炭
化収率が5%以上である高分子化合物とは、高分子化合
物を直接炭化した場合、および酸化処理、架橋処理など
の不融化、耐炎化処理を行なった後炭化した場合など各
種の方法で炭化した際の炭化収率が5%以上である高分
子化合物を意味する。上記高分子化合物としては、ポリ
アクリロニトリル、フェノール樹脂、ポリフェニレンサ
ルファイド、フラン樹脂などが挙げられる。
A carbonization yield of 5% or more means that 5% or more of carbonized products remain after normal carbonization treatment. In addition, polymer compounds with a carbonization yield of 5% or more can be obtained by various methods such as directly carbonizing the polymer compound, or carbonizing it after undergoing infusibility treatment such as oxidation treatment or crosslinking treatment, or flameproofing treatment. It means a polymer compound with a carbonization yield of 5% or more when carbonized. Examples of the polymer compound include polyacrylonitrile, phenol resin, polyphenylene sulfide, furan resin, and the like.

一方表面に炭素の薄い層を形成したい場合には、紡糸で
薄い層を作るのは困難なので、炭化収率の低い高分子化
合物やピッチ成分を使用するのが好ましい。特に表層部
分の比率が、得られる炭素繊維の5%以下、特に3%以
下のものを得たい場合には有効な方法となる。
On the other hand, when it is desired to form a thin layer of carbon on the surface, it is difficult to form a thin layer by spinning, so it is preferable to use a polymer compound or pitch component with a low carbonization yield. This method is particularly effective when it is desired to obtain carbon fibers in which the ratio of the surface layer portion is 5% or less, especially 3% or less of the resulting carbon fibers.

芯鞘海島の比率は、目的に応じて設計し得るが、炭化後
の収率を考慮して設計する必要がある。
The ratio of core-sheath sea-islands can be designed depending on the purpose, but it needs to be designed in consideration of the yield after carbonization.

高分子化合物成分の不融化をピッチとは異なる、架橋、
熱硬化などの手段で行なうことにより、不融化高分子成
分による補強効果、表面保護効果などを有する。また、
不融化時間の短縮もできる。
Cross-linking, different from pitch, makes the polymer compound component infusible.
By performing heat curing or other means, the infusible polymer component has a reinforcing effect, a surface protection effect, etc. Also,
It is also possible to shorten the infusibility time.

炭素繊維を製造した後、表面に無定形炭素層を芯鞘状に
形成する方法も提案されているが、本発明の如く紡糸時
に形成する方法にくらべて工程が複雑となりコストアッ
プになる、形成した表面層が均一でなかったり、剥離し
やすい等の点で本発明に劣る。
A method has also been proposed in which an amorphous carbon layer is formed in a core-sheath shape on the surface after producing carbon fibers, but the process is complicated and costs increase compared to the method of the present invention in which the amorphous carbon layer is formed during spinning. It is inferior to the present invention in that the surface layer formed is not uniform and easily peels off.

または芯鞘状海鳥状の島成分またはスジ状分散のスジ成
分は、通常の紡糸では困難な10μ以下の細繊度炭素繊
維にできるので、得られた炭素繊維は繊維補強炭素繊維
となる。特に、島成分またはスジ成分に異方性ピッチを
用いた場合その効果が顕著である。
Alternatively, the core-sheath-like seabird-shaped island component or the stripe-like dispersed stripe component can be made into fine carbon fibers with a fineness of 10 μm or less, which is difficult to achieve by ordinary spinning, so the obtained carbon fibers become fiber-reinforced carbon fibers. In particular, the effect is remarkable when anisotropic pitch is used for the island component or streak component.

上記した、高分子成分や等方性炭素による表面保護、補
強効果を期待する場合は、高分子成分の炭化収率は一般
に低く、また等方性炭素を与えるが、等方性炭素の比率
は低い方が高強度、高弾性率炭素繊維を得る上で有利で
あり、高分子化合物や等方性ピッチの複合比率は50%
以下が好ましく、30%以下がより好ましい。また上記
成分の複合比率は、余りに低いと製糸が困難となるため
、1%以上が好ましく、ざらに好ましくは5%以上、最
も好ましくは10%以上でおる。
When expecting the above-mentioned surface protection and reinforcing effects from the polymer component and isotropic carbon, the carbonization yield of the polymer component is generally low and isotropic carbon is produced, but the ratio of isotropic carbon is The lower the ratio, the more advantageous it is to obtain high-strength, high-modulus carbon fibers, and the composite ratio of polymer compounds and isotropic pitch is 50%.
It is preferably at most 30%, more preferably at most 30%. Further, if the composite ratio of the above components is too low, spinning becomes difficult, so it is preferably 1% or more, more preferably 5% or more, and most preferably 10% or more.

またスジ状に分散された成分は、径に対する長さの比が
小さすぎると、補強効果が得られないので、長ざ/径の
比は100以上が好ましく、300以上がより好ましい
。スジの長さを短くしすぎないためには、混練装置の段
数、数量、粘度等を適宜選択すれば良い。
Furthermore, if the ratio of the length to the diameter of the component dispersed in a stripe shape is too small, no reinforcing effect will be obtained, so the length/diameter ratio is preferably 100 or more, more preferably 300 or more. In order to prevent the length of the streaks from being too short, the number of stages, quantity, viscosity, etc. of the kneading device may be appropriately selected.

ピッチの製糸方法としては、通常溶融紡糸が用いられる
が、目的に応じて乾式、湿式、乾湿式などの紡糸方法も
用いることができる。
As a pitch spinning method, melt spinning is usually used, but depending on the purpose, dry spinning, wet spinning, dry-wetting spinning, and other spinning methods can also be used.

口金は、通常の同心円状複合や偏心ざぜた複合のものが
使用でき、また目的に応じて多層複合タイプも使用でき
る。
As for the base, a conventional concentric composite type or an eccentric composite type can be used, and a multilayer composite type can also be used depending on the purpose.

また、スジ状に分散させるには、通常の静止型混練装置
が分散の均一性、取扱い性、生産性の面で最も好ましい
。また分散後、口金から吐出させるまでの滞留時間や流
路の形状は、分散したスジが再び会合しない範囲とする
必要がある。
In addition, for dispersing in the form of streaks, a conventional static kneading device is most preferable in terms of uniformity of dispersion, ease of handling, and productivity. In addition, the residence time after dispersion until discharge from the nozzle and the shape of the flow path need to be within a range where the dispersed streaks do not come together again.

ピッチの溶融紡糸は、通常の加圧押出し、遠心紡糸、フ
ラッシュ紡糸等が採用できる。
For melt spinning the pitch, ordinary pressure extrusion, centrifugal spinning, flash spinning, etc. can be employed.

またピッチの引取方法および集束方法は、脆弱な糸に対
し、糸切れの原因になる様な負荷を与えない範囲で、ロ
ーラ、エアサッカー等による引取り、巻取り、トレイや
ネット上への積層などの通常の方法を採用しうる。
In addition, the method of taking the pitch and gathering the yarn is to take it with rollers, air suckers, etc., wind it up, and stack it on a tray or net, as long as it does not apply a load that may cause breakage to the fragile yarn. Ordinary methods such as

不融化処理は、たとえば酸素の存在下、通常空気中で2
50〜420’Cで酸化させる方法が適用できる。また
酸素としてオゾン、酸化窒素、酸化イオウなどの酸化性
の気体を使用する方法や、硝酸、過酸化水素水、過マン
ガン酸カリなどの酸化性の液体を使用する方法も可能で
あり、場合によっては、電子線架橋などの物理的手段で
も差支えない。
The infusibility treatment is carried out, for example, in the presence of oxygen, usually in air.
A method of oxidizing at 50 to 420'C can be applied. It is also possible to use oxidizing gases such as ozone, nitrogen oxide, and sulfur oxide as oxygen, or to use oxidizing liquids such as nitric acid, hydrogen peroxide, and potassium permanganate. Physical means such as electron beam crosslinking may also be used.

炭化処理は、たとえば不活性気体雰囲気中または真空中
で800〜1700’Cに加熱する方法があり、また黒
鉛化処理としては、たとえば不活性気体雰囲気中で17
00′C以上に加熱処理する方法がある。
Carbonization treatment includes heating to 800 to 1700'C in an inert gas atmosphere or vacuum, and graphitization treatment includes, for example, heating at 800 to 1700'C in an inert gas atmosphere.
There is a method of heat treatment above 00'C.

[実施例コ 実施例 1 コールタールにニッケル・モリブデン系触媒の存在下で
水素ガスを吹込み400℃で120分反応させた。得ら
れた水素化タールを1μのフィルターで;濾過し固形物
を除いた後350℃で蒸溜し水素化ピッチを1qだ。次
いで520’C117mmhで7分間熱処理しメソフェ
ーズピッチを得た。得られたメソフェーズピッチは軟化
点235℃、0133%、BI39%、異方性85%で
あった。
[Example Example 1 Hydrogen gas was blown into coal tar in the presence of a nickel-molybdenum catalyst, and the mixture was reacted at 400°C for 120 minutes. The obtained hydrogenated tar was filtered through a 1μ filter to remove solids, and then distilled at 350°C to yield 1q of hydrogenated pitch. Then, it was heat treated at 520'C117mmh for 7 minutes to obtain mesophase pitch. The obtained mesophase pitch had a softening point of 235° C., 0.133%, BI of 39%, and anisotropy of 85%.

得られたピッチを芯成分とし、鞘成分にはポリフェニレ
ンサルファイドを用いて、芯80%、鞘20%になる様
に、10Hの口金を用いて330°C1200m/mi
n テ複合紡糸シタ。
The obtained pitch was used as the core component, polyphenylene sulfide was used as the sheath component, and the core was 80% and the sheath 20%.
n Te composite spinning.

ピッチのみを用いてIOHの口金で紡糸した場合、ピッ
チ糸が脆弱なため糸切れしやすく、はとんど連続糸とし
ての取扱いはできなかったが、本実施例のピッチ糸は、
ハンドリングが可能であり、ポリマーによる補強効果が
見られた。
When spinning with an IOH spindle using only pitch, the pitch yarn was fragile and easily broke, so it could hardly be handled as a continuous yarn, but the pitch yarn of this example
Handling was possible, and the reinforcing effect of the polymer was observed.

得られたピッチ糸は、5.3%の次亜鉛素酸ナトリウム
水溶液中に90℃で5.5時間処理し、ポリフェニレン
サルファイドを不融化した。
The obtained pitch yarn was treated in a 5.3% aqueous solution of sodium hypozincate at 90° C. for 5.5 hours to infusible the polyphenylene sulfide.

ついで、空気中で50’Cから340’Cまで5°C/
minで昇温し、340’Cで15分間保持してピッチ
を不融化し、不融化糸を得た。
Then, 5°C/5°C in air from 50'C to 340'C.
The temperature was raised to 340'C for 15 minutes to infusible the pitch, and an infusible yarn was obtained.

得られた不融化糸を、窒素中で1500’Cおよび25
00’Cで焼成して、炭化糸、黒鉛化糸を得た。
The obtained infusible thread was heated at 1500'C and 25°C in nitrogen.
It was fired at 00'C to obtain carbonized yarn and graphitized yarn.

得られた炭化糸は、強度250kMmm2 、弾性率1
5 ton/min 、黒鉛化糸は、強度330kMm
m2、弾性率55 ton/minと良好な物性を示し
た。
The obtained carbonized yarn has a strength of 250 kmMmm2 and an elastic modulus of 1
5 ton/min, graphitized yarn has a strength of 330 kmm
m2 and elastic modulus of 55 ton/min, showing good physical properties.

また、不融化、焼成時のクラックは生じなかった。In addition, no cracks occurred during infusibility or firing.

実施例 2 実施例1で得られたメソフェーズピッチを用いて6島の
島成分とし、海成分にはフェノール樹脂を用いて、IO
Hの口金を用いて330’C,20Qm/minで複合
紡糸した。得られた複合繊維は直径14μ、島成分の径
が5μでおった。
Example 2 The mesophase pitch obtained in Example 1 was used as the island component of 6 islands, the sea component was made of phenolic resin, and the IO
Composite spinning was carried out at 330'C and 20Qm/min using a H nozzle. The obtained conjugate fiber had a diameter of 14 μm, and the diameter of the island component was 5 μm.

ピッチのみを用いて10Hの口金で紡糸した場合、ピッ
チ糸が脆弱なため糸切れしやすく、はとんど連続糸とし
ての取扱いはできなかったが、本実施例のピッチ糸は、
ハンドリングが可能でありN高分子による補強効果が見
られた。
When spinning with a 10H spindle using only pitch, the pitch yarn was fragile and easily broke, and could hardly be handled as a continuous yarn. However, the pitch yarn of this example
Handling was possible, and the reinforcing effect of the N polymer was observed.

得られたピッチ糸は、ホルマリン中で25°Cで30時
間処理し、フェノール樹脂を不融化した。
The obtained pitch yarn was treated in formalin at 25°C for 30 hours to infusible the phenolic resin.

ついで、空気中で50’Cから340℃まで5℃/mi
nで昇湿し、340℃で15分間保持してピッチ成分を
不融化し、不融化糸を得た。
Then, 5°C/mi from 50'C to 340°C in air.
The pitch component was infusible by raising the humidity at 340° C. for 15 minutes to obtain an infusible yarn.

得られた不融化糸を、窒素中で1500℃および250
0’Cで焼成して、炭化糸、黒鉛化糸を得た。
The obtained infusible yarn was heated at 1500°C and 250°C in nitrogen.
It was fired at 0'C to obtain carbonized yarn and graphitized yarn.

得られた炭化糸は、強度260kMmm2 、弾性率1
7 ton/mm2 、黒鉛化糸は、強度350ka/
mm2、弾性率60 ton/mm2と良好な物性を示
した。
The obtained carbonized yarn has a strength of 260 kmMmm2 and an elastic modulus of 1
7 ton/mm2, graphitized yarn has a strength of 350ka/
mm2 and elastic modulus of 60 ton/mm2, showing good physical properties.

また、不融化、焼成時のクラックは生じなかった。In addition, no cracks occurred during infusibility or firing.

実施例 3 実施例1のポリフェニレンザルファイドの代わりに、分
子量巨万の超高分子量ポリエチレン92%と実施例1の
ピッチ8%の混合物を用い、実施例1と同様に複合繊維
を得た。得られたピッチ糸に電子線を10メガラド照射
してポリエチレンを架橋不融化した。
Example 3 Instead of the polyphenylene sulfide of Example 1, a mixture of 92% ultra-high molecular weight polyethylene with a large molecular weight and 8% of the pitch of Example 1 was used to obtain a composite fiber in the same manner as in Example 1. The obtained pitch yarn was irradiated with an electron beam of 10 megarads to crosslink and infusible the polyethylene.

その後空気中で50’Cから340’Cまで10’C/
minで昇温し、340’Cで15分間保持してピッチ
成分を酸化して不融化し、実施例1と同様に焼成炭化し
、黒鉛化糸を得た。各々強度250kcI/mm2、弾
性率15 ton/mm2 、強度330 kc+/m
m2、弾性率55 ton/mm2と良好な物性を示し
た。
Then in air from 50'C to 340'C 10'C/
The temperature was raised at 340'C for 15 minutes to oxidize the pitch component and make it infusible, and then fired and carbonized in the same manner as in Example 1 to obtain a graphitized yarn. Each strength: 250 kcI/mm2, elastic modulus: 15 ton/mm2, strength: 330 kc+/m
m2 and elastic modulus of 55 ton/mm2, showing good physical properties.

また電子線処理により短時間で生産性良く不融化できた
と共に、ピッチ糸のハンドリング性も良好であった。
In addition, the electron beam treatment was able to make the yarn infusible in a short period of time with good productivity, and the pitch yarn had good handling properties.

実施例 4 実施例1で得られたピッチを95%、ポリフェニレンサ
ルファイドを5%の割合で粉砕混合し、10段の静止型
混練装置(東しエンジニアリンタ製〉に供給し、ピッチ
中にポリフェニレンサルファイドを均一なスジ状に分散
した。混練装置の下流に設けた直径0.2mm、孔長Q
、3mmの100H口金から、330℃、600m/m
111 テ紡糸し、直径11μのピッチ糸を得た。
Example 4 The pitch obtained in Example 1 was pulverized and mixed at a ratio of 95% and polyphenylene sulfide at a ratio of 5%, and the mixture was supplied to a 10-stage static kneading device (manufactured by Toshii Engineering Co., Ltd.), and polyphenylene sulfide was mixed in the pitch. was dispersed in a uniform stripe shape.A hole with a diameter of 0.2 mm and a hole length of Q was provided downstream of the kneading device.
, 330℃, 600m/m from 3mm 100H base
111 TE was spun to obtain a pitch yarn with a diameter of 11 μm.

得られたピッチ糸と、ピッチ単独糸、ピッチとポリマー
を粉砕混合して静止型混練装置を使用しないで紡糸した
糸の強度を比較した結果を表1に示した。
Table 1 shows the results of comparing the strength of the obtained pitch yarn, a single pitch yarn, and a yarn prepared by grinding and mixing pitch and polymer and spinning without using a static kneading device.

また静止型混練装置を使用しない糸は強度の変動が大き
く、均一な補強効果が得られなかった。
In addition, the strength of yarns that did not use a static kneading device varied greatly, and a uniform reinforcing effect could not be obtained.

ついで、空気中で50’Cから340℃まで0゜5°C
/minで昇温し、340’Cで15分間保持して不融
化し、不融化糸を得た。
Then, 0°5°C from 50'C to 340°C in air.
The temperature was raised at 340'C/min for 15 minutes to infusible, and an infusible thread was obtained.

得られた不融化糸を、窒素中で1500’Cおよび25
00℃で焼成して、炭化糸、黒鉛化糸を得た。
The obtained infusible thread was heated at 1500'C and 25°C in nitrogen.
It was fired at 00°C to obtain carbonized thread and graphitized thread.

強度、弾性率の結果を表1に示した。The results of strength and elastic modulus are shown in Table 1.

表1 [発明の効果1 本発明のピッチ繊維は、表面を、高分子化合物で覆うこ
とにより、脆弱なピッチを保護し、製糸、不融化、焼成
時のハンドリング性を向上できる。
Table 1 Effect of the Invention 1 The surface of the pitch fiber of the present invention is covered with a polymer compound, thereby protecting the fragile pitch and improving handling properties during spinning, infusibility, and firing.

また芯に高分子化合物を入れることにより、極めて低伸
度のピッチ繊維を補強し、上記ハンドリング性の向上が
期待できる。
Furthermore, by adding a polymer compound to the core, pitch fibers with extremely low elongation can be reinforced, and the above-mentioned handling properties can be expected to be improved.

本発明のピッチ繊維を炭化して炭素繊維を得た時、芯鞘
海島の複合構造なのでクラックを生じない。鞘海成分に
、等方性ピッチ、高分子化合物成分などの等方性物質を
、島成分に異方性ピッチ成分を用いた場合、表面が等方
性炭素となり、表面欠陥の影響を受けにくく、高強度、
高弾性率の炭素繊維が得られる。
When the pitch fiber of the present invention is carbonized to obtain carbon fiber, cracks do not occur because of the composite structure of a core-sheath and sea-island structure. When an isotropic substance such as isotropic pitch or a polymer compound component is used for the sheath component and an anisotropic pitch component is used for the island component, the surface becomes isotropic carbon and is less susceptible to surface defects. , high strength,
Carbon fibers with high elastic modulus are obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜第7図は発明に係るピッチ繊維の1例を示すモデ
ル断面図でおる。 特許出願人  東 し 株 式 会 社第112   
      第2I2I         第3I2I
第4I121          第5図      
  第6図第7図
1 to 7 are model cross-sectional views showing one example of the pitch fiber according to the invention. Patent applicant Toshi Co., Ltd. No. 112
2nd I2I 3rd I2I
4I121 Figure 5
Figure 6 Figure 7

Claims (4)

【特許請求の範囲】[Claims] (1)炭化収率が5%以上である高分子化合物と、ピッ
チ成分とが芯鞘複合構造を構成していることを特徴とす
るピッチ繊維。
(1) A pitch fiber characterized in that a polymer compound having a carbonization yield of 5% or more and a pitch component constitute a core-sheath composite structure.
(2)芯鞘複合構造が海島状である請求項1記載のピッ
チ系繊維。
(2) The pitch-based fiber according to claim 1, wherein the core-sheath composite structure has a sea-island shape.
(3)炭化収率が5%以上である高分子化合物(a)ま
たは、ピッチと高分子化合物の混合物(b)をA成分と
し、ピッチ(c)または、高分子化合物とピッチの混合
物(d)をB成分として複合紡糸することを特徴とする
ピッチ繊維の製法。
(3) The polymer compound (a) or the mixture of pitch and polymer compound (b) having a carbonization yield of 5% or more is used as the component A, and the pitch (c) or the mixture of polymer compound and pitch (d ) as component B and performs composite spinning.
(4)複合紡糸が、静止型混練装置を用いて行なわれる
請求項3記載ピッチ繊維の製法。
(4) The method for producing pitch fibers according to claim 3, wherein the composite spinning is performed using a static kneading device.
JP11400588A 1988-05-10 1988-05-10 Pitch fiber and production thereof Pending JPH01282312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11400588A JPH01282312A (en) 1988-05-10 1988-05-10 Pitch fiber and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11400588A JPH01282312A (en) 1988-05-10 1988-05-10 Pitch fiber and production thereof

Publications (1)

Publication Number Publication Date
JPH01282312A true JPH01282312A (en) 1989-11-14

Family

ID=14626672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11400588A Pending JPH01282312A (en) 1988-05-10 1988-05-10 Pitch fiber and production thereof

Country Status (1)

Country Link
JP (1) JPH01282312A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03152218A (en) * 1989-11-10 1991-06-28 Agency Of Ind Science & Technol Pitch conjugate carbon fiber and production thereof
JPH04136222A (en) * 1990-09-26 1992-05-11 Agency Of Ind Science & Technol Method for producing graphite fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03152218A (en) * 1989-11-10 1991-06-28 Agency Of Ind Science & Technol Pitch conjugate carbon fiber and production thereof
JPH04136222A (en) * 1990-09-26 1992-05-11 Agency Of Ind Science & Technol Method for producing graphite fiber

Similar Documents

Publication Publication Date Title
US5004511A (en) Process for producing non-woven fabrics of carbon fibers
JPH01282312A (en) Pitch fiber and production thereof
US4356158A (en) Process for producing carbon fibers
JPH01282325A (en) Pitch-based carbon fibersheet and production thereof
JPH0737687B2 (en) Pitch-based carbon fiber manufacturing method
JPH0545685B2 (en)
JPS62110923A (en) Infusibilization of pitch fiber
JPH06102852B2 (en) Pitch-based carbon fiber manufacturing method
JP3531194B2 (en) Carbon fiber aggregate
JPH01282346A (en) Production of pitch-based carbon fiber
JPH01282310A (en) Pitch yarn
JPH01282324A (en) Production of pitch-based carbon fiber
JPS58220821A (en) Acrylic carbon fiber bundle with high strength and elongation and its production
JP2834779B2 (en) Manufacturing method of pitch fiber
JPH0135091B2 (en)
JPH01282322A (en) Calcination of pitch fiber
JPH01282321A (en) Infusibilization of pitch-based carbon fiber
JPH0413450B2 (en)
JPH01282317A (en) Spinning of mesophase pitch
JPH042689B2 (en)
JPH05287617A (en) Production of pitch carbon fiber
JPH0380888B2 (en)
JP3644271B2 (en) Method for producing pitch-based carbon fiber
JPH01282328A (en) Infusibilization of pitch-based material
JP3272718B2 (en) Method for producing pitch-based carbon fiber