JP3218361B2 - Continuous casting of steel and continuous casting and rolling - Google Patents

Continuous casting of steel and continuous casting and rolling

Info

Publication number
JP3218361B2
JP3218361B2 JP4119095A JP4119095A JP3218361B2 JP 3218361 B2 JP3218361 B2 JP 3218361B2 JP 4119095 A JP4119095 A JP 4119095A JP 4119095 A JP4119095 A JP 4119095A JP 3218361 B2 JP3218361 B2 JP 3218361B2
Authority
JP
Japan
Prior art keywords
slab
steel
casting
continuous casting
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4119095A
Other languages
Japanese (ja)
Other versions
JPH0839219A (en
Inventor
勝彦 山田
Original Assignee
勝彦 山田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 勝彦 山田 filed Critical 勝彦 山田
Priority to JP4119095A priority Critical patent/JP3218361B2/en
Publication of JPH0839219A publication Critical patent/JPH0839219A/en
Application granted granted Critical
Publication of JP3218361B2 publication Critical patent/JP3218361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】 本発明は鋼材の連続鋳造方法、
並びに連続鋳造と熱間圧延を結合して行う方法に関し、
特に鋳造能率を飛躍的に高めるとともに鋳片の品質を高
めることのできる連続鋳造法を開発し、更にこの連続鋳
造法に熱間圧延を組み合せて、連続鋳造から熱間圧延鋼
材を連続的に一貫生産し得る連続鋳造・圧延法に関する
ものである。
The present invention relates to a continuous casting method for steel materials,
And a method of performing continuous casting and hot rolling in combination,
In particular, we have developed a continuous casting method that can dramatically increase the casting efficiency and improve the quality of cast slabs.In addition, by combining this continuous casting method with hot rolling, it is possible to continuously integrate hot-rolled steel from continuous casting. It relates to a continuous casting / rolling method that can be produced.

【0002】 熱間圧延鋼材の生産コストを抜本的に低
減させることを目ざして、一方で連続鋳造工程と熱間圧
延工程を直結させる方法が提案され、他方では元々鋼塊
法に比べてニア・ネット・シェイプ・プロセスと位置付
けられる連続鋳造法をより一層ニア・ネット・シェイプ
化させる方法が探求されている。両者は相反するもので
はなく、共通の目的、共通の技術課題を持ち、両者の融
合は最も望ましい生産システムとなろう。低級鋼板にお
いてはすでに一部実生産の水準にまで来ているが、中級
鋼以上や鋼板以外は難行している。以下に直結化とニア
・ネット・シェイプ化にかかわる重要技術課題の代表的
な2つを述べる。
In order to drastically reduce the production cost of hot-rolled steel, a method of directly connecting a continuous casting process and a hot-rolling process has been proposed. There is a need for a method of making a continuous casting method, which is regarded as a net shape process, closer to a net shape. They are not contradictory, have a common purpose and a common technical task, and their fusion will be the most desirable production system. Although some low-grade steel sheets have already reached the level of actual production, medium-grade steel and higher and other steel sheets are difficult. The following are two representative technical issues related to direct connection and near net shaping.

【0003】 1.上,下工程がほぼ同等の生産能率を
持つこと。 従来の連続鋳造法では、1ストランド当りの鋳造能率は
後続の圧延能率の数分の1程度であり、上流の連続鋳造
工程と下流の圧延工程を機械的に直結させるだけでは極
めて非効率となる。或は多ストランドの連続鋳造から熱
鋼片を直送して圧延すれば能率は均衡するが直結効果は
大きく減殺される。一方連続鋳造能率向上のため鋳片の
大断面化や大機長化が図られているが、前者の場合はブ
レイク・ダウン工程が不可欠になり直結は当然不可能に
なり、そのうえニア・ネット・シェイプへの流れに逆行
することになる。後者の場合はスラブ,ブルームなどで
は能率向上が相当に進んでいるが、圧延能率は連続鋳造
能率より更に2〜3倍高く、直結には根本的に無理があ
る。以上より連続鋳造能率を飛躍的に向上させること、
並びに圧延設備が比較的中小規模でもコストで不利にな
らないことが大いに待望されている。最近鋼板に対して
は、薄スラブ連続鋳造やストリップ・キァスティングで
この問題が解決されつつあるが、次に述べる品質上の問
題により低級鋼板に限られている。
[0003] 1. The upper and lower processes have almost the same production efficiency. In the conventional continuous casting method, the casting efficiency per strand is about a fraction of the subsequent rolling efficiency, and it is extremely inefficient if the upstream continuous casting process and the downstream rolling process are only directly mechanically connected. . Alternatively, if the hot slab is directly fed and rolled from continuous casting of multiple strands, the efficiency is balanced but the direct coupling effect is greatly reduced. On the other hand, large sections and large machine lengths of slabs are being used to improve continuous casting efficiency.However, in the former case, a break-down process is indispensable and direct connection is naturally impossible, and in addition, near net shape Would go against the flow to In the latter case, the efficiency has been considerably improved in slabs and blooms, but the rolling efficiency is two to three times higher than the continuous casting efficiency, and there is basically no direct connection possible. From the above, to dramatically improve continuous casting efficiency,
There is also a long-awaited need for relatively small-to-medium-scale rolling equipment at a cost. Recently, this problem has been solved for steel sheets by continuous thin slab casting and strip casting, but is limited to low-grade steel sheets due to quality problems described below.

【0004】 2.従来とほぼ同等水準の品質を持つこ
と。 現状の生産システムでは、連続鋳造,圧延両工程とも独
立に操業され、それぞれ独自に品質管理されているた
め、目的製品にした品質が確実に確保されている。そ
のうえブレイク・ダウン,鋼片精製,再加熱などの中間
工程を行うことにより、表面品質,内部品質とも改善が
進んでいる。従って小断面連続鋳造をそのまま圧延と直
結すると当然品質低下を来たす。
[0004] 2. To have the same level of quality as before. In the current production systems are operated independently with the continuous casting, rolling both steps, because it is their own quality control, quality that is appropriate to the purpose the product is reliably ensured. In addition, by performing intermediate processes such as breaking down, slab refining, and reheating, both surface quality and internal quality have been improved. Therefore, if the small-section continuous casting is directly connected to rolling as it is, the quality naturally deteriorates.

【従来の技術】[Prior art]

【0005】 薄スラブ連続鋳造 … CSPプロセス 文献(1)“SEAISI,Jan.1990,P.3
8”に示されるように本方法は約50mm厚の薄スラブ
連続鋳造と、それに直結した約3mm厚の鋼板への連続
圧延からなる。この方法では鋳型断面の短幅方向空間が
約50mmとなるから極めてせまい。それ故に操業上、
品質上多くの困難を伴う。例えば鋳型においては、品質
保持上当然必要とされる浸漬ノズル+パウダー・キャス
ト法が適用されるが、この方法では、浸漬ノズルをセッ
トするためのスペースを持たせた漏斗型と称する浸漬部
のみ広幅の特異な形状の鋳型を要する。この場合薄い凝
固殻に無理な力が作用し縦割れ,横割れの発生に不利で
あることや、鋳片幅が余りに薄く、円滑なパウダー・キ
ャストがなされにくいなどの問題がある。さらに記述さ
れているように、凝固中の薄厚鋳片は鋳片表面から中心
への温度勾配が極めて大きく、これは粒の微細化,偏析
の軽減には有利であるが、表面割れ,内部割れが起こり
易いという薄肉共通の欠点がある。そのうえ鋳造プロセ
スにおいて不可避とされる凝固終点が形成されるので、
中心偏析は必然的に存在する。従って製品は比較的低級
品に限られている。
[0005] Continuous thin slab casting: CSP process Reference (1) "SEAISI, Jan. 1990, P.3"
As shown in FIG. 8 ", the method comprises continuous casting of a thin slab of about 50 mm thickness and continuous rolling to a steel sheet of about 3 mm thickness directly connected to the slab. In this method, the space in the short width direction of the mold section is about 50 mm. Is extremely narrow because of the operation
There are many difficulties in quality. For example, in a mold, an immersion nozzle + powder casting method, which is naturally required for quality maintenance, is applied. In this method, only a immersion part called a funnel type having a space for setting an immersion nozzle is wide. Requires a specially shaped template. In this case, there is a problem that an excessive force acts on the thin solidified shell, which is disadvantageous in generating vertical cracks and horizontal cracks, and that the slab width is too thin to make smooth powder casting difficult. As described further, the thin cast slab during solidification has a very large temperature gradient from the slab surface to the center, which is advantageous for refining grains and reducing segregation, but it has surface cracks and internal cracks. Has a common drawback that the thin wall is likely to occur. In addition, the solidification end point, which is inevitable in the casting process, is formed,
Center segregation is necessarily present. Therefore, products are limited to relatively low-grade products.

【0006】 薄スラブ連続鋳造 … ISPプロセス 文献(2)“SEAISI.Jan.1990.P.2
3”に示されるように本方法は50〜100mm厚の薄
スラブの連続鋳造にロール圧下装置を附設して未凝固鋳
片もしくは凝固完了後の鋳片を圧下して一層薄い鋳片と
するものである。文献(1)と同様浸漬ノズル+パウダ
ー・キャスト法が適用される。この方法では前項の鋳型
の問題は長方形断面鋳型と偏平ノズルの使用により解決
されているが、薄肉スラブ共通の前記弱点はすべて存在
する。さらに未凝固鋳片の圧下は割れの問題、更には割
れに伴う特異偏析の危険性が増加して品質管理が困難で
ある。
[0006] Thin slab continuous casting: ISP process Literature (2) "SEAISI. Jan. 1990. P. 2"
As shown in 3 ", the present method is to provide a continuous casting of a thin slab having a thickness of 50 to 100 mm with a roll reduction device to reduce the unsolidified slab or the slab after the solidification is completed to a thinner slab. The immersion nozzle + powder casting method is applied similarly to the reference (1) .In this method, the problem of the mold described in the preceding paragraph has been solved by using a rectangular cross-section mold and a flat nozzle, but the above-mentioned method is common to thin-walled slabs. There are all the weak points, and the reduction of the unsolidified slab increases the risk of cracking, and the risk of specific segregation accompanying cracking increases, making quality control difficult.

【0007】 ストリップ連続鋳造法 溶鋼から直接数mm厚の鋼板,もしくは鋼板素材を鋳造
する方法で、その機構は溶鋼を回転する双ロール間に鋳
込んで瞬時に凝固両面を凝着させるなどにより、数mm
厚×(1000〜2000)mm幅の鋳片を形成するも
ので、生産ラインは極めてコンパクト、且つ軽量化さ
れ、加熱炉や高価な圧延設備の多くが省略されるなど、
設備費の削減効果は極めて大きい。しかも操業費も当然
ながら大きく改善される。しかるに本方法では鋳造鋼板
が一瞬に凝固形成されるので、湯じわ,スラグ咬込み,
熱応力割れ,湯切れなど表面欠陥が発生し易く、そのう
え冷却壁面への熱流速の微妙な変動が直ちに凝固殻厚や
内部応力に作用し、内部欠陥を誘発するなど極めて解決
困難な品質問題を多々含んでいること、鍛錬比がとれな
いことなどにより高品質鋼板用には到底適用できそうに
なく、低級品用もしくはステンレス鋼板用として開発が
進められ、極く一部で実用化されているに過ぎない。
[0007] Strip continuous casting method A method of casting a steel sheet or a steel sheet material having a thickness of several mm directly from molten steel. The mechanism is to cast molten steel between rotating twin rolls to instantaneously adhere the solidified surfaces to each other. Several mm
It forms slabs of thickness x (1000-2000) mm width. The production line is extremely compact and lightweight, and many heating furnaces and expensive rolling equipment are omitted.
The effect of reducing equipment costs is extremely large. In addition, the operating costs are of course greatly improved. However, in this method, the cast steel sheet is instantaneously solidified and formed.
Surface defects such as thermal stress cracking and running out of hot water are easy to occur. In addition, subtle fluctuations in the heat flow velocity to the cooling wall immediately affect the solidified shell thickness and internal stress, causing internal defects and other extremely difficult quality problems. It is unlikely to be applicable to high-quality steel sheets due to its high content and lack of forging ratio, etc.It is being developed for low-grade products or stainless steel sheets, and has been put to practical use in only a part. It's just

【0008】 中空鋳片圧接法 特開昭57−97843において、中心偏析のない連続
鋳造法とそれを熱間圧延と直結する方法が提案されてい
る。本方法においては湾曲している鋳片軌跡を鋳込面よ
り高く導き且つ鋳片内部の未凝固部を取り残して真空の
空洞を形成し、その中空鋳片を圧延して中実鋳片が造ら
れる。その結果、中心偏析の解消,鋳片厚の制御可能,
薄肉スラブの製造などの効果が述べられているが、品質
面で通常芯部周辺に広く分布するセミ・マクロ偏析,多
孔質,V偏析などの欠陥は解決されない。生産面では鋳
造能率が実質断面の減少により低下するのか逆に何らか
の理由、手段により向上するのか全く言及されていな
い。この両面より連鋳と圧延との結合や、ニア・ネット
・シェイプ化の妥当性は全く不明である。
Hollow slab pressure welding method Japanese Patent Application Laid-Open No. 57-97842 proposes a continuous casting method without center segregation and a method of directly connecting it to hot rolling. In the present method, a curved slab trajectory is guided higher than the casting surface, and an unsolidified portion inside the slab is left to form a vacuum cavity, and the hollow slab is rolled to form a solid slab. Can be As a result, eliminating center segregation, control of slab thickness,
Although effects such as production of thin slabs are described, defects such as semi-macro segregation, porosity, and V segregation which are usually widely distributed around the core in terms of quality cannot be solved. On the production side, there is no mention as to whether the casting efficiency is reduced by the reduction of the substantial cross section or, on the contrary, is improved by any means or means. From these two sides, the validity of the combination of continuous casting and rolling and the near net shaping is unclear.

【0009】[0009]

【発明が解決しようとする課題】以上のように薄スラブ
連続鋳造法に代表される連続鋳造と圧延の直結やニア・
ネット・シェイプ法は多くの問題がある。しかしそれら
を解決し、薄板のみならず厚肉鋼板、さらには太径ない
し小径の棒鋼,平鋼,線材などに適用することができる
ならばその効果は極めて大きい。そのためには連続鋳造
において鋳片断面を大型化することなしに鋳造能率を飛
躍的に向上させること、中心部,内部,あるいは表面に
おける鋳造欠陥を解消すること、鋳片断面をできるだけ
小さく、即ち一層ニア・ネット・シェイプ化して圧延設
備を簡素化し、設備コストの対性能比を改善することが
具体的課題となっている。
SUMMARY OF THE INVENTION As described above, the direct connection between continuous casting and rolling represented by the thin slab continuous casting method,
The net shape method has many problems. However, if these problems can be solved and applied to not only thin plates but also thick steel plates, as well as thick or small diameter bars, flat bars, wire rods, etc., the effect is extremely large. For this purpose, the casting efficiency should be dramatically improved without increasing the cross section of the slab in continuous casting, the casting defect in the central part, the inside or the surface should be eliminated, and the cross section of the slab should be as small as possible. It is a specific issue to simplify the rolling equipment by making it near-net-shaped and to improve the equipment cost to performance ratio.

【0010】 本発明はこのような事情に着目してなさ
れたもので、その主目的は通常の湾曲式連続鋳造方法を
改善することにより、 鋳造能率を飛躍的に向上させること、 良好な表面品質と均質な内部組織を得、且つ芯部欠陥
を解消すること、 自在の肉厚や形状からなる鋳片が容易に得られるこ
と、 といった効果を発揮することのできる連続鋳造法を提供
しようとするものである。この発明の原理を利用すれば
水平式連続鋳造方法の改良を行うこともできる。もう1
つの目的は、上記の様に改良された連続鋳造法と、後続
の熱間圧延を効率的に接続して、鋼板,棒鋼,平鋼,形
鋼,線材などの熱間圧延製品を鋳造から一貫して生産す
る方法を提供するものである。
The present invention has been made in view of such circumstances, and its main object is to dramatically improve casting efficiency by improving a normal curved continuous casting method, and to achieve good surface quality. To provide a continuous casting method that can exhibit the effects of obtaining a homogeneous internal structure, eliminating core defects, and easily obtaining cast pieces having an arbitrary thickness and shape. Things. The horizontal continuous casting method can be improved by using the principle of the present invention. Another one
One of the objectives is to efficiently connect the improved continuous casting method described above and the subsequent hot rolling to integrate hot rolling products such as steel plates, steel bars, flat bars, shaped steel bars, and wire rods from casting. And to provide a method of producing.

【0011】[0011]

【課題を解決するための手段】次に上記課題を解決する
ことのできた本発明の構成を説明する。(1)まず連続
鋳造法の改良から説明すると、下記の通りである。本発
明の連続鋳造方法の基本的な構成は、鋳片内部の液芯を
鋳片引抜き軌跡の特定点Qでとどめることによって、Q
点より下流側の鋳片内部に空芯を形成し、該空芯部をロ
−ルで圧接することにより、中実鋳片として引抜くこと
を要点とするものである。特に本発明の代表的な実施態
様は鋳型横断面形状を長方形とし、特願平5−3210
96において示したと同様に鋳片引抜き軌跡が少なくと
も鋳型から吐出された直後は湾曲する様な引抜きを行う
鋼材の湾曲型連続鋳造を行い、鋳片引抜き軌跡における
湾曲長さを円周の1/2以上として鋳込面より高い位置
まで鋳片を引抜くと共に、前記鋳込面よりも大気圧ヘッ
ドに相当する静溶鋼ヘッド高さ分高い位置を特定点Qと
し、Q点における凝固殻厚比α(=2/A)を0.2
5〜0.85とすることを要旨とする。 式中、d:鋳片凝固殻厚(m) A:鋳型横断面の短幅寸法(m)
Next, the configuration of the present invention which can solve the above-mentioned problems will be described. (1) First, the improvement of the continuous casting method will be described as follows. The basic configuration of the continuous casting method of the present invention is as follows. The liquid core inside the slab is kept at a specific point Q on the slab withdrawal locus.
The main point is that an air core is formed inside the slab downstream of the point and the air core portion is pressed into contact with a roll to be drawn as a solid slab. Particularly, in a typical embodiment of the present invention, the cross-sectional shape of the mold is rectangular, and the invention is disclosed in Japanese Patent Application No. 5-3210.
In the same manner as shown in 96, at least immediately after the slab drawing locus is discharged from the mold, a curved die continuous casting of a steel material which performs bending drawing is performed, and the curved length in the slab drawing locus is set to の of the circumference. As described above, the slab is pulled out to a position higher than the casting surface, and a position higher than the casting surface by the height of the static molten steel head corresponding to the atmospheric pressure head is defined as a specific point Q, and the solidification shell thickness ratio α at the point Q is α (= 2 d / A) is 0.2
The gist should be 5 to 0.85. In the formula, d: slab solidification shell thickness (m) A: short width dimension of the mold cross section (m)

【0012】 このような連続鋳造法において鋳込温度
を当該鋼種の液相線温度より20〜60℃高い範囲と
することによって、鋳片外皮の厚さ数mmのチル晶の内
側が実質的に柱状晶である様な中実鋳片とするか、また
は0〜15℃高い範囲とし、鋳型内溶鋼に電磁撹拌を
加えることによって、鋳片外皮の厚さ数mmのチル晶の
内側が実質的に粒状晶である様な中実鋳片を得ることが
できる。
In such a continuous casting method, by setting the casting temperature to a range higher by 20 to 60 ° C. than the liquidus temperature of the steel type, the inside of the chill crystal having a thickness of several mm of the cast slab is substantially reduced. The inside of the chill crystal with a thickness of several mm of the slab skin is substantially formed by using a solid slab such as a columnar crystal or a range higher by 0 to 15 ° C. and applying electromagnetic stirring to molten steel in the mold. A solid cast slab having a granular structure can be obtained.

【0013】 0011,0012項で述べた方法を具
体的に実施するには設備の仕様および鋳造条件を下記式
(1)〜(5)に従って設定することが好ましい。 Pn=4kρ・Ln・[(1/α)+(β/α)−1]・・(1) V=Ln・(2k/αA) ・・・・・・・・・・・・・・(2) R=(Ln−1.4)/π ・・・・・・・・・・・・・・(3) d=k(Ln/V)0.5 ・・・・・・・・・・・・・・(4) A’=2(1−p)・d ・・・・・・・・・・・・・・(5) 式中、Pn:鋳造能率(kg/min) ρ:鋼材密度(7600kg/m) Ln:機長(鋳込面と特定点Qの間の長さ:m) k:凝固定数0.023〜0.031(m/min
0.5) R:鋳片引抜軌跡における湾曲部半径(m) B:鋳型横断面長幅寸法(m) α:凝固殻厚比 0.25≦α≦0.85 β:矩形比 β=B/A A’:中実鋳片横断面の短幅厚さ(m) p:圧接ロールによる実質圧下率 =(2d−A’)/
2d=0.05〜0.40
In order to concretely carry out the method described in the paragraphs 0011 and 0012, it is preferable to set equipment specifications and casting conditions according to the following equations (1) to (5). Pn = 4k 2 ρ · Ln · [(1 / α) + (β / α) -1] ··· (1) V = Ln · (2k / αA) 2 ··· (2) R = (Ln-1.4) / π (3) d = k (Ln / V) 0.5 (4) A ′ = 2 (1−p) · d (5) where Pn: casting efficiency (kg / min) ) Ρ: Steel material density (7600 kg / m 3 ) Ln: Machine length (length between casting surface and specific point Q: m) k: Solidification constant 0.023 to 0.031 (m / min)
0.5 ) R: radius of the curved portion in the slab drawing locus (m) B: mold cross-sectional length (m) α: solidified shell thickness ratio 0.25 ≦ α ≦ 0.85 β: rectangular ratio β = B / A A ': Short width thickness (m) of cross section of solid cast slab p: Substantial reduction ratio by pressing roll = (2d-A') /
2d = 0.05 to 0.40

【0014】 高級鋼板を薄スラブもしくは厚スラブか
ら製造する場合に有利な条件について説明すると、00
12項で述べた方法に加えて鋳型横断面の短幅寸法Aを
0.100〜0.300mとし、圧接直前の該鋳片凝固
殻厚dを0.025〜0.120mとし、次に鋳片の長
幅全体を短幅方向に圧接して該中実鋳片の短幅厚さA’
を0.035〜0.200mとする。
Advantageous conditions for manufacturing a high-grade steel sheet from a thin slab or a thick slab are described as follows.
In addition to the method described in Section 12, the short width dimension A of the mold cross section is set to 0.100 to 0.300 m, and the thickness d of the slab solidified shell immediately before pressure welding is set to 0.025 to 0.120 m. The entire width of the strip is pressed in the short width direction to obtain a short width thickness A ′ of the solid cast piece.
Is set to 0.035 to 0.200 m.

【0015】 ビーム・ブランクを造るに当り、よりニ
ア・ネット・シェイプ化する方法としては、鋳片内部の
空芯を圧接によって凝着させる為の圧接方式として、孔
型圧延方式、もしくはユニバーサル・ミルによる4面同
時圧下方式によって圧接圧延することにより、中実鋳片
の断面形状をI型、H型などの異形とする方法が推奨さ
れる。
[0015] In producing a beam blank, a near-net-shaping method is used. As a pressure welding method for adhering the air core inside the slab by pressure welding, a hole rolling method or a universal mill is used. It is recommended that the cross-sectional shape of the solid slab be changed to an I-shape, H-shape or the like by pressing and rolling by a four-side simultaneous rolling method.

【0016】 凝固殻厚をより小さくする為の手段とし
て、機長を短くする手段としては、鋳片引抜き軌跡にお
ける湾曲長さを円周の1/2以上として鋳込面より高い
位置まで鋳片を引抜く方法に限定されず、鋳片引抜き軌
跡における湾曲長さを円周の1/4超として円弧の最下
点を特定点Qとし、Q点より更に高い位置へ鋳片を引抜
くとともに、鋳片内部の液芯最先端位置をQ点の近傍で
とどめ、Q点より下流側の鋳片内部に不活性ガスを加圧
充満させて空芯部を形成せしめる様な方法を採用するこ
ともできる。空芯部を形成したことによる凝固殻厚比は
0.05〜0.5に制御することが望まれる。
As a means for reducing the thickness of the solidified shell, as a means for shortening the machine length, the curved length in the slab withdrawal trajectory is set to a half or more of the circumference and the slab is raised to a position higher than the casting surface. The method is not limited to the method of drawing, and the lowermost point of the arc is defined as the specific point Q with the curved length in the slab drawing locus exceeding 1/4 of the circumference, and the slab is drawn to a position higher than the Q point. It is also possible to adopt a method in which the liquid core inside the slab is kept in the vicinity of the point Q near the point Q, and the inside of the slab downstream of the point Q is filled with an inert gas under pressure to form an air core. it can. It is desired that the solidified shell thickness ratio due to the formation of the air core is controlled to 0.05 to 0.5.

【0017】 凡用の一般鋼板を製造する場合の有利な
条件を述べると、0016項において鋳型横断面の短幅
寸法Aを0.100〜0.140mとし、Q点における
鋳片凝固殻厚dを0.010〜0.020mとし、中実
鋳片短幅厚さA’を0.012〜0.03mとするよう
該殻厚dを(6)式に従って設定し、且つ圧接ロールに
よる実質圧下率pを0.05〜0.4とする。 d=k・(πR’/2V)0.5 ・・・・・・ (6) R’:鋳片引抜軌跡における湾曲部半径(m)
Advantageous conditions for producing a general steel sheet are as follows: In section 0016 , the short width dimension A of the mold cross section is set to 0.100 to 0.140 m, and the slab solidification shell thickness d at point Q is set. Is set to 0.010 to 0.020 m, the shell thickness d is set according to the equation (6) so that the solid cast slab short width thickness A 'is set to 0.012 to 0.03 m, and the actual reduction by the pressing roll is performed. The ratio p is set to 0.05 to 0.4. d = k · (πR ′ / 2V) 0.5 (6) R ′: radius of bending portion (m) in slab drawing locus

【0018】 より薄肉の凝固殻厚とする上で特に好ま
しいのは、垂直面内で回転する水冷車輪の外周に沿って
作られた長方形の溝で鋳型3面を形成し、エンドレス・
ベルトを該溝の凝固進行区間を閉じるように密着させて
残り1面を形成した鋳型を、鋳片引抜きと同期させて駆
動させる様に構成する方式である。
Particularly preferred for a thinner solidified shell thickness is that the mold 3 surface is formed by a rectangular groove formed along the outer periphery of a water-cooled wheel rotating in a vertical plane, and the endless mold is formed.
This is a method in which a mold in which a belt is brought into close contact with the groove so as to close the solidification progressing section and the remaining one surface is formed is driven in synchronization with the drawing of the slab.

【0019】(2)次に上記連続鋳造法に圧延法を直結
させる発明について説明すると、下記の通りである。ま
ず最も基本的には、上記連続鋳造法によって製造された
赤熱状態の中実鋳片を、1)一旦切断して鋼片として、
もしくは2)そのまま連続鋳片として、a)均熱炉を経
由して均熱した後もしくはb)均熱炉を経由せず直接単
ストランドの圧延ラインに供給して鋼板,形鋼,平鋼,
棒鋼,線材などに圧延する方法が示される。また粗圧延
と仕上圧延の間で、圧延材を圧延方向に2条以上に切断
してそれぞれ別のもしくは同一の仕上圧延ラインに供給
して製品圧延を行うこともできる。なおこれらにおい
て、特に線材を製造する場合には、該線材コイルの単重
を3〜20トンとする。
(2) Next, the invention in which the rolling method is directly connected to the continuous casting method will be described as follows. First, most basically, the solid red slab produced by the above continuous casting method is 1) cut once to form a steel slab.
Or 2) as a continuous cast slab, a) after soaking through a soaking furnace or b) directly to a single-strand rolling line without passing through a soaking furnace, to supply a steel sheet, a shaped steel, a flat steel,
The method of rolling into bar steel, wire rod, etc. is shown. Further, between the rough rolling and the finish rolling, the rolled material can be cut into two or more strips in the rolling direction and supplied to different or identical finish rolling lines to perform product rolling. In these, especially when a wire is manufactured, the unit weight of the wire coil is 3 to 20 tons.

【0020】[0020]

【作用】以下、実施例図面を参照しながら発明の構成お
よび作用,効果を詳細に説明する。本発明では特願平5
−321096において示したように通常の湾曲式連続
鋳造設備を原型として、図1に示すような全体構造の設
備が使用される。図2は図1の要部拡大説明図である。
レ−ドル1からタンディッシュ2を経て鋳型3へ供給さ
れた溶鋼Meは鋳型3で冷却され凝固殻を形成しながら
鋳片6となり、ピンチ・ロ−ル10ガイド・ロ−ル9に
より引抜かれる。このとき鋳片6の引抜軌跡を半径Rの
円弧状で、且円周の1/2以上に設定し、溶鋼Meの鋳
込面(即ち型内における溶鋼の湯面レベル)Lよりも高
い位置に鋳片6を引抜くとともに図2の拡大説明図に示
すようにLよりも約1.4m(大気圧ヘッドに相当する
静溶鋼ヘッド)高い位置Qをこえて引上げる。そうする
と鋳片6内の位置Qまでは液芯Lqが存在し、その下流
側に真空の空芯Cvが形成される。空芯部Sを外面から
圧接ロ−ル8により圧下して圧接し中実鋳片とし、引続
いてガイドロ−ル9,シャ−13などを経てタンデム型
粗圧延列15へ送り、仕上圧延列18を経て巻取機19
により熱間圧延製品として巻取られ集束機20によりコ
イルとなる。この間鋳片6は切断することなく連続して
圧延され、製品の単重に応じて集束時に分割されるが
最も望ましい。
The structure, operation and effect of the present invention will be described below in detail with reference to the accompanying drawings. In the present invention, Japanese Patent Application No.
As shown in -321096, an ordinary curved continuous casting facility is used as a prototype, and a facility having an overall structure as shown in FIG. 1 is used. FIG. 2 is an enlarged explanatory view of a main part of FIG.
The molten steel Me supplied from the ladle 1 to the mold 3 via the tundish 2 is cooled by the mold 3 to form a solidified shell, and becomes a slab 6, which is drawn out by a pinch roll 10 and a guide roll 9. . At this time, the drawing trajectory of the slab 6 is set to an arc shape with a radius R and at least 1/2 of the circumference, and a position higher than the casting surface L of the molten steel Me (that is, the molten steel surface level in the mold). Then, as shown in the enlarged explanatory view of FIG. 2, the slab 6 is pulled out, and as shown in the enlarged explanatory view of FIG. Then, the liquid core Lq exists up to the position Q in the slab 6, and a vacuum air core Cv is formed downstream thereof. The air core portion S is pressed down from the outer surface by a press roll 8 to press it into a solid slab, and subsequently sent to a tandem type rough rolling row 15 via guide rolls 9 and shears 13 to finish rolling row. Winding machine 19 through 18
Is wound as a hot-rolled product by the concentrator 20 to form a coil. During this time the billet 6 is continuously rolled without cutting, but that the divided during focusing in accordance with the unit weight of the products most desirable.

【0021】 以上は鋼の連続鋳造において鋳片引抜き
軌跡の特定点Qにおいて鋳片内部の液芯を上流側へ排出
することにより下流側に空芯部を形成し、該空芯部を圧
接圧延して中実鋳片として引抜くことを特徴とする連続
鋳造法の具体的一実施方法で後述するように種々の方法
が考えられる。
In the above, in the continuous casting of steel, at the specific point Q of the slab drawing locus, the liquid core in the slab is discharged to the upstream side to form an air core portion on the downstream side, and the air core portion is pressed and rolled. Various methods are conceivable as described later in a specific embodiment of a continuous casting method characterized by being drawn out as a solid slab.

【0022】このような連続鋳造法においては次の本質
的な3効果のほかに種々の効果・作用がある。1)鋳造
能率の向上 2)芯部欠陥の解消 3)薄肉鋳片の
製造 鋳造能率の検討: 理論鋳造能率Poは1片がA(m)の正方形断面の場合
(7)式により求めらる。 Po=ρ×A ×V ・・・・ (7) [ρ:鋼の密度kg/m,V:引抜速度m/min] 凝固の進行はよく知られている凝固近似式(8)によっ
て示される。 d=k×t0.5 ・・・・・・ (8) [d:凝固殻厚m,k:凝固定数m/min 0.5
t:時間min] 機長Lすなわち凝固区間長さは(9)式で示される。 L=V×to ・・・・・・・ (9) [to:凝固完了時間min] t=toにおいてd=A/2となるので(8)、(9)
式より A V=4k L ・・・・・ (10) これを(7)式に代入すると Po=4ρk L ・・・・・ (11) 鋳片断面が長方形の場合の理論鋳造能率Po’は(1
2)式となる。 Po’=4ρk βL ・・・ (12) [β:矩形比=長片寸法/矩片寸法] すなわち鋳造能率は鋳片寸法に無関係で冷却強さに依存
するkと機長Lのみに比例する。実操業では品質上,作
業上の制約により鋳造能率は理論値のせいぜい60〜8
0%で、この実質能率を基に必要ストランド数が決めら
れている。能率向上のためLを一層大きくすると、引抜
速度Vの増大により品質,作業,設備費などの問題が一
層増幅することになる。
In such a continuous casting method, there are various effects and actions in addition to the following three essential effects. 1) Improvement of casting efficiency 2) Elimination of core defects 3) Production of thin-walled cast pieces Examination of casting efficiency: The theoretical casting efficiency Po is obtained by equation (7) when one piece has a square cross section of A (m). . Po = ρ × A 2 × V (7) [ρ: steel density kg / m, V: drawing speed m / min] The progress of solidification is represented by the well-known solidification approximation formula (8). It is. d = k × t 0.5 (8) [d: solidified shell thickness m, k: solidified constant m / min 0.5 ,
t: time min] The machine length L, that is, the length of the solidification section, is expressed by equation (9). L = V × to (9) [to: solidification completion time min] Since d = A / 2 at t = to, (8), (9)
From the formula, A 2 V = 4k 2 L (10) When this is substituted into the formula (7), Po = 4ρk 2 L (11) Theoretical casting efficiency when the slab section is rectangular. Po 'is (1
2) Po ′ = 4ρk 2 βL (12) [β: rectangle ratio = long piece size / rectangular piece size] That is, the casting efficiency is independent of the cast piece size and is proportional to only k and the machine length L that depend on the cooling strength. . In actual operation, due to quality and work restrictions, the casting efficiency is at most 60 to 8 theoretical values.
At 0%, the required number of strands is determined based on this substantial efficiency. If L is further increased to improve efficiency, problems such as quality, work, and equipment cost are further amplified due to an increase in the drawing speed V.

【0023】 これに対し本発明では長方形断面の場
合、理論鋳造能率Pnは凝固殻厚比α(=2d/A)を
パラメ−タ−にして(13)式となる。 Pn=4ρk Ln(1/α+β/α−1)・・・ (13) 本発明における機長Lnは鋳込面からQ点までである。
従来方法と本発明を同一機長(即ちLn=L)下で比較
すると(12)式と(13)式をまとめて(14)式と
なる。 Pn=Po’(1/α+β/α−1)/β ・・・・ (14)
On the other hand, in the present invention, in the case of a rectangular cross section, the theoretical casting efficiency Pn is expressed by equation (13) with the solidified shell thickness ratio α (= 2d / A) as a parameter. Pn = 4ρk 2 Ln (1 / α + β / α-1) (13) The machine length Ln in the present invention is from the casting surface to the point Q.
When the conventional method and the present invention are compared under the same machine length (that is, Ln = L), Expressions (12) and (13) are combined into Expression (14). Pn = Po '(1 / α + β / α-1) / β (14)

【0024】 次に鋳造機及び鋳造条件の各基本特性に
ついて説明する。上記と同様の計算により鋳造能率P
n、引抜速度V、湾曲半径R、殻厚d、および中実鋳片
厚A’はそれぞれ(1),(2),(3),(4),
(5)式で容易に関係づけられる。 例えば引抜速度V
は、 V=Ln/tn,dn=k・tn0.5=αA/2 により容易に(2)式を求めることができる。[tn:
特定点Qに達する時間(min),dn:Qにおける殻
厚(m)] 凝固殻厚比αは種々の厚さの鋼材に対応するため0.2
5〜0.85が望ましい。実質圧下率pは通常の圧接圧
延で0.05〜0.40が採用されているのでそのまま
使う。本発明を実施するに当っては(1)〜(5)式の
関係を満たすよう連鋳条件を設定することが好ましい重
要な要件となる。以上のように本発明の第1の効果は鋳
造能率が飛躍的に向上することである。鋳造能率の向上
は必然的に引抜速度の増大をもたらす。引抜速度の増大
は芯部欠陥や内部ワレなどの品質低下や、ブレイク・ア
ウトなどの作業事故を来たす。このような問題は次に述
べる第2の効果により解決される。
Next, each basic characteristic of the casting machine and the casting conditions will be described. By the same calculation as above, the casting efficiency P
n, drawing speed V, bending radius R, shell thickness d, and solid slab thickness A ′ are (1), (2), (3), (4),
It is easily related by equation (5). For example, drawing speed V
Equation (2) can be easily obtained from the following equation: V = Ln / tn, dn = k · tn 0.5 = αA / 2. [Tn:
Time to reach specific point Q (min), shell thickness at dn: Q (m)] The solidified shell thickness ratio α is 0.2 in order to correspond to steel materials of various thicknesses.
5 to 0.85 is desirable. The actual reduction ratio p is used as it is because 0.05 to 0.40 is employed in normal pressure rolling. In carrying out the present invention, it is an important requirement that continuous casting conditions be set so as to satisfy the relations of equations (1) to (5). As described above, the first effect of the present invention is that the casting efficiency is dramatically improved. Improvements in casting efficiency necessarily lead to an increase in drawing speed. Increasing the drawing speed causes quality deterioration such as core defects and internal cracks, and work accidents such as breakout. Such a problem is solved by the following second effect.

【0025】 次に第2の効果,芯部欠陥の解消など品
質向上について説明する。鋼の鋳造において、その凝固
組織は表面から中心に向け表皮部分(通常は数mm程
度)は急冷されて緻密で均質なチル晶を形成し,その内
側数mm〜数十mmはそれ自体均質な柱状晶,更に内部
は粒状晶からなる。芯部近傍では粒状晶間にセミ・マク
ロ偏析やマクロ,ミクロの収縮孔などの鋳造欠陥を生
じ,また中心部では中心収縮孔の他に、溶質の固相,液
相への分配率の関係で必然的に中心偏析が発生する。こ
れらの内部欠陥に対して従来の連続鋳造法では、低温鋳
込や電磁撹拌により粒状晶化とその微細化によって欠陥
を分散させたり、液芯圧下により偏析の追い出しなどの
策をとってきたがいずれも不充分であり、特に芯部周辺
のセミ・マクロ偏析や多孔質などは改善されない。特別
に均質な凝固組織を得たい場合には連鋳ではなく一方向
凝固鋼塊法「日本金属学会会報24,4(1985)
P.304」やESR法(Electroslag Remelting)など
が採用されてきた。本発明では連続鋳造においてESR
法に比肩し得る均質な組織が得られる。すなわち、本発
明で得られる鋳片の組織は従来の連続鋳造と同様、本質
的には、チル晶,柱状晶,その内側に粒状晶が生成する
が、凝固殻厚比が適切に設定されているので、芯部の周
辺領域において粒状晶間にセミ・マクロ偏析やマクロ,
ミクロの収縮などが生成される状態に至る前に液芯が分
離され、その後凝固前面が圧接されるので芯部欠陥は発
生のしようもない。加えて、最適鋳込温度を設定すると
本発明の内部欠陥解消効果が一層増大する。すなわち鋳
込温度を鋳片寸法に対応して高目に設定すると粒状晶さ
えも全く発生せず、実質的にチル晶と柱状晶のみの緻密
且均質な組織となり一方向凝固鋼塊材と同様になる。一
般のスラブ連続鋳造においても、鋳込温度を高くすると
比較的容易に中心部まで柱状晶とすることはできるが、
この場合、表裏両面からの凝固の突当りにより、両固液
界面に存在していた濃化溶鋼の集合により必然的に中心
偏析ができるので、単なる柱状晶だけの組織では均質な
鋼材とならない。一方柱状晶の成長性は鋳片断面寸法が
大きいほど顕著になるが主には鋳込温度に依存し、他の
要因もあって確定的には決まらない。たとえば「第69,7
0 回 西山記念講座(日本鉄鋼協会編)(1980) P171:
楯」に示されている図31,図32を整理しなおしたも
のが本発明にかかわる図3であり、柱状晶の成長におよ
ぼす鋳込温度(過熱度)の影響を示す。図3より過熱度
が20℃から50℃に変化すると柱状晶長さは約0.0
80mから約0.150mに増加することが解る。しか
しこれに電磁撹拌を作用させると柱状晶長さが短かくな
る。そこで本発明では小断面鋳片の場合に、柱状晶長さ
として少くとも0.060mを得るため過熱度の下限を
20℃とし同様に大断面鋳片に対しては少くとも0.1
60mを得るため過熱度の上限を60℃とした。但し過
熱度が大きくなるほど熱応力による内部割れや表面割れ
が発生し易くなるので許される限り上記範囲で低い方に
設定するのがよい。以上のように本発明の第2の効果に
よれば均質で芯部欠陥のない凝固組織が得られるので、
場合により一方向凝固鋼塊法やESR法に代替できる。
そのうえニア・ネット・シェイプ化において熱間鍛錬比
が不足する場合においても本発明で得られる均質な凝固
組織はそれを補うことができる。
Next, a description will be given of a second effect and improvement of quality such as elimination of a core defect. In the casting of steel, the solidification structure is rapidly cooled from the surface to the center of the skin (usually about several mm) to form a dense and uniform chill crystal, and several mm to several tens of mm inside the steel itself are homogeneous. Columnar crystals, and the inside is composed of granular crystals. In the vicinity of the core, casting defects such as semi- and macro-segregation and macro- and micro-shrinkage pores occur between the granular crystals. In the center, the distribution of solutes in the solid and liquid phases in addition to the center shrinkage holes Inevitably, center segregation occurs. In the conventional continuous casting method for these internal defects, measures such as dispersing defects by granular crystallization and miniaturization by low-temperature casting or electromagnetic stirring, and removing segregation by liquid core pressure have been taken. Both are insufficient, and in particular, semi-macro-segregation around the core and porosity are not improved. To obtain a particularly homogeneous solidification structure, use the unidirectional solidification steel ingot method instead of continuous casting.
P. 304 "and ESR (Electroslag Remelting). In the present invention, in continuous casting, ESR
A homogeneous tissue comparable to the method can be obtained. In other words, the structure of the slab obtained by the present invention essentially forms chill crystals, columnar crystals, and granular crystals inside thereof, as in conventional continuous casting, but the solidification shell thickness ratio is appropriately set. Therefore, semi-macro segregation, macro-
The liquid core is separated before reaching a state where microscopic shrinkage or the like is generated, and the solidification front surface is pressed against the liquid core. In addition, setting the optimum casting temperature further increases the effect of eliminating internal defects according to the present invention. That is, when the casting temperature is set to a higher value corresponding to the slab size, even granular crystals are not generated at all, and a dense and homogeneous structure of substantially only chill crystals and columnar crystals is formed, similar to the unidirectionally solidified steel ingot. become. Even in general slab continuous casting, if the casting temperature is raised, it is relatively easy to make columnar crystals up to the center,
In this case, the center of segregation is inevitably formed by the aggregation of the concentrated molten steel existing at the solid-liquid interface due to the abutment of solidification from both the front and back surfaces, so that a simple columnar crystal structure does not provide a homogeneous steel material. On the other hand, the growth properties of columnar crystals become more pronounced as the slab cross-sectional dimension increases, but they mainly depend on the casting temperature and cannot be determined deterministically due to other factors. For example, "No. 69,7
0th Nishiyama Memorial Lecture (Iron and Steel Institute of Japan) (1980) P171:
FIG. 3 according to the present invention is obtained by rearranging FIGS. 31 and 32 shown in “Shield” and shows the effect of casting temperature (degree of superheat) on the growth of columnar crystals. According to FIG. 3, when the degree of superheat changes from 20 ° C. to 50 ° C., the columnar crystal length becomes about 0.0
It can be seen that it increases from 80 m to about 0.150 m. However, when electromagnetic stirring is applied to this, the columnar crystal length becomes shorter. Therefore, in the present invention, in the case of a small-section slab, the lower limit of the degree of superheat is set to 20 ° C. in order to obtain a columnar crystal length of at least 0.060 m.
In order to obtain 60 m, the upper limit of the degree of superheat was set to 60 ° C. However, as the degree of superheat increases, internal cracks and surface cracks due to thermal stress are more likely to occur. Therefore, it is preferable to set the temperature in the above range as low as possible. As described above, according to the second effect of the present invention, it is possible to obtain a homogeneous solidified structure having no core defect,
In some cases, it can be replaced by a directionally solidified ingot method or an ESR method.
In addition, even when the hot forging ratio is insufficient in the near net shaping, the homogeneous solidified structure obtained by the present invention can make up for it.

【0026】 ステンレス鋼などの一部の製品などにお
いては柱状晶の成長がきらわれ粒状晶の多い組織が好ま
れる場合がある。この様な場合、低温鋳込(過熱度0〜
15℃)と鋳型内溶鋼の電磁撹拌という手段が採られて
いるが、本手段を本発明に適用するに当たって凝固殻厚
比αの値を適切にとると従来避けられなかった芯部周辺
のセミ・マクロ偏析や、マクロ、ミクロの収縮孔および
V偏析の発生を無くすることができる。
In some products, such as stainless steel, the growth of columnar crystals is disturbed and a structure with many granular crystals may be preferred. In such a case, low temperature casting (superheat degree 0
15 ° C.) and electromagnetic stirring of the molten steel in the mold. However, when applying this means to the present invention, if the value of the solidified shell thickness ratio α is appropriately taken, semi-fluidity around the core, which has been inevitable in the past, can be avoided. The occurrence of macro segregation, macro and micro shrinkage pores and V segregation can be eliminated.

【0027】 更に品質問題に関連して、高速鋳込に伴
う欠陥増大に対する本発明の効果を述べる。高速鋳込の
大きな難点はバルジングが発生しやすいことである。こ
れは内部割れを誘発しブレイク・アウトの原因にもな
る。特に断面が大きいとその防止は大変困難である。本
発明では原理的に機長が著しく小さいこと、上方に引抜
くことの2つにより機高は従来の数分の1となる。従っ
て凝固殻に作用する溶鋼静圧がその分小さくなってバル
ジングは発生しにくくなる。
The effect of the present invention on the increase in defects associated with high-speed casting will be described in relation to quality problems. A major drawback of high speed casting is that bulging tends to occur. This can cause internal cracking and breakout. In particular, if the cross section is large, it is very difficult to prevent it. In the present invention, the machine height is reduced to a fraction of the conventional height by the principle that the machine length is extremely small and that the machine is pulled upward. Therefore, the molten steel static pressure acting on the solidified shell is reduced by that amount, and bulging is less likely to occur.

【0028】 次に第3の効果、ニア・ネット・シェイ
プ・プロセスが容易に行えることについて説明する。本
発明において鋳片断面形状および寸法を通常のスラブ連
続鋳造と同様にして、機長すなわち鋳片軌跡円弧半径を
できるだけ小さくし、引抜速度をできるだけ大きくして
いくと、Q点における殻厚はそれに応じて薄くなる。即
ち従来のスラブ連続鋳造の引抜き方向をかえるだけで容
易に薄スラブが製造できる。当然表面品質に大きな効果
のある浸漬ノズル+パウダ−キャスト法や電磁撹拌など
従来の確立された技術はそのまま併用できる。これが鋳
片断面短幅寸法を0.100〜0.300mに限定した
理由である。凝固殻厚dの最小値を25mmとした理由
は小さいほど当然経済的であることに基づくが、Rの実
用的な最小値を2m,Vの最大値を5〜6m/min,
kの最小値を23mm/min0.5 とすればdは約
0.025mとなるのでこれを実現可能な下限とした。
A' についても同様に圧接ロールによる実質圧下率pの
最大を0.3としてA'の下限を0.035mとした。
以上のようにして得られた薄スラブは従来のスラブと同
等の秀れた表面品質を持つので、従来の直送圧延と同様
にそのまま連続して中間圧延設備に供給して簡素な設
備,簡素な工程で容易に熱延薄板をつくることができ
る。
Next, a third effect, that the near net shape process can be easily performed, will be described. In the present invention, the slab cross-sectional shape and dimensions are made the same as in normal slab continuous casting, the machine length, that is, the slab trajectory arc radius is made as small as possible, and the drawing speed is made as large as possible. And thin. That is, a thin slab can be easily manufactured simply by changing the drawing direction of the conventional continuous slab casting. Naturally established techniques such as immersion nozzle + powder-cast method and electromagnetic stirring which have a great effect on the surface quality can be used as they are. This is the reason why the slab cross-sectional short width dimension is limited to 0.100 to 0.300 m. Solidifying shell thickness minimum value reason for the 25mm of d is based on the smaller of course economical, but a practical minimum of R 2m, the maximum value 5 to 6 m / min and V,
If the minimum value of k is set to 23 mm / min 0.5 , d becomes about 0.025 m.
Similarly, for A ', the maximum of the actual rolling reduction p by the pressing roll was 0.3, and the lower limit of A' was 0.035 m.
The thin slab obtained as described above has excellent surface quality equivalent to that of a conventional slab. A hot-rolled thin plate can be easily produced in the process.

【0029】 ビーム・ブランクを鋳造するには、図4
の(a)に示す様な薄肉角管状の空芯鋳片22を造り、
それを圧接して中実鋳片として引抜くに当たり、図4
(b)に示す孔型圧延機32や図4(c)に示すユニバ
ーサル・ミル34による4面同時圧下により、中実鋳片
の断面形状をI型31,H型33などにすれ、従来の
ビーム・ブランク連鋳法に比較して一層ニア・ネット・
シェイプとなる。そのうえ従来のビーム・ブランク連鋳
のように表面ワレ,内部ワレ,偏析など特異形状故の品
質問題に遭遇することなく表面,内質とも秀れた品質が
容易に得られる。
To cast a beam blank, see FIG.
(A), a thin square tubular hollow core cast piece 22 as shown in FIG.
When it was pressed and pulled out as a solid slab,
The four faces simultaneous reduction by universal mill 34 shown in caliber rolling mill 32 and FIG. 4 (c) shown in (b), if the cross-sectional shape of the solid slab or the like type I 31, H-type 33, the conventional Near-net /
Become a shape. In addition, excellent quality in both surface and internal quality can be easily obtained without encountering quality problems due to peculiar shapes such as surface cracks, internal cracks, and segregation unlike conventional beam blank continuous casting.

【0030】 上述したものよりも一層薄肉のスラブを
製造したい場合には、本発明の実施に新たな工夫を要す
る。それを次に説明する。薄肉化のためには、(4)式
に示すように機長の最小化と引抜速度の最大化により凝
固時間を最小にすることが必要である。そのためにはガ
ス圧を利用して特定点Qを鋳片引抜軌跡円弧の最下点に
置く方式が推奨される。その概略を図5に示す。この場
合殻厚dは(6)式により算出される。凝固殻厚比を
0.05〜0.5と限定した理由は,0.05より小さ
い領域では当然殻厚は薄くなり実際上10mm以下とな
る。この厚さは通常鋳型内で形成されるが、鋳型内での
凝固の進行は位置、時間によっては意外に不均等になり
易く、圧接圧延において歪の不均等から種々の不都合を
生じ易い。他方0.5以上では殻厚は大きくなり過ぎて
本来の目的にそぐわない。
If it is desired to manufacture a thinner slab than the one described above, a new device is required to implement the present invention. It will be described next. In order to reduce the wall thickness, it is necessary to minimize the solidification time by minimizing the machine length and maximizing the drawing speed as shown in equation (4). For this purpose, it is recommended to use a gas pressure to place the specific point Q at the lowest point of the slab drawing arc. The outline is shown in FIG. In this case, the shell thickness d is calculated by equation (6). The reason for limiting the solidified shell thickness ratio to 0.05 to 0.5 is that the shell thickness is naturally reduced in a region smaller than 0.05, and is actually 10 mm or less. This thickness is usually formed in the mold, but the progress of solidification in the mold tends to be unexpectedly uneven depending on the position and time, and various inconveniences are likely to occur due to uneven strain in pressure rolling. On the other hand, if it is 0.5 or more, the shell thickness becomes too large and is not suitable for its intended purpose.

【0031】 図5の方法、即ちQ点より下流にガス充
満の空芯鋳片をつくる具体的方法を、図7(a),
(b),(c)にそって説明する。図7(a)は鋳込み
開始時の状況を示し、鋳型の下側開口部はダミーバー1
1によってとじられているが、該ダミーバーの先端には
鋼管もしくはセラミック管のガス吹き出しノズル27が
取付けてあり、該ノズル27を通して不活性ガスを吹出
しつつ鋳込を始め、且つ、引抜いてゆく。このときバブ
リング現象が生ずるが操業上格別の問題はない。図7
(b)に示すようにノズルが鋳片軌跡の最下点を越えた
時点で、吹出しガス量をある程度多い状態とすると鋳片
内側に空芯が形成されるとともに過剰のガスは最下点Q
から溶鋼内に吹込まれて溶鋼中を逆流して、溶鋼内を気
泡となって浮上する。同時に液芯の湯面mは最下点にお
ける鋳片の上側凝固前面に維持される。湯面mより下流
側では凝固は当然進まない。図7(c)に示すようにノ
ズルが圧接ロールに達すると、ノズルは圧懐されてガス
吹出しは止まるが、鋳片先端部は完全に封鎖され、空芯
部のガスはそのまま残存する。不活性ガスが使用される
ので封入されているガスは溶鋼や凝固殻と反応すること
がなく、従ってガス圧が維持されるので、以後湯面は鋳
片軌跡の最下点近傍に維持され定常鋳込状態となる。円
弧半径Rが小さくなると空芯鋳片の引抜きに際して、い
まだ脆性温度域にある鋳片内面に作用する曲げ歪が大き
くなり内部ワレが生ずることがある。このような場合で
も液芯圧下法のようにワレ目に濃化溶鋼が侵入すること
がなく問題はない。これは本発明の効果の1つである。
The method of FIG. 5, that is, a specific method of producing a gas-filled air-core slab downstream of point Q, is shown in FIG.
A description will be given along (b) and (c). FIG. 7 (a) shows the situation at the start of casting, where the lower opening of the mold is a dummy bar 1
At the end of the dummy bar, a gas blowing nozzle 27 of a steel pipe or a ceramic pipe is attached, and casting is started while blowing an inert gas through the nozzle 27, and the dummy bar is pulled out. At this time, a bubbling phenomenon occurs, but there is no particular problem in operation. FIG.
As shown in (b), when the amount of blowing gas is increased to some extent at the time when the nozzle exceeds the lowest point of the slab trajectory, an air core is formed inside the slab and excess gas is reduced to the lowest point Q.
From the molten steel, flows back through the molten steel, and floats as bubbles in the molten steel. At the same time, the liquid level m of the liquid core is maintained on the upper solidification front of the slab at the lowest point. Solidification does not naturally proceed downstream of the molten metal surface m. As shown in FIG. 7 (c), when the nozzle reaches the pressure roll, the nozzle is pressed down and the gas blowing stops, but the tip of the slab is completely closed and the gas in the air core remains as it is. Since the inert gas is used, the enclosed gas does not react with the molten steel or solidified shell, and therefore the gas pressure is maintained. It is in a casting state. When the arc radius R is reduced, the bending strain acting on the inner surface of the slab which is still in the brittle temperature range when the hollow core slab is pulled out increases, and internal cracks may occur. Even in such a case, there is no problem because the concentrated molten steel does not enter the cracks as in the liquid core reduction method. This is one of the effects of the present invention.

【0032】 次に引抜速度の最大化の具体的方法を示
す。この場合は一般的な往復振動式湾曲鋳型にかえて同
期式垂直回転鋳型の適用を提案することができる。その
理由は、薄肉化を得るために鋳片引抜き軌跡半径R(=
湾曲鋳型半径)を極めて小さく設計していくと、同期式
回転鋳型の実用的寸法に近くなり代替が容易となるから
である。この場合、同期式の最大の効果,すなわち鋳込
の高速化が容易となる。同期式回転鋳型の適用方法を具
体的に説明すると、図6において21は水冷車輪からな
る回転鋳型で、23は長方形の溝,24はこれに蓋をす
るためのエンドレス・ベルトで、この内側に溶鋼Meが
鋳込まれる。そして車輪の周速をベルトの走行速度と一
致させて鋳片6が引抜かれる。同期式鋳型においては引
抜速度は既に約10m/min程度が実用化されてい
る。従って本発明においても5m/minから順次高速
化することにより凝固殻厚を一層薄くすることができ
る。
Next, a specific method of maximizing the drawing speed will be described. In this case, it is possible to propose the application of a synchronous vertical rotating mold instead of a general reciprocating vibration type curved mold. The reason is that the slab drawing radius R (=
This is because if the curved mold radius is designed to be extremely small, it will be close to the practical size of the synchronous rotary mold and replacement will be easy. In this case, the maximum effect of the synchronous system, that is, the speeding up of casting is facilitated. Specifically, in FIG. 6, reference numeral 21 denotes a rotating mold composed of water-cooled wheels, 23 denotes a rectangular groove, and 24 denotes an endless belt for covering the same. Molten steel Me is cast. Then, the slab 6 is pulled out while the peripheral speed of the wheel is matched with the traveling speed of the belt. In the synchronous mold, a drawing speed of about 10 m / min has already been put to practical use. Accordingly, also in the present invention, the solidification shell thickness can be further reduced by sequentially increasing the speed from 5 m / min.

【0033】 以上、空芯圧下に基礎を置く本発明の3
効果鋳造能率の向上芯部欠陥の解消と均質化容易
なニア・ネット・シェイプ・プロセスについて説明した
が、これらの特徴の最大の応用は種々の熱間圧延製品に
対して連鋳と圧延とを合理的に結合させることにある。
既述のように本発明の3効果によりこの問題は極めて容
易に且、合理的,経済的に実施することができる。さら
に進めて、上下工程の直結のみならず、品質面で許され
る限り鋳造断面を小さくすることにより高価な圧延機の
台数も少くできるので工程直結効果とニア・ネット・シ
ェイプ効果の両方を得ることもできる。連続鋳造と圧延
の結合方法については中実鋳片を一旦切断して鋼片と
し、回分式に圧延に供するか切断せずに連続式に供す
る。また圧延に先立ち均熱炉を通過させて均熱するか直
接圧延に供する。製品,生産の事情を考慮して適切に選
べばよい。
As described above, the third aspect of the present invention based on air core pressure
Although the near net shape process, which eliminates core defects and facilitates homogenization, has been described, the biggest application of these features is continuous casting and rolling for various hot rolled products. The reason is to combine them rationally.
As described above, by the three effects of the present invention, this problem can be implemented very easily, rationally and economically. In addition to directly connecting the upper and lower processes, as well as reducing the number of expensive rolling mills by reducing the casting cross section as far as quality permits, it is possible to obtain both the process direct connection effect and the near net shape effect Can also. Regarding the method of combining continuous casting and rolling, a solid slab is cut once to form a steel slab, and is subjected to rolling in a batch system or to a continuous system without cutting. Prior to rolling, the steel sheet is passed through a heat equalizing furnace so as to be uniformly heated or directly subjected to rolling. An appropriate choice should be made in consideration of the product and production circumstances.

【0034】 中実鋳片を連続式に圧延することによ
り、従来製造困難であった大単重の線材コイルを容易に
製造することができる。従来方法では大単重ビレット,
大型加熱炉などを要し、経済的には相当負担となってい
て最大3トンが実用限界であった。本方式では線材コイ
ル搬出設備だけ大型にすればよいので3〜20トン・コ
イルは容易且、低コストで製造できる。これは線材2次
加工の合理化に対して極めて効果的な手段となる。
By continuously rolling the solid slab, it is possible to easily manufacture a large unit weight wire coil, which has been conventionally difficult to manufacture. In the conventional method, large single billet,
It requires a large heating furnace, etc., and is economically burdensome, with a maximum of 3 tons at the practical limit. In this method, since only the wire coil unloading equipment needs to be large, a 3 to 20 ton coil can be manufactured easily and at low cost. This is an extremely effective means for rationalizing the secondary processing of the wire rod.

【0035】 小径線材や小径棒鋼を製造する場合、生
産能率の隘路は仕上圧延速度にある。そのため生産能力
強化の方法としてかつては多条圧延がなされたが最近で
は仕上圧延前に圧延材を圧延方向に2条以上に分割して
それぞれを別々のもしくは同一の仕上圧延に送るいわゆ
るスリット圧延法が採られることがある。本発明は連鋳
から製品まで単ストランドで連続的に処理することを原
則としているので必要に応じこのスリット圧延法を適用
したのが図8で図中17は分割ロールであってこのよう
な組合せによって本発明の効果がうまく発揮される。
In the production of small-diameter wire rods and small-diameter steel bars, the bottleneck of production efficiency lies in the finish rolling speed. For this reason, multi-rolling was once used as a method of enhancing production capacity, but recently, the so-called slit rolling method in which a rolled material is divided into two or more strips in the rolling direction before finish rolling and each is sent to separate or identical finish rolling. May be adopted. The present invention is based on the principle that a single strand is continuously processed from a continuous casting to a product. Therefore, this slit rolling method is applied as required in FIG. 8 and FIG. Thereby, the effect of the present invention is successfully exhibited.

【0036】[0036]

【実施例】本発明を種々の熱間圧延鋼材の製造に適用す
る場合の連続鋳造設備の基本仕様を表1にまとめる。表
中の鋳造能率と中実鋳片寸法に基けば、当業者であれ
ば容易且、合理的に後続の圧延設備を設計することがで
きる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Table 1 summarizes the basic specifications of a continuous casting facility when the present invention is applied to the production of various hot rolled steel products. Casting efficiency and the middle group Dzu fluff actual slab dimensions in the table, those skilled in the art readily且can be designed rationally subsequent rolling equipment.

【0037】[0037]

【発明の効果】本発明によれば、湾曲型連鋳において鋳
片を未凝固部を残した状態で上方に引抜いて空芯鋳片と
なし、それを圧接圧延して中実鋳片として引抜くにさい
して凝固殻厚を適切に設定し、且つ鋳込温度を適切に設
定するので、或いはその後直ちに圧延工程に送る一貫連
続方式を採用することにより、次の様な多くの効果を得
ることができる。鋳造能率が飛躍的に向上するので、連
鋳と圧延の直結が可能となり設備費,操業費が大幅に削
減される。偏析現象が全く発生せず且内部は均質な柱状
晶のみからなるのでこれは高級鋼分野には極めて有利で
ある。その1効果として熱間鍛錬比を小さくできる。こ
れは設備費の大幅削減やコスト低減となる。同様に1方
向凝固鋼塊法やESR法などの特殊鋳造法にかわって均
質な鋼片を連鋳で低コスト,高生産性で製造することが
できる。低級量産普通鋼に適用した場合、偏析がないの
で不純物管理を規格内で緩和することができる。これは
鉄スクラップ・コストや精錬コストの低減をもたらす。
スラブに適用すると、従来のスラブ連鋳に比べ表面品質
は同等で内部品質は大幅に改善されるうえに容易に薄ス
ラブができる。しかも設定条件により極めて薄いスラブ
も可能となる。これは新規の鋼板用ニア・ネット・シェ
イプ・プロセスとなる。大型の形鋼に適用すると、薄
肉,高品質のビーム・ブランクが容易に製造できる。線
材に適用すると超重量線材コイルが容易に製造できる。
According to the present invention, according to the present invention, in a curved type continuous casting, a cast slab is drawn upward in a state where an unsolidified portion is left to form an air-core slab, which is pressed and rolled into a solid slab. The following many effects can be obtained by appropriately setting the thickness of the solidified shell and setting the casting temperature appropriately before pulling out, or by adopting an integrated continuous system that immediately sends it to the rolling process. Can be. Since the casting efficiency is dramatically improved, it is possible to directly connect the continuous casting and the rolling, thereby greatly reducing equipment costs and operating costs. This is extremely advantageous in the field of high-grade steel since no segregation phenomenon occurs and the inside consists only of homogeneous columnar crystals. One effect is that the hot forging ratio can be reduced. This results in significant reductions in equipment costs and costs. Similarly, in place of a special casting method such as the one-way solidified steel ingot method or the ESR method, a homogeneous slab can be produced by continuous casting at low cost and high productivity. When applied to low-grade mass-produced ordinary steel, there is no segregation, so that impurity management can be relaxed within the standard. This results in lower scrap and refining costs.
When applied to slabs, compared to conventional slab continuous casting, the surface quality is the same, the internal quality is greatly improved, and a thin slab can be easily formed. In addition, an extremely thin slab can be obtained depending on the setting conditions. This will be a new near net shape process for steel sheets. When applied to large section steels, thin, high quality beam blanks can be easily manufactured. When applied to a wire, a super heavy wire coil can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明で使用する連続鋳造・連続圧延設備を
例示する概略側面図である。
FIG. 1 is a schematic side view illustrating a continuous casting / continuous rolling facility used in the present invention.

【図2】 本発明の核心をなす空芯鋳片圧下の模試図で
ある。
FIG. 2 is a schematic diagram of the core of the present invention under air core slab pressure reduction.

【図3】 柱状晶長さに及ぼす鋳込温度の影響を示す例
である。
FIG. 3 is an example showing the effect of casting temperature on columnar crystal length.

【図4】 空芯鋳片の圧下によるビーム・ブランク製造
の例を示す。
FIG. 4 shows an example of manufacturing a beam blank by rolling down an air core slab.

【図5】 ガス充満の空芯鋳片の製造を示す例である。FIG. 5 is an example showing the production of a gas-filled hollow core slab.

【図6】 ロータリーキャスト法に本発明を適用した例
を示す。
FIG. 6 shows an example in which the present invention is applied to a rotary casting method.

【図7】 ガス充満の空芯を形成させる方法を示す。FIG. 7 illustrates a method of forming a gas-filled air core.

【図8】 本発明で使用する連続鋳造と圧延の直結を示
す例である。
FIG. 8 is an example showing a direct connection between continuous casting and rolling used in the present invention.

【符号の説明】[Explanation of symbols]

1:レードル 2:タンディッシュ 3:鋳型
4:電磁撹拌装置 5:浸漬ノズル 6:鋳片
7:2次冷却装置 8:圧接ロール 9:ガイド・
ロール 10:ピンチ・ロール 11:ダミー・バ
ー 12:中実鋳片 13:シャー 14:均熱
炉 15:タンデム式粗圧延列 16:中間圧延列
17:分割ロール 18:仕上圧延列 19:
捲取機20:集束機 21:回転鋳型 22:空芯
鋳片 23:長方形の溝24:エンドレス・ベルト
25:ベルト・ガイド 26:テーパーブロック
27:ガス吹出ノズル 31:I型ビーム・ブラン
ク 32:孔型ロール 33:H型ビーム・ブラン
ク 34:ユニバーサル・ロール Q:特定点
Lq:液芯 Me:溶鋼 Cv:真空空芯 S:
空芯部 L:鋳込面レベル Cg:ガス充満空芯
m:ガス空芯側湯面
1: Ladle 2: Tundish 3: Mold
4: Electromagnetic stirrer 5: Immersion nozzle 6: Slab
7: Secondary cooling device 8: Press roll 9: Guide
Roll 10: Pinch roll 11: Dummy bar 12: Solid slab 13: Shear 14: Soaking furnace 15: Tandem type rough rolling row 16 : Intermediate rolling row 17: Split roll 18: Finish rolling row 19:
Winding machine 20: Bundle machine 21: Rotating mold 22: Air-core slab 23: Rectangular groove 24: Endless belt
25: Belt guide 26: Tapered block
27: Gas blowing nozzle 31: I-beam blank 32: Hole roll 33: H-beam blank 34: Universal roll Q: Specific point
Lq: Liquid core Me: Molten steel Cv: Vacuum air core S:
Air core L: Casting surface level Cg: Gas-filled air core
m: Gas core side hot surface

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き (31)優先権主張番号 特願平6−150697 (32)優先日 平成6年5月26日(1994.5.26) (33)優先権主張国 日本(JP) 特許権者において、権利譲渡または実施許諾の用意があ る。 (58)調査した分野(Int.Cl.7,DB名) B22D 11/128 350 B22D 11/128 B22D 11/115 B22D 11/12 B22D 11/20 ──────────────────────────────────────────────────続 き Continued on the front page (31) Priority claim number Japanese Patent Application No. 6-150697 (32) Priority date May 26, 1994 (May 26, 1994) (33) Priority claim country Japan (JP) The patentee is prepared to transfer or license. (58) Field surveyed (Int.Cl. 7 , DB name) B22D 11/128 350 B22D 11/128 B22D 11/115 B22D 11/12 B22D 11/20

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鋼の連続鋳造において,鋳片内部の液芯
を鋳片引抜き軌跡の特定点Qでとどめることによって、
Q点より下流側の鋳片内部に空芯を形成し、該空芯部を
ロールで圧接することにより、中実鋳片として引抜くに
際し、鋳片横断面形状を長方形とし、鋳片引抜き軌跡が
少なくとも鋳型から吐出された直後は湾曲する様な引抜
きを行う湾曲型連続鋳造を行い、鋳片引抜き軌跡におけ
る湾曲長さを円周の1/2以上として鋳込面より高い位
置まで鋳片を引抜くと共に、前記鋳込面よりも大気圧ヘ
ッドに相当する静溶鋼ヘッド高さ分高い位置を特定点Q
とし、該Q点における下記式によって求められる凝固殻
厚比α(=2d/A)を0.25〜0.85とすること
を特徴とする連続鋳造法。 式中、d:Q点における鋳片凝固殻厚(m) A:鋳型横断面の短幅寸法(m)
1. In continuous casting of steel, by keeping a liquid core inside a slab at a specific point Q of a slab drawing locus,
An air core is formed inside the slab downstream from the point Q, and the air core is pressed by a roll to draw a solid slab. At least immediately after being discharged from the casting mold, perform curved die continuous casting to perform drawing such that it is curved, and set the curved length in the slab withdrawal trajectory to 周 or more of the circumference and move the slab to a position higher than the casting surface. At the same time as pulling out, the position higher than the casting surface by the height of the static molten steel
And a solidified shell thickness ratio α (= 2d / A) determined at the point Q by the following equation is 0.25 to 0.85. In the formula, d: thickness of slab solidified shell at point Q (m) A: short width of mold cross section (m)
【請求項2】 鋼の連続鋳造において,鋳片内部の液芯
を鋳片引抜き軌跡の特定点Qでとどめることによって、
Q点より下流側の鋳片内部に空芯を形成し、該空芯部を
ロ−ルで圧接することにより、中実鋳片として引抜くに
際し、鋳片引抜き軌跡が少なくとも鋳型から吐出された
直後は湾曲する様な引抜きを行う湾曲型連続鋳造を行
い、鋳片引抜き軌跡における湾曲長さを円周の1/2以
上として鋳込面より高い位置まで鋳片を引抜くと共に、
前記鋳込面よりも大気圧ヘッドに相当する静溶鋼ヘッド
高さ分高い位置を特定点Qとし、鋳込温度を当該鋼種の
液相線温度より 20〜60℃高い範囲とすることによって、鋳片外皮
のチル晶の内側を実質的に柱状晶とするか、または 0〜15℃高い範囲とし、鋳型内溶鋼に電磁撹拌を加
えることによって、鋳片外皮のチル晶の内側を実質的に
粒状晶とすることを特徴とする連続鋳造法。
2. In continuous casting of steel, by keeping the liquid core inside the slab at a specific point Q of the slab drawing locus,
An air core was formed inside the slab downstream of the point Q, and the air core portion was pressed by a roll so that at the time of drawing as a solid slab, at least the slab drawing locus was discharged from the mold.
Immediately afterwards, curved continuous casting is performed to draw in a curved shape.
The bending length in the slab drawing locus should be less than half the circumference.
Pull out the slab to a position higher than the casting surface as the top,
Static steel head equivalent to an atmospheric pressure head rather than the casting surface
By setting the position higher by the height as the specific point Q and setting the casting temperature in the range of 20 to 60 ° C. higher than the liquidus temperature of the steel type, the inside of the chill crystal of the slab skin is made substantially columnar. A continuous casting method wherein the inside of the chill crystal of the slab slab is made substantially granular by applying electromagnetic stirring to the molten steel in the mold at a temperature higher by 0 to 15 ° C.
【請求項3】 鋳込温度を当該鋼種の液相線温度より
20〜60℃高い範囲とすることによって、鋳片外皮の
チル晶の内側を実質的に柱状晶とすか、または、0
〜15℃高い範囲とし、鋳型内溶鋼に電磁攪拌を加える
ことによって、鋳片外皮のチル晶の内側を実質的に粒状
晶とすることを特徴とする請求項1に記載の連続鋳造方
法。
The 3. A casting temperature by a 20 to 60 ° C. range above liquidus temperature of the steel species, or you substantially columnar crystals inside the chill crystals of the slab skin, or 0
The continuous casting method according to claim 1, wherein the inside of the chill crystal of the slab slab is made into a substantially granular crystal by applying electromagnetic stirring to molten steel in a mold by setting the temperature to a range higher by about 15 ° C.
【請求項4】 請求項1または請求項3において、設備
の仕様および鋳造条件を下記(1)〜(5)式に従って
設定する連続鋳造法。 Pn=4ρk・Ln・[(1/α)+(β/α)−1]・・・(1) V=Ln・(2k/αA) ・・・・・・・・・・・・・・(2) R=(Ln−1.4)/π ・・・・・・・・・・・・・・(3) d=k(Ln/V)0.5 ・・・・・・・・・・・・・・(4) A’=2(1−p)・d ・・・・・・・・・・・・・・(5) 式中、Pn:鋳造能率(kg/min) ρ:鋼材密度(7600kg/m) Ln:機長(鋳込面と特定点Qの間の長さ:m) k:凝固定数0.023〜0.031(m/min
0.5) R:鋳片引抜軌跡における湾曲部半径(m) B:鋳型横断面長幅寸法(m) α:凝固殻厚比 0.25≦α≦0.85 β:矩形比 β=B/A A’:中実鋳片横断面の短幅厚さ(m) p:圧接ロールによる実質圧下率 =(2d−A’)/
2d=0.05〜0.40
4. The continuous casting method according to claim 1, wherein the equipment specifications and casting conditions are set according to the following equations (1) to (5). Pn = 4ρk 2 · Ln · [(1 / α) + (β / α) -1] (1) V = Ln · (2k / αA) 2 ··· (2) R = (Ln-1.4) / π (3) d = k (Ln / V) 0.5 (4) A ′ = 2 (1−p) · d (5) where Pn: casting efficiency (kg / min) ) Ρ: Steel material density (7600 kg / m 3 ) Ln: Machine length (length between casting surface and specific point Q: m) k: Solidification constant 0.023 to 0.031 (m / min)
0.5 ) R: radius of the curved portion in the slab drawing locus (m) B: mold cross-sectional length (m) α: solidified shell thickness ratio 0.25 ≦ α ≦ 0.85 β: rectangular ratio β = B / A A ': Short width thickness (m) of cross section of solid cast slab p: Substantial reduction ratio by pressing roll = (2d-A') /
2d = 0.05 to 0.40
【請求項5】 請求項1において、圧接に当って孔型圧
延方式もしくはユニバ−サル・ミルによる4面同時圧下
方式によって圧接することにより、中実鋳片の横断面形
状をH型又はI型にすることを特徴とする連続鋳造方
法。
5. The solid cast slab according to claim 1, wherein said solid slab is H-shape or I- shape by press-contacting by means of a groove rolling method or a simultaneous four-side pressing method using a universal mill. continuous casting method characterized by the.
【請求項6】 鋼の連続鋳造において、鋳片内部の液芯
を鋳片引抜き軌跡の特定点Qでとどめることによって、
Q点より下流側の鋳片内部に空芯を形成し、該空芯部を
ロールで圧接することにより、中実鋳片として引抜くに
際し、鋳片引抜き軌跡が少なくとも鋳型から吐出された
直後は湾曲する様な引抜きを行う湾曲型連続鋳造を行
い、鋳片引抜き軌跡における湾曲長さを円周の1/4超
として円弧の最下点を特定点Qとし、Q点より更に高い
位置へ鋳片を引抜くとともに、鋳片内部の液芯最先端位
置をQ点の近傍でとどめ、Q点より下流側の鋳片内部に
不活性ガスを加圧充満させて空芯部を形成せしめ、凝固
殻厚比αを0.05〜0.5とする連続鋳造方法。
6. In continuous casting of steel, by keeping the liquid core inside the slab at a specific point Q of the slab drawing locus,
By forming an air core inside the slab downstream from the point Q and pressing the air core with a roll, when drawing as a solid slab, at least immediately after the slab drawing locus is discharged from the mold, Perform curved type continuous casting to perform bending drawing, set the curved length in the slab drawing locus to be more than 1/4 of the circumference, set the lowest point of the arc as the specific point Q, and cast to a position higher than the Q point. While pulling out the slab, the liquid core inside the slab remains at the foremost point near point Q, and the inside of the slab downstream from point Q is filled with an inert gas under pressure to form an air core and solidify. A continuous casting method in which the shell thickness ratio α is set to 0.05 to 0.5.
【請求項7】 請求項4または請求項6において、赤熱
状態の中実鋳片を1)一旦切断して鋼片として、もしく
は2)そのまま連続鋳片として、a)均熱炉を経由して
均熱した後、もしくはb)均熱炉を経由せず直接単スト
ランドの圧延ラインに供給して鋼板、形鋼、平鋼、棒
鋼、線材のいずれかに圧延することを特徴とする連続鋳
造・圧延方法。
7. The method according to claim 4 or 6, wherein the solid slab of red heat is cut 1) once as a steel slab, or 2) as a continuous slab, a) through a soaking furnace. after soaking, or b) the steel sheet is supplied to the rolling line of the direct single-strand without going through the soaking furnace, section steel, flat steel, steel bars, continuous casting, characterized in that the rolling in either wire Rolling method.
JP4119095A 1994-01-19 1995-01-18 Continuous casting of steel and continuous casting and rolling Expired - Fee Related JP3218361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4119095A JP3218361B2 (en) 1994-01-19 1995-01-18 Continuous casting of steel and continuous casting and rolling

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP3280894 1994-01-19
JP8218894 1994-03-14
JP12946394 1994-05-06
JP6-129463 1994-05-26
JP6-32808 1994-05-26
JP6-150697 1994-05-26
JP15069794 1994-05-26
JP6-82188 1994-05-26
JP4119095A JP3218361B2 (en) 1994-01-19 1995-01-18 Continuous casting of steel and continuous casting and rolling

Publications (2)

Publication Number Publication Date
JPH0839219A JPH0839219A (en) 1996-02-13
JP3218361B2 true JP3218361B2 (en) 2001-10-15

Family

ID=27521453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4119095A Expired - Fee Related JP3218361B2 (en) 1994-01-19 1995-01-18 Continuous casting of steel and continuous casting and rolling

Country Status (1)

Country Link
JP (1) JP3218361B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263767A (en) * 2005-03-23 2006-10-05 Showa Denko Kk Anomalous-shape material and its producing method
JP2006315041A (en) * 2005-05-13 2006-11-24 Katsuhiko Yamada Continuous casting method
JP2011121073A (en) * 2009-12-09 2011-06-23 Eiko Yamada Method of manufacturing large section steel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254149A (en) * 2001-03-01 2002-09-10 Katsuhiko Yamada Continuous casting method
JP5050219B2 (en) * 2001-05-29 2012-10-17 山田 勝彦 Continuous casting and rolling method
CN114472834B (en) * 2022-02-17 2023-10-24 山东钢铁股份有限公司 Continuous production system and continuous production method for composite casting blank
CN117564235B (en) * 2024-01-15 2024-04-09 中铝材料应用研究院有限公司 Casting and rolling device and method for aluminum alloy plate blank

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263767A (en) * 2005-03-23 2006-10-05 Showa Denko Kk Anomalous-shape material and its producing method
JP2006315041A (en) * 2005-05-13 2006-11-24 Katsuhiko Yamada Continuous casting method
JP4645296B2 (en) * 2005-05-13 2011-03-09 山田 勝彦 Continuous casting method
JP2011121073A (en) * 2009-12-09 2011-06-23 Eiko Yamada Method of manufacturing large section steel

Also Published As

Publication number Publication date
JPH0839219A (en) 1996-02-13

Similar Documents

Publication Publication Date Title
EP0655288B1 (en) Continuous casting process and continuous casting/rolling process for steel
US5634510A (en) Integrated manufacturing system
EP3804874B1 (en) Metal compound plate strip continuous production equipment and method
CN108300913A (en) A kind of continuous casting and rolling process for production of 5356 aluminum alloy welding bar
RU2750305C2 (en) Method for continuous manufacture of coiled hot-rolled strip in combined casting and rolling unit, method for activating combined casting and rolling unit and combined casting and rolling unit
JP3218361B2 (en) Continuous casting of steel and continuous casting and rolling
CN110090861B (en) Endless rolling method for simple section steel
WO2013086881A1 (en) Machining equipment and method for continuous metal casting
US7025118B2 (en) Method and device for continuously casting ingots, slabs or thin slabs
JP4544544B1 (en) Forming method from continuous cast slab to steel slab
CN1083307C (en) Beam formed from as-continuously cast beam blank
CN114749616A (en) Ingot mould for large-scale high-length-diameter ratio steel ingot and blank forming method
US3743005A (en) Process for producing hot rolled three layer steel products from continuously cast hollow tubes
JP2000326060A (en) Method and apparatus for producing continuously cast steel material
JP3648825B2 (en) Manufacturing method of continuous cast round slab for seamless steel pipe manufacturing with good workability
JP2002346710A (en) Continuous casting and rolling method
RU2226138C2 (en) Billet continuous casting process
JPS5997747A (en) Production of ultrathin slab by continuous casting method
JP3161293B2 (en) Continuous casting method
CN101885133B (en) Method for improving homogeneity of steel structure and equipment thereof
JPH0342981B2 (en)
JPH01258801A (en) Method for forging round shaped continuous cast billet
CN1039371A (en) Thickness is less than the production method of 10 millimeters steel band
JPS63180351A (en) Cast slab casting method
CN115815541A (en) Casting method and device for high-uniformity large-size aluminum alloy ingot

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees