JPH0929391A - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JPH0929391A
JPH0929391A JP18936695A JP18936695A JPH0929391A JP H0929391 A JPH0929391 A JP H0929391A JP 18936695 A JP18936695 A JP 18936695A JP 18936695 A JP18936695 A JP 18936695A JP H0929391 A JPH0929391 A JP H0929391A
Authority
JP
Japan
Prior art keywords
slab
stainless steel
continuous casting
thickness
sus304 stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18936695A
Other languages
Japanese (ja)
Other versions
JP3161293B2 (en
Inventor
Hideo Mizukami
英夫 水上
Akihiro Yamanaka
章裕 山中
Masayuki Kawamoto
正幸 川本
Fumio Kawahigashi
文雄 川東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP18936695A priority Critical patent/JP3161293B2/en
Publication of JPH0929391A publication Critical patent/JPH0929391A/en
Application granted granted Critical
Publication of JP3161293B2 publication Critical patent/JP3161293B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a continuous casting method for SUS304 stainless steel containing B which is excellent in the thermal and mechanical properties in high temperature range. SOLUTION: In a continuous casting method for SUS304 stainless steel slab containing 0.4-2.00 mass % B which is used for a cell of a spent fuel rack of a nuclear power station, the casting speed is 0.4-0.8m/min, the interval in the casting direction of a support roll is <=300mm, and the solid phase ratio of the center part in the thickness of the slab in the final position of the secondary cooling zone is <=0.2. The slab free from any surface and internal defects can be manufactured without generating the breakout.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特定範囲でB(ボ
ロン)を含有する特定用途のSUS304ステンレス鋼
鋳片の表面および内部欠陥の発生などを防止するための
連続鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method for preventing the generation of surface and internal defects of SUS304 stainless steel slab containing B (boron) in a specific range for a specific purpose.

【0002】[0002]

【従来の技術】原子力発電所の使用済み燃料ラックのセ
ルに用いるB含有SUS304ステンレス鋼鋳片の連続
鋳造化を実現し、工程省略による省エネルギー化、高歩
留まり化による生産性の向上および製品の欠陥発生を抑
制することは、未だ達成されていない。
2. Description of the Related Art Continuous casting of B-containing SUS304 stainless steel slabs used in cells of spent fuel racks of nuclear power plants has been realized, energy saving by omitting steps, productivity improvement by high yield, and product defects. Controlling outbreaks has not yet been achieved.

【0003】通常、B含有SUS304ステンレス鋼鋳
片の製造は、インゴットの製造およびそれに続く分塊工
程を経て行われている。インゴット製造法は、SUS3
04ステンレス溶鋼を鋳鉄製鋳型に鋳込み、鋳型内で完
全に凝固を完了させ、鋼塊を製造するプロセスである。
このインゴットを作業可能な温度にまで数日かけて冷却
した後、偏析が著しく介在物の多いインゴットの上端部
と下端部を切断する。
[0003] Usually, the production of B-containing SUS304 stainless steel slab is carried out through the production of an ingot and the subsequent slabbing process. Ingot manufacturing method is SUS3
This is a process of casting molten stainless steel 04 into a cast iron mold and completely completing solidification in the mold to produce a steel ingot.
After cooling this ingot to a workable temperature for several days, the upper end and the lower end of the ingot having a large amount of inclusions are cut.

【0004】このとき、インゴットの歩留まりは90%
程度にまで低下する。熱延工程の前にインゴット表面の
手入れを行い、その後インゴットを加熱炉内に装入して
温度を約1000℃にまで昇温し、分塊圧延を施す。
At this time, the yield of the ingot is 90%.
To a degree. Before the hot rolling step, the surface of the ingot is cared for, then the ingot is charged into a heating furnace, the temperature is raised to about 1000 ° C., and slab rolling is performed.

【0005】インゴット製造用の鋳鉄製鋳型の大きさに
は限界があるため、溶製したSUS304ステンレス溶
鋼を数個の鋳型に分けて造塊しなければならない。この
ように、インゴット製造法では鋳型内での冷却に工数が
かかるとともに、インゴットの歩留まりが高くなく、冷
却後の鋼塊を再加熱するため多量のエネルギーが必要で
あり、生産性の向上および省エネルギーとは反してい
る。
Since the size of the cast iron mold for producing the ingot is limited, the melted SUS304 stainless steel melt must be divided into several molds and agglomerated. As described above, in the ingot manufacturing method, it takes man-hours for cooling in the mold, the yield of the ingot is not high, and a large amount of energy is required to reheat the steel ingot after cooling, which improves productivity and saves energy. Contrary to.

【0006】B含有SUS304ステンレス鋼鋳片の製
造を省エネルギーを図りながら生産性よく行うために
は、連続鋳造化を実現する必要があるが、これまで連続
鋳造化は困難であった。これは、連続鋳造時に発生する
鋳型内で鋳片の表面割れ、ブレークアウト、サポートロ
ール間での鋳片のバルジング、および鋳片中央部におけ
る内部割れの発生などの困難な問題が生じるためであ
る。
In order to manufacture the B-containing SUS304 stainless steel slab with high productivity while conserving energy, it is necessary to realize continuous casting, but until now, continuous casting has been difficult. This is because the surface cracks of the slab in the mold that occur during continuous casting, breakout, bulging of the slab between the support rolls, and the occurrence of internal cracks at the center of the slab cause difficult problems. .

【0007】連続鋳造条件を決定するためには、連続鋳
造鋳片を得ようとする鋼の凝固温度域を含む高温度域に
おける熱的・機械的性質を把握し、鋳造速度、サポート
ロールの鋳造方向における間隔(以下、サポートロール
間隔という)および二次冷却帯最終位置を通過する鋳片
中央部の固相率を決定する必要がある。鋳造速度は鋳型
内の初期凝固シェルの有する強度、すなわち初期凝固シ
ェル厚みを支配し、二次冷却帯最終位置を通過する鋳片
中央部の固相率およびサポートロール間隔は鋳片のバル
ジング量を支配するもので、鋳片の表面および内部品質
を決定する。
In order to determine the continuous casting conditions, the thermal and mechanical properties in the high temperature range including the solidification temperature range of the steel for which the continuous cast slab is to be obtained are grasped, the casting speed and the casting of the support roll are performed. It is necessary to determine the interval in the direction (hereinafter referred to as the support roll interval) and the solid fraction of the central portion of the slab that passes through the final position of the secondary cooling zone. The casting speed controls the strength of the initial solidified shell in the mold, that is, the thickness of the initial solidified shell. It governs and determines the surface and internal quality of the slab.

【0008】しかしながら、B含有SUS304ステン
レス鋼の固液共存域を含む高温度域における熱的・機械
的性質が、これまで詳細には明らかとなっていなかった
ため上記の連続鋳造条件の決定は不可能であった。
However, since the thermal and mechanical properties of B-containing SUS304 stainless steel in the high temperature region including the solid-liquid coexisting region have not been clarified in detail up to now, it is impossible to determine the above continuous casting conditions. Met.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、0.
4〜2.0mass%B含有SUS304ステンレス鋼の固
液共存域を含む高温度域における熱的・機械的性質、さ
らには鋳片の表面および内部品質の良好な連続鋳造条件
の基準を明らかにして、原子力発電所の使用済み燃料ラ
ックのセルに用いる上記ステンレス鋼鋳片の連続鋳造方
法を提供することにある。
The object of the present invention is to
Clarifying the criteria of continuous casting conditions with good thermal and mechanical properties of SUS304 stainless steel containing 4 to 2.0 mass% B in high temperature region including solid-liquid coexistence region, as well as surface and internal quality of slab. The present invention provides a continuous casting method of the above-mentioned stainless steel slab for use in a cell of a spent fuel rack of a nuclear power plant.

【0010】[0010]

【課題を解決するための手段】本発明の要旨は、次の連
続鋳造方法にある。
The gist of the present invention resides in the following continuous casting method.

【0011】原子力発電所の使用済み燃料ラックのセル
に用いる0.4〜2.0mass%B含有SUS304ステ
ンレス鋼鋳片の連続鋳造方法であって、鋳造速度を0.
4〜0.8m/min 、サポートロール間隔を300mm以
下、および二次冷却帯の最終位置における鋳片の厚み中
央部の固相率を0.2以下として鋳造することを特徴と
する連続鋳造方法。
A continuous casting method of 0.4 to 2.0 mass% B-containing SUS304 stainless steel slab for use in a cell of a spent fuel rack of a nuclear power plant, with a casting speed of 0.
4 to 0.8 m / min, a support roll interval of 300 mm or less, and a solid casting rate of 0.2 or less in the central portion of the thickness of the slab at the final position of the secondary cooling zone. .

【0012】ここでいう「鋳片の厚み中央部」とは、鋳
片の鋳造方向と垂直な断面における中央部を指し、凝固
が遅れる部分である。
The term "central part of the thickness of the slab" as used herein means a central part in a cross section perpendicular to the casting direction of the slab, and is a part where solidification is delayed.

【0013】「固相率」は次の定義で示されるものであ
る。
"Solid phase fraction" is defined by the following definition.

【0014】固相率:鋳片表面から厚み中央部に向かっ
て成長したデンドライトの長さと鋳片厚みとの比。
Solid phase ratio: The ratio of the length of dendrite grown from the surface of the slab toward the center of the thickness to the thickness of the slab.

【0015】完全液体状態を固相率0とする。鋳片は四
方向から冷却され、鋳片表面から成長したデンドライト
の先端が鋳片厚みの中央部に到達したときに完全凝固状
態となり、このときを固相率1.0とする。通常0.9
9程度以上で完全凝固状態とされる。
The solid state is set to 0 in the completely liquid state. The slab is cooled in four directions, and when the tip of the dendrite grown from the surface of the slab reaches the central part of the thickness of the slab, it is in a completely solidified state, and the solid fraction is 1.0. Usually 0.9
A solidified state is obtained when the degree is 9 or more.

【0016】サポートロール間隔の望ましい値は250
mm、望ましい下限は150mm程度、二次冷却帯の最終位
置における上記固相率の望ましい下限は、0.05程度
である。
A desirable value for the support roll spacing is 250
mm, a desirable lower limit is about 150 mm, and a desirable lower limit of the solid fraction at the final position of the secondary cooling zone is about 0.05.

【0017】[0017]

【発明の実施の形態】本発明の連続鋳造方法において対
象となる鋼は、原子力発電所の使用済み燃料ラックのセ
ルに用いる0.4〜2.0mass%B含有SUS304ス
テンレス鋼である。このような範囲でBを含有するSU
S304ステンレス鋼では、その凝固過程における凝固
組織の晶出形態の特徴は、初晶としてデンドライト形状
をしたδフェライト相が晶出し、このデンドライトの間
隙に(Fe,Cr)B型の共晶組織が晶出することであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The steel to be used in the continuous casting method of the present invention is 0.4 to 2.0 mass% B-containing SUS304 stainless steel used in the cells of a spent fuel rack of a nuclear power plant. SU containing B in such a range
In the S304 stainless steel, the characteristic of the crystallization morphology of the solidification structure in the solidification process is that a δ ferrite phase having a dendrite shape as a primary crystal is crystallized and a (Fe, Cr) B type eutectic structure is formed in the dendrite gap. It is to crystallize.

【0018】B含有量が0.4〜2.0mass%の範囲に
おけるSUS304ステンレス鋼の固相線温度は約12
70Kである。B含有量の増加とともに液相線温度が低
下するため、液相線温度と固相線温度の差である固液共
存温度範囲はB含有量の増加につれて小さくなる。固液
共存温度範囲は、B含有量が0.4mass%の場合では1
50Kであり、1.2mass%の場合では70Kである。
しかしB含有量が2.0mass%の場合には、液相から直
接(Fe,Cr)B型の共晶組織が晶出するため、固液
共存温度範囲はない。
The solidus temperature of SUS304 stainless steel when the B content is 0.4 to 2.0 mass% is about 12.
It is 70K. Since the liquidus temperature decreases as the B content increases, the solid-liquid coexistence temperature range, which is the difference between the liquidus temperature and the solidus temperature, decreases as the B content increases. The solid-liquid coexistence temperature range is 1 when the B content is 0.4 mass%.
It is 50K and 70K in the case of 1.2 mass%.
However, when the B content is 2.0 mass%, there is no solid-liquid coexistence temperature range because the (Fe, Cr) B type eutectic structure is crystallized directly from the liquid phase.

【0019】比較としてSUS304Lステンレス鋼を
挙げると、その液相線温度は1463K、固相線温度は
1415K、固液共存温度範囲は48Kである。このよ
うに、上記B含有SUS304ステンレス鋼の固相線温
度は、SUS304Lステンレス鋼のそれよりも約14
5K低くなっている。
Taking SUS304L stainless steel for comparison, its liquidus temperature is 1463K, solidus temperature is 1415K, and solid-liquid coexistence temperature range is 48K. As described above, the solidus temperature of the B-containing SUS304 stainless steel is about 14 higher than that of SUS304L stainless steel.
It is 5K lower.

【0020】このような鋼に特有の固液共存温度範囲お
よび固相線温度は、凝固初期に形成されるシェル強度、
すなわち高温における抗張力に影響を与える。
The solid-liquid coexistence temperature range and solidus temperature peculiar to such a steel are determined by the strength of the shell formed in the initial stage of solidification,
That is, it affects the tensile strength at high temperature.

【0021】本発明の連続鋳造方法は、鋳造条件を鋳造
速度で0.4〜0.8m/min 、二次冷却帯のサポートロ
ール間隔で300mm以下、かつ二次冷却帯の最終位置を
通過する鋳片の厚み中央部の固相率で0.2以下とする
ものである。
According to the continuous casting method of the present invention, the casting conditions are 0.4 to 0.8 m / min at the casting speed, 300 mm or less between the support rolls of the secondary cooling zone, and the final position of the secondary cooling zone is passed. The solid fraction at the center of the thickness of the cast slab is 0.2 or less.

【0022】本発明方法を実施するための連続鋳造装置
のタイプとして望ましいのは、垂直曲げ型(曲げ半径5
m程度)である。サポートロールの配置は、鋳型直下2
00mmから10m の範囲内で、鋳造方向において250
mm間隔で複数段とするのが望ましい。このサポートロー
ル間隔の望ましい下限は150mm程度、サポートロール
の望ましい直径は150mm程度である。二次冷却帯の位
置は、鋳型直下100mmから5m の範囲内のサポートロ
ールの間隙とするのが望ましい。
A preferred type of continuous casting apparatus for carrying out the method of the present invention is a vertical bending die (bending radius 5
m). Arrangement of the support roll is 2 directly under the mold.
250 mm in the casting direction within the range of 00 mm to 10 m
It is desirable to have multiple steps at mm intervals. The desirable lower limit of this support roll interval is about 150 mm, and the desirable diameter of the support roll is about 150 mm. The position of the secondary cooling zone is preferably within the range of 100 mm to 5 m immediately below the mold and is the gap between the support rolls.

【0023】鋳型内でブレークアウトの発生をなくして
連続鋳造化を達成するためには、鋳型内で形成される初
期凝固シェル厚みを15mm以上30mm以下として、鋳型
下方への引抜力に耐え得る強度を有する厚みとする必要
がある。このためには、前記B含有SUS304ステン
レス鋼の固液共存温度範囲及び固相線温度を考慮し、鋳
造速度は0.4〜0.8m/min とする必要がある。
In order to eliminate breakout in the mold and achieve continuous casting, the thickness of the initial solidified shell formed in the mold is set to 15 mm or more and 30 mm or less, and the strength to withstand the pulling force downward to the mold. It is necessary to have a thickness having For this purpose, the casting speed must be 0.4 to 0.8 m / min in consideration of the solid-liquid coexistence temperature range and the solidus temperature of the B-containing SUS304 stainless steel.

【0024】このときの望ましいタンディッシュ内溶鋼
過熱度は20℃程度、望ましい鋳型の冷却能は150〜
400 kcal/m2s 、望ましい二次冷却水は100〜25
0リットル/min、望ましい鋳型振動幅は3〜6m 、望ま
しい鋳型振動周期は40〜100 cpmである。
At this time, the desirable superheat degree of molten steel in the tundish is about 20 ° C., and the desirable mold cooling capacity is 150 to
400 kcal / m 2 s, desirable secondary cooling water is 100-25
0 liter / min, desirable mold vibration width is 3 to 6 m, and desirable mold vibration period is 40 to 100 cpm.

【0025】上記の各条件下で、鋳造速度が0.4m/mi
n 未満では鋳型内の初期凝固シェル厚みが30mmよりも
大きくなり、二次冷却帯の最終位置における鋳片厚み中
央部の固相率が0.2とならない。一方、0.8m/min
を超えると鋳型内の初期凝固シェル厚みが15mmよりも
小さくなり、このためシェルの強度が弱く、ブレークア
ウトが発生する。
Under each of the above conditions, the casting speed was 0.4 m / mi.
If it is less than n, the thickness of the initial solidified shell in the mold becomes larger than 30 mm, and the solid fraction in the central portion of the thickness of the slab at the final position of the secondary cooling zone does not become 0.2. On the other hand, 0.8m / min
If it exceeds, the thickness of the initially solidified shell in the mold becomes smaller than 15 mm, so that the strength of the shell is weak and breakout occurs.

【0026】前記B含有SUS304ステンレス鋼は共
晶を伴う組織形態をしているため、固液界面の形態はほ
ぼ平滑となっている。このため、連続鋳造鋳片の厚み中
央部において固相率1となるまでは、鋳片はその厚み方
向の強度を持たない。このとき、二次冷却帯のサポート
ロールの配置が最適でなく、すなわちサポートロール間
隔が300mmを超えるとバルジングが発生し、鋳片の厚
み中央部に内部割れが発生する。よって、バルジングの
発生を抑制させるため、サポートロール間隔は300mm
以下とした。
Since the B-containing SUS304 stainless steel has a structure morphology accompanied by eutectic, the morphology of the solid-liquid interface is almost smooth. Therefore, the slab does not have strength in the thickness direction until the solid phase ratio becomes 1 at the central portion of the thickness of the continuously cast slab. At this time, the arrangement of the support rolls in the secondary cooling zone is not optimal, that is, when the support roll interval exceeds 300 mm, bulging occurs and internal cracking occurs in the thickness central portion of the cast slab. Therefore, the support roll interval is 300 mm to suppress the occurrence of bulging.
It was as follows.

【0027】さらに、鋳片の厚み中央部のポロシティー
発生を防止するためには、二次冷却帯の最終位置におけ
る鋳片の厚み中央部の固相率を0.2以下として、鋳片
中央部近傍に残存する液相による鋳片の復熱を抑制する
必要がある。
Further, in order to prevent the porosity from being generated in the central portion of the thickness of the slab, the solid fraction of the central portion of the thickness of the slab at the final position of the secondary cooling zone is set to 0.2 or less and the central portion of the slab is controlled. It is necessary to suppress the reheat of the slab due to the liquid phase remaining near the part.

【0028】上記固相率が0.2を超えると、凝固収縮
にともなう溶鋼流動が困難となり、ポロシティーが発生
する。固相率の望ましい下限は0.05程度である。固
相率が0.05程度より小さくなると、最終凝固位置が
二次冷却帯の最終位置から2m 以上離れるからである。
If the solid phase ratio exceeds 0.2, it becomes difficult for the molten steel to flow due to solidification shrinkage, and porosity occurs. A desirable lower limit of the solid phase ratio is about 0.05. This is because when the solid fraction is smaller than about 0.05, the final solidification position is separated from the final position of the secondary cooling zone by 2 m or more.

【0029】[0029]

【実施例】まず、連続鋳造実験に先立ち、前記B含有S
US304ステンレス鋼および比較例としてSUS30
4Lステンレス鋼の液相線温度、固相線温度の測定を示
差熱分析により行った。表1にその結果を示す。
Example First, prior to the continuous casting experiment, the B-containing S
US304 stainless steel and SUS30 as a comparative example
The liquidus temperature and solidus temperature of 4 L stainless steel were measured by differential thermal analysis. The results are shown in Table 1.

【0030】[0030]

【表1】 [Table 1]

【0031】さらに、直径10mm、長さ100mmの試験
片を用いて、凝固過程における測定も可能な高温引張試
験機を用いて、鋳片の凝固シェルの強度を支配する抗張
力を測定した。図1にその結果を示す。
Further, a test piece having a diameter of 10 mm and a length of 100 mm was used to measure the tensile strength which governs the strength of the solidified shell of the cast piece by using a high temperature tensile tester capable of measuring in the solidification process. The result is shown in FIG.

【0032】図1は上記試験片の抗張力と温度との関係
を示す図である。図示するように、前記B含有SUS3
04ステンレス鋼の抗張力は固相線温度直上で極めて小
さく、固相線温度で急激に大きくなる。これに対して、
SUS304Lステンレス鋼の抗張力は固相率0.7で
発現し、温度の低下とともに抗張力は増大し、固相線温
度において抗張力は約5MPa となる。
FIG. 1 is a graph showing the relationship between the tensile strength of the test piece and the temperature. As shown, the B-containing SUS3
The tensile strength of 04 stainless steel is extremely small just above the solidus temperature, and rapidly increases at the solidus temperature. On the contrary,
The tensile strength of SUS304L stainless steel appears at a solid phase ratio of 0.7, and the tensile strength increases with a decrease in temperature, and the tensile strength becomes about 5 MPa at the solidus temperature.

【0033】このように、共晶凝固組織を伴う前記B含
有SUS304ステンレス鋼と通常のデンドライト組織
を有するSUS304Lステンレス鋼との抗張力の発現
挙動が、大きく異なることが明らかである。
As described above, it is clear that the tensile strength development behavior of the B-containing SUS304 stainless steel having a eutectic solidification structure and the SUS304L stainless steel having a normal dendrite structure are significantly different.

【0034】次に、上記B含有SUS304ステンレス
鋼の熱的・機械的物性値の測定結果に基づき、連続鋳造
実験を種々の条件下で行った。表2に実験条件を示す。
Next, continuous casting experiments were conducted under various conditions based on the measurement results of the thermal and mechanical properties of the B-containing SUS304 stainless steel. Table 2 shows the experimental conditions.

【0035】[0035]

【表2】 [Table 2]

【0036】B含有量は0.4〜2.0mass%、鋳造速
度は0.2〜1.2m/min 、サポートロール間隔は50
〜400mm、二次冷却帯最終位置における鋳片厚み中央
部の固相率は0.1〜0.8でそれぞれ変化させ、鋳片
の欠陥発生状況を調査した。
The B content is 0.4 to 2.0 mass%, the casting speed is 0.2 to 1.2 m / min, and the support roll interval is 50.
The solid phase ratio in the central portion of the thickness of the slab at the final position of the secondary cooling zone was 400 mm to 400 mm, and the solid fraction of the slab was varied from 0.1 to 0.8, and the defect occurrence state of the slab was investigated.

【0037】表3に結果をまとめて示す。The results are summarized in Table 3.

【0038】[0038]

【表3】 [Table 3]

【0039】表3に示すように、鋳造速度が0.2m/mi
n および1.2m/min の時、いずれのB含有量の場合も
連続鋳造鋳型内でブレークアウトまたは鋳片表面に表面
割れが発生し、連続鋳造が不可能であった。もしくは良
好な表面性状の鋳片が得られなかった。
As shown in Table 3, the casting speed was 0.2 m / mi.
At n and 1.2 m / min, in both cases of B content, breakout or surface cracks occurred on the surface of the slab in the continuous casting mold, making continuous casting impossible. Alternatively, a slab with good surface properties could not be obtained.

【0040】サポートロール間隔を400mmとすると、
B含有量に依らず鋳片厚み中央部近傍に内部割れが発生
した。または、サポートロール間で鋳片にバルジングが
発生した。
When the support roll interval is 400 mm,
Internal cracks were generated in the vicinity of the center of the thickness of the slab regardless of the B content. Alternatively, bulging occurred on the slab between the support rolls.

【0041】二次冷却帯最終位置における鋳片厚み中央
部の固相率が0.3の場合は、鋳片中央部にポロシティ
ー起因の内部割れが発生した。
When the solid fraction in the central portion of the thickness of the slab at the final position of the secondary cooling zone was 0.3, internal cracking due to porosity occurred in the central portion of the slab.

【0042】以上の結果から、鋳造条件として鋳造速度
を0.4〜0.8m/min 、サポートロール間隔を300
mm以下、さらに二次冷却帯の最終位置を通過する鋳片の
中心部の固相率を0.2以下とすると、0.4〜2.0
mass%B含有SUS304ステンレス鋼の連続鋳造鋳片
の製造が可能となることが明らかである。
From the above results, as the casting conditions, the casting speed is 0.4 to 0.8 m / min and the support roll interval is 300.
mm or less, and if the solid fraction of the central portion of the slab passing through the final position of the secondary cooling zone is 0.2 or less, 0.4 to 2.0
It is apparent that it becomes possible to manufacture continuously cast slabs of SUS304 stainless steel containing mass% B.

【0043】[0043]

【発明の効果】本発明方法によれば、ブレークアウトを
発生させることなく、表面および内部欠陥のない0.4
〜2.0mass%B含有SUS304ステンレス鋼の連続
鋳造鋳片を製造することができる。
According to the method of the present invention, 0.4 without surface and internal defects without causing breakout.
It is possible to manufacture continuously cast slabs of SUS304 stainless steel containing 2.0 mass% B.

【図面の簡単な説明】[Brief description of drawings]

【図1】B含有SUS304ステンレス鋼およびSUS
304Lステンレス鋼の抗張力と温度との関係を示す図
である。
FIG. 1 B-containing SUS304 stainless steel and SUS
It is a figure which shows the relationship between the tensile strength of 304L stainless steel, and temperature.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G21F 1/12 G21F 1/12 (72)発明者 川東 文雄 大阪府大阪市中央区北浜4丁目5番33号住 友金属工業株式会社内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G21F 1/12 G21F 1/12 (72) Inventor Fumio Kawato 4-5 Kitahama, Chuo-ku, Osaka-shi, Osaka No. 33 Sumitomo Metal Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】原子力発電所の使用済み燃料ラックのセル
に用いる0.4〜2.0mass%B含有SUS304ステ
ンレス鋼鋳片の連続鋳造方法であって、鋳造速度を0.
4〜0.8m/min 、サポートロールの鋳造方向における
間隔を300mm以下、および二次冷却帯の最終位置にお
ける鋳片の厚み中央部の固相率を0.2以下として鋳造
することを特徴とする連続鋳造方法。
1. A continuous casting method of 0.4 to 2.0 mass% B-containing SUS304 stainless steel slab for use in a cell of a spent fuel rack of a nuclear power plant, wherein a casting speed is 0.
4 to 0.8 m / min, the distance between the support rolls in the casting direction is 300 mm or less, and the solid fraction in the thickness center of the slab at the final position of the secondary cooling zone is 0.2 or less. Continuous casting method.
JP18936695A 1995-07-25 1995-07-25 Continuous casting method Expired - Lifetime JP3161293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18936695A JP3161293B2 (en) 1995-07-25 1995-07-25 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18936695A JP3161293B2 (en) 1995-07-25 1995-07-25 Continuous casting method

Publications (2)

Publication Number Publication Date
JPH0929391A true JPH0929391A (en) 1997-02-04
JP3161293B2 JP3161293B2 (en) 2001-04-25

Family

ID=16240123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18936695A Expired - Lifetime JP3161293B2 (en) 1995-07-25 1995-07-25 Continuous casting method

Country Status (1)

Country Link
JP (1) JP3161293B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339562A (en) * 2003-05-15 2004-12-02 Air Water Inc Method for surface-reforming austenitic metal, refractory metal product and turbo-component obtained thereby
JP2007061846A (en) * 2005-08-31 2007-03-15 Nippon Yakin Kogyo Co Ltd Continuous casting powder for boron-containing stainless steel, and continuous casting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339562A (en) * 2003-05-15 2004-12-02 Air Water Inc Method for surface-reforming austenitic metal, refractory metal product and turbo-component obtained thereby
JP2007061846A (en) * 2005-08-31 2007-03-15 Nippon Yakin Kogyo Co Ltd Continuous casting powder for boron-containing stainless steel, and continuous casting method
JP4611153B2 (en) * 2005-08-31 2011-01-12 日本冶金工業株式会社 Continuous casting powder for boron-containing stainless steel and continuous casting method

Also Published As

Publication number Publication date
JP3161293B2 (en) 2001-04-25

Similar Documents

Publication Publication Date Title
CN110000355B (en) Method for improving frame segregation of bloom continuous casting billet
CN112743053B (en) Crystallizer for solving peritectic steel continuous casting slab surface cracks and control method
US3789911A (en) Process for continuous continuous casting of hot liquid metals
JP2727887B2 (en) Horizontal continuous casting method
JP3161293B2 (en) Continuous casting method
JP3218361B2 (en) Continuous casting of steel and continuous casting and rolling
CN112743052A (en) Slab crystallizer for solving casting blank narrow surface cracks and control method
JP2004237291A (en) Method of manufacturing continuous casting slab and steel material obtained by working the cast slab
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JPH11285788A (en) Method for continuously casting large cross sectional cast bloom for thick steel plate
JPS5997747A (en) Production of ultrathin slab by continuous casting method
JP3570225B2 (en) Continuous casting method for large section slabs for thick steel plates
JP3570224B2 (en) Continuous casting method for large section slabs for thick steel plates
JP2727886B2 (en) Horizontal continuous casting method
JPH01258801A (en) Method for forging round shaped continuous cast billet
JPS58167060A (en) Method and device for production of thin steel sheet
JPS635859A (en) Continuous casting method for high silicon steel
JPH04305350A (en) Manufacture of billet of stainless steel for seamless steel tube
JPS63171249A (en) Continuous casting method for cast metal strip
CN116213669A (en) Method for controlling casting blank segregation defect
CN113787096A (en) Rolling mill screw-down control method during start-up of double-roller thin strip casting and rolling process
Norrish CONTINUOUS CASTING OF STEEL
CN114951575A (en) Cold heading steel continuous casting device and continuous casting process thereof
JPS63278653A (en) Production of sound cast bloom having large cross section
JPH0292870A (en) Ingot for producing covering pipe of fuel and production thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080223

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 12

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 13

EXPY Cancellation because of completion of term