JPH09291378A - Coated cemented carbide - Google Patents

Coated cemented carbide

Info

Publication number
JPH09291378A
JPH09291378A JP13105396A JP13105396A JPH09291378A JP H09291378 A JPH09291378 A JP H09291378A JP 13105396 A JP13105396 A JP 13105396A JP 13105396 A JP13105396 A JP 13105396A JP H09291378 A JPH09291378 A JP H09291378A
Authority
JP
Japan
Prior art keywords
layer
cemented carbide
titanium
coated cemented
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13105396A
Other languages
Japanese (ja)
Other versions
JP3872544B2 (en
Inventor
Hiroaki Inoue
洋明 井上
Hiroshi Ueda
広志 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP13105396A priority Critical patent/JP3872544B2/en
Publication of JPH09291378A publication Critical patent/JPH09291378A/en
Application granted granted Critical
Publication of JP3872544B2 publication Critical patent/JP3872544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve wear resistance and chipping resistance under various machining conditions by regulating the amounts of zirconium and hafnium, contained in a base material made of tungsten-carbide-base cemented carbide, and also regulating the distribution of binding phases in the base material. SOLUTION: A base material is made of WC-base cemented carbide containing Zr and Hf. At this time, 0.01<=M1 /M2 <0.25, by mole ratio, is satisfied when M1 and M2 represent the total content of Zr and Hf and the total content of Ti, respectively, and further, a layer enriched in binding phase, having a binding phase concentration higher than the average binding phase concentration in the base material, is provided onto the part in the vicinity of the surface of the base material. Subsequently, a TiN layer, as inner layer to be in contact with the base material, and a TiCN layer, as intermediate layer to be in contact with the inner layer, are provided. Further, an outer layer, which is composed of one or more substances selected from TiC, TiCN, Ti carbonate, Ti carbonitrooxide, and Al2 O3 and consists of one or more layers including at least one or more Al2 O3 layers, is formed on the intermediate layer. Moreover, although the thickness of the intermediate layer is regulated so that it is larger than that of the outer layer, the total thickness of these three layers is regulated to 8-30μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、切削工具等に適した耐
摩耗性に優れた被覆超硬合金に関し、特に鋼の切削に好
適な切削工具に適する被覆超硬合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coated cemented carbide having excellent wear resistance suitable for a cutting tool and the like, and more particularly to a coated cemented carbide suitable for a cutting tool suitable for cutting steel.

【0002】[0002]

【従来の技術】従来、例えば特開平8−1408号公報
や特開平8−71814号公報などに記載されるよう
に、超硬合金基体にTiC、TiN、TiCN等の皮膜
を介して更にAl23皮膜を蒸着し耐摩耗性の優れた切
削工具として用いられている。また、特開平6−330
352号公報は投射速度の高いショットピーニングによ
って工具の耐欠損性を高めている。
2. Description of the Related Art Conventionally, as described in, for example, JP-A-8-1408 and JP-A-8-71814, Al 2 is further formed on a cemented carbide substrate through a film of TiC, TiN, TiCN or the like. It is used as a cutting tool with excellent wear resistance by depositing an O 3 film. In addition, JP-A-6-330
Japanese Patent No. 352 improves the fracture resistance of a tool by shot peening with a high projection speed.

【0003】[0003]

【発明が解決しようとする課題】近年、切削加工の省力
化、無人化の要求に伴い、より汎用性が高く、かつ長寿
命の工具が求められる傾向にある。本願発明は、この要
求に応えるべく多様な切削条件での使用に耐える耐摩耗
性と耐欠損性を広い範囲で満足する工具材料を提供する
ことを課題とする。また、ショットピーニングによって
耐欠損性を高めた工具を、より低コストで提供し、さら
に、近年の切削速度の高速化に伴う溶着物分離損傷の問
題を解決し平滑な被削面が得られる工具材料を提供す
る。
In recent years, along with the demand for labor saving and unmanned cutting, there is a tendency for tools with higher versatility and longer life to be required. An object of the present invention is to provide a tool material satisfying a wide range of wear resistance and fracture resistance that can be used under various cutting conditions in order to meet this demand. In addition, we provide tools with improved fracture resistance by shot peening at a lower cost, and also solve the problem of deposit separation damage due to the recent increase in cutting speed and obtain a smooth work surface. I will provide a.

【0004】[0004]

【課題を解決するための手段及び作用】上記の課題を解
決すべく、従来の被覆超硬合金に着目し種々の検討を行
った結果、得られた知見に基づいて本願発明に至った。
得られた知見及び本願発明の構成について以下に説明す
る。
[Means and Actions for Solving the Problems] In order to solve the above problems, various studies have been conducted focusing on the conventional coated cemented carbide, and as a result, the present invention has been accomplished based on the findings.
The obtained knowledge and the constitution of the present invention will be described below.

【0005】第1に、基体となる超硬合金は、Zr及び
/又はHfを含むWC基超硬合金とする。Zr、Hfは
基体の、特に切削時の刃先温度程度の高温での耐塑性変
形性を向上させ、ひいては耐摩耗性の向上につながる。
これらの元素は、合金中では大部分がチタンの炭化物な
どと固溶体を形成して存在しているので、最適なZr、
Hfの量はTiとのモル比で、0.01≦M1/M2
0.25、と表される。但し、M1はZrとHfの総
量、M2はTiの総量である。この値が0.01を下回
ると充分な効果が得難く、逆に0.25以上では耐欠損
性が劣化する。尚、上式を満足する場合でも基体合金全
体に対し0.3wt%以上の添加は合金の脆化を招き好
ましくない。
First, the base cemented carbide is a WC-based cemented carbide containing Zr and / or Hf. Zr and Hf improve the plastic deformation resistance of the substrate, especially at a high temperature such as the cutting edge temperature during cutting, and eventually improve the wear resistance.
Most of these elements exist in the alloy in the form of a solid solution with a carbide of titanium or the like, so that the optimum Zr,
The amount of Hf is a molar ratio with Ti: 0.01 ≦ M 1 / M 2 <
It is expressed as 0.25. However, M 1 is the total amount of Zr and Hf, and M 2 is the total amount of Ti. If this value is less than 0.01, it is difficult to obtain a sufficient effect, and conversely, if it is 0.25 or more, the fracture resistance deteriorates. Even if the above formula is satisfied, addition of 0.3 wt% or more with respect to the entire base alloy causes embrittlement of the alloy, which is not preferable.

【0006】第2に、超硬基体には、被覆に先立ち表面
近傍に結合相富化層を設ける。ここに結合相富化層と
は、基体の平均的な結合相濃度に対し相対的に富化した
結合相濃度を有する層のことであり、硬さの観点から硬
度低下層、軟質層などとも呼ばれている。また、この層
の中にβ相が消失した領域がある場合には、その領域を
脱β層と呼ぶ場合もある。これを設けることにより基体
の靱性が増し、耐チッピング性、耐欠損性を向上させる
効果がある。但し、この部分は基体内部に対して硬度が
低下しており切刃の塑性変形が懸念される。しかし、結
合相富化層が10〜30μm程度の厚さであれば、切削
中の切刃の耐塑性変形性の劣化も問題になるほどではな
い。
Second, the cemented carbide substrate is provided with a binder phase enriched layer near the surface prior to coating. Here, the binder phase-enriched layer is a layer having a binder phase concentration relatively enriched with respect to the average binder phase concentration of the substrate, and from the viewpoint of hardness, it is also referred to as a hardness-reduced layer or a soft layer. being called. Further, when there is a region in which the β phase disappears in this layer, the region may be referred to as a β-free layer. By providing this, the toughness of the substrate is increased, and chipping resistance and chipping resistance are improved. However, the hardness of this portion is lower than that of the inside of the substrate, and there is concern that the cutting edge may be plastically deformed. However, if the thickness of the binder phase enriched layer is about 10 to 30 μm, deterioration of the plastic deformation resistance of the cutting edge during cutting is not a problem.

【0007】さらに結合相富化層は後述するように、被
覆層中の残留応力を調整する際にも有効な働きをする。
Further, the binder phase enriched layer also works effectively in adjusting the residual stress in the coating layer, as described later.

【0008】結合相富化層は種々の方法で設けることが
可能であるが、具体的に示せば、超硬合金基体成分中
に、例えばTiNを添加するなどして窒素を成分中に取
り入れることで、焼結過程において生成する。これは、
焼結過程における基体表面からの脱窒により表面近傍の
Tiなどが液相中にとけ込み、基体内部へ溶質移動し、
基体内部で炭化物などとして析出するために、相対的に
基体表面近傍の結合層が富化するもの考えられている。
結合相富化層の厚さや富化の程度は添加する窒素量や熱
処理時間を調整することで簡単に操作できる。結合相富
化の程度は、基体断面を例えばEPMA(Electr
on Probe Microanalysis)など
で線分析すれば明確に把握することができる。
The binder phase-enriched layer can be provided by various methods. Specifically, nitrogen is incorporated into the cemented carbide substrate component by adding, for example, TiN. And is generated in the sintering process. this is,
Due to denitrification from the surface of the substrate during the sintering process, Ti and the like near the surface melt into the liquid phase and migrate solute inside the substrate,
It is considered that the bonding layer in the vicinity of the surface of the substrate is relatively enriched because it is precipitated as a carbide within the substrate.
The thickness of the binder phase enriched layer and the degree of enrichment can be easily controlled by adjusting the amount of nitrogen added and the heat treatment time. The degree of binder phase enrichment can be determined by, for example, EPMA (Electr)
on probe microanalysis) and the like, it can be clearly grasped by line analysis.

【0009】尚、結合相富化層を設けた後に切刃稜に対
しホーニング処理などの加工をすると、その部分の結合
相富化層が除去されてしまう場合がある。これを防ぐた
めには、加工後に結合相富化層を設ける方法、圧粉成形
時、又は圧粉成形体において刃先稜の形状を整える方法
などがある。しかし、切刃稜は切削において基本的には
被削材を摺動する部分であり、強い衝撃力はかからない
ので、むしろ耐摩耗性の観点から結合相富化層は無い方
が好都合の場合も多い。
If the cutting edge is subjected to a honing treatment or the like after the binder phase-enriched layer is provided, the binder phase-enriched layer in that portion may be removed. In order to prevent this, there are a method of providing a binder phase-enriched layer after processing, a method of powder compacting, or a method of adjusting the shape of the cutting edge of the powder compact. However, the cutting edge is basically a part that slides on the work material during cutting, and a strong impact force is not applied, so rather from the viewpoint of wear resistance it may be convenient not to have a binder phase enriched layer. Many.

【0010】第3に、基体の表面においては結合相量が
少ない方が好ましい。これは、後で蒸着する皮膜中への
結合相成分の拡散を防ぎ膜質の劣化を防ぐためであり、
また被覆層と基体との密着力を向上させる為である。通
常、焼結肌の超硬合金基体においてその表面は、焼結過
程において結合相金属が基体内部から滲み出してきてお
り、結合相に富む状態となっている。基体表面の結合相
を減少させるには基体の焼結後に、例えば化学的な酸処
理などによってもよいが、熱処理による方法が簡便であ
る。具体的には基体の真空焼結後、冷却時に炉内へ大気
圧程度の雰囲気ガスを導入して冷却すれば結合相の滲み
出しが抑えられ、結合相が減少した表面が得られる。表
面の結合相減少の程度は、例えばEDX(Energy
Dispersive X−ray spectro
meter)などの面分析を、基体最表面と基体断面に
ついて行うことにより確認できる。
Thirdly, it is preferable that the amount of binder phase is small on the surface of the substrate. This is to prevent the diffusion of the binder phase component into the film to be deposited later and prevent the deterioration of the film quality,
It is also for improving the adhesion between the coating layer and the substrate. Usually, in the surface of a cemented carbide substrate having a sintered surface, the binder phase metal oozes out from the inside of the substrate during the sintering process, and is in a state rich in the binder phase. In order to reduce the binder phase on the surface of the substrate, for example, a chemical acid treatment may be performed after sintering the substrate, but a method of heat treatment is convenient. Specifically, after vacuum sintering of the substrate, if an atmospheric gas of about atmospheric pressure is introduced into the furnace during cooling to cool the substrate, exudation of the binder phase is suppressed, and a surface with a reduced binder phase is obtained. The degree of reduction of the bonded phase on the surface is determined by, for example, EDX (Energy).
Dispersive X-ray spectro
It can be confirmed by performing surface analysis such as (metr) on the outermost surface of the substrate and the cross section of the substrate.

【0011】第4に、基体に接する内層としてTiN層
を設ける。これは蒸着時における基体からの炭素の拡散
を防ぎ、基体に脆弱なη相が発生することを防止する。
また、基体からのCoの拡散を防ぎ、膜質の劣化を防止
する。この層の厚さは0.2〜1μm程度で充分であ
り、過度に厚すぎると成膜時間がかかり生産能率を損な
うばかりでなく、被覆層全体の厚さが厚くなり、後述す
るように膜の耐剥離性に悪影響を与える。
Fourth, a TiN layer is provided as an inner layer in contact with the substrate. This prevents the diffusion of carbon from the substrate during vapor deposition and prevents the generation of a brittle η phase on the substrate.
Further, Co is prevented from diffusing from the substrate and deterioration of the film quality is prevented. It is sufficient that the thickness of this layer is about 0.2 to 1 μm. If it is excessively thick, not only the film formation time will be lost, but also the production efficiency will be impaired, and the thickness of the entire coating layer will be increased, which will be described later. Adversely affects the peel resistance of.

【0012】第5に、内層に接する中間層としてTiC
N層を設ける。この層は鋼の切削において抜群の耐摩耗
性を示す。この層は反応ガス組成として例えば、TiC
4:1〜10%、CH3CN:0.1〜5%、N2:0
〜35、H2:残り(以上いずれもvol%)、反応温
度として例えば700〜950℃、炉内圧力として例え
ば30〜200torrの条件で化学蒸着されるのが望
ましい。この時、TiCl4に起因するClが被覆層中
に残留するが、その残留量は0.05at%より大かつ
1.2at%以下であることが望ましい。この範囲内で
中間層は微細な柱状晶となり、よりよい耐摩耗性を示
す。0.05at%以下では結晶が粗大化し脆弱な層と
なるし、1.2at%より大である場合には硬度が低下
し、被覆層の密着力も低下するので、いずれも工具寿命
の低下につながる。Cl量はEPMAにより確認でき
る。Cl量は蒸着温度、反応ガスの組成、蒸着時間等を
適宜調節して調整する。この層は耐摩耗の目的で設けら
れるので、基本的には厚いほどよいが、被覆層全体の厚
さに限界があるので、実際には厚さに制限を受ける。中
間層は8μm以上の厚さが良く、9.5μm以上がより
好ましい。
Fifth, TiC is used as an intermediate layer in contact with the inner layer.
An N layer is provided. This layer exhibits outstanding wear resistance in cutting steel. This layer has a reaction gas composition of, for example, TiC.
l 4: 1~10%, CH 3 CN: 0.1~5%, N 2: 0
˜35, H 2 : the rest (both of which are vol%), the reaction temperature is preferably 700 to 950 ° C., and the furnace pressure is preferably 30 to 200 torr. At this time, Cl resulting from TiCl 4 remains in the coating layer, but the residual amount is preferably more than 0.05 at% and 1.2 at% or less. Within this range, the intermediate layer becomes fine columnar crystals and exhibits better wear resistance. If it is less than 0.05 at%, the crystal becomes coarse and becomes a fragile layer, and if it is more than 1.2 at%, the hardness is lowered and the adhesion of the coating layer is also lowered, which leads to a shortened tool life. . The amount of Cl can be confirmed by EPMA. The amount of Cl is adjusted by appropriately adjusting the vapor deposition temperature, the composition of the reaction gas, the vapor deposition time and the like. Since this layer is provided for the purpose of abrasion resistance, it is basically better to be thick, but there is a limit to the total thickness of the coating layer, so that the thickness is actually limited. The intermediate layer preferably has a thickness of 8 μm or more, more preferably 9.5 μm or more.

【0013】第6に、中間層に接する外層として、炭化
チタン、窒化チタン、炭窒化チタン、炭酸化チタン、炭
窒酸化チタン、アルミナより選ばれる1種以上の物質よ
りなり、少なくとも1層以上のアルミナ層を含む1層以
上の層を設ける。アルミナ層は耐熱性、耐酸化性に優
れ、主に切削中の切刃温度上昇による中間層、内層の酸
化を防止する役目を果たす。アルミナ層が設けられない
場合には、例えばスローアウェイ式工具によるFCD7
0などの旋削加工において、切刃の境界摩耗が極端に早
く進行する。アルミナ層の厚さは1μm以上あれば前記
の目的を果たす。逆に厚すぎると、アルミナ層が剥離し
やすくなるので、2.5μm未満であることが望まし
い。特にアルミナ層の厚さが4μm以上では非常に剥離
が起こりやすくなる。より好ましい範囲は1.3μm以
上、1.7μm以下である。また、アルミナ層はその濡
れ性の悪さ故、切削中に刃先の最表面にあれば、溶着を
防止する効果もある。アルミナ層の基体側の界面に接す
るように外層中に設けられるチタン化合物の層は、主に
アルミナ層の密着力を高める役割を担う。特に、TiC
4、CH4、N2、CO2、H2等を用いて900〜11
00℃程度の比較的高温で化学蒸着した場合には、粒状
の結晶粒となり、強い密着力を示す。この層の厚さは1
μm未満で充分である。
Sixth, the outer layer in contact with the intermediate layer is made of at least one substance selected from titanium carbide, titanium nitride, titanium carbonitride, titanium carbonate, titanium oxycarbonitride, and alumina. At least one layer including an alumina layer is provided. The alumina layer has excellent heat resistance and oxidation resistance, and mainly serves to prevent oxidation of the intermediate layer and the inner layer due to the temperature rise of the cutting edge during cutting. When the alumina layer is not provided, for example, FCD7 with a throw-away tool
In turning processing such as 0, boundary wear of the cutting edge progresses extremely quickly. If the thickness of the alumina layer is 1 μm or more, the above-mentioned purpose is achieved. On the other hand, if the thickness is too thick, the alumina layer will be easily peeled off, so that the thickness is preferably less than 2.5 μm. Particularly, when the thickness of the alumina layer is 4 μm or more, peeling is very likely to occur. A more preferable range is 1.3 μm or more and 1.7 μm or less. Further, the alumina layer has an effect of preventing welding if it is on the outermost surface of the cutting edge during cutting due to its poor wettability. The titanium compound layer provided in the outer layer so as to be in contact with the interface of the alumina layer on the substrate side mainly plays a role of enhancing the adhesive force of the alumina layer. In particular, TiC
900 to 11 using L 4 , CH 4 , N 2 , CO 2 , H 2, etc.
When chemical vapor deposition is performed at a relatively high temperature of about 00 ° C., it becomes granular crystal grains and exhibits strong adhesion. The thickness of this layer is 1
Less than μm is sufficient.

【0014】一方、被覆層の最外層として有色の層を設
けることがしばしば行われている。例えば、TiN層を
設けると、チップは美しい金色を呈す。この層は、工具
の使用、未使用を判別しやすくする目的で設けられてい
る。従ってこの層は、他の層と異なり、むしろ剥離しや
すい方が好ましく、また視認性を損なわない程度に薄い
方が好ましい。逆にこの層が剥離もしくは磨滅しにくい
と、折角のアルミナの耐溶着性を活かせない結果とな
り、溶着物分離損傷を引き起こし、被削物の肌荒れの原
因となる。剥離しやすい最外層を設けるには、隣接する
層との間に、例えば多くの空孔を設ければよい。具体的
には、最外層被覆の前に後述するショットブラストなど
の処理を行い、精密な洗浄をせずに最外層を設ければよ
い。
On the other hand, a colored layer is often provided as the outermost layer of the coating layer. For example, if a TiN layer is provided, the chip will have a beautiful golden color. This layer is provided for the purpose of making it easier to distinguish whether the tool is used or not. Therefore, unlike other layers, it is preferable that this layer is rather easy to peel off, and it is preferable that it is thin enough not to impair visibility. On the other hand, if this layer is difficult to peel off or wear away, the result is that the adhesion resistance of alumina is not utilized at all, which causes damage to the separation of the deposit and causes roughening of the work. To provide the outermost layer that is easily peeled off, for example, a large number of holes may be provided between adjacent layers. Specifically, treatment such as shot blasting described below may be performed before coating the outermost layer, and the outermost layer may be provided without precision cleaning.

【0015】第7に、このようにして設けられた被覆層
の全体の厚さは、被覆層の耐剥離性と密接な関係があ
る。実験、検討を重ねた結果、用途として鋼切削用工具
を想定した場合、最適な厚さは8μm以上、30μm以
下であった。但し、意図的に剥離しやすいように設けら
れた最外層の厚さは算入しない。8μm未満では上述し
たような各層の、機能を充分に発揮できる厚さがとれな
い。30μmを越えると被覆層が剥離しやすくなり、特
に断続切削に不利である。鋼の切削を主として考えるな
らば、耐摩耗性の中間層の厚さをできるだけ厚くとり、
他の層は各機能が発揮できる程度に薄くすれば、より長
寿命の工具が得られる。尚、刃先温度が比較的上昇しや
すい鋳鉄などの切削を主とする場合には、上述したアル
ミナの耐熱性を活かして、アルミナを厚く設ければよ
い。
Seventh, the total thickness of the coating layer thus provided is closely related to the peeling resistance of the coating layer. As a result of repeated experiments and examinations, the optimum thickness was 8 μm or more and 30 μm or less when a steel cutting tool was supposed to be used. However, the thickness of the outermost layer provided intentionally so as to be easily peeled off is not included. When the thickness is less than 8 μm, the thickness of each layer as described above cannot sufficiently be exhibited. If it exceeds 30 μm, the coating layer is likely to peel off, which is particularly disadvantageous for intermittent cutting. If you mainly think about cutting steel, make the wear-resistant intermediate layer as thick as possible,
If the other layers are thin enough to perform their respective functions, a tool with a longer life can be obtained. If the cutting temperature of the cast iron or the like, where the temperature of the cutting edge tends to rise relatively, is the main purpose, the alumina may be provided thick by taking advantage of the heat resistance of the above-mentioned alumina.

【0016】第8に、被覆層の耐剥離性、耐欠損性をよ
り高めるために、被覆超硬合金の表面を機械的衝撃、熱
的衝撃、超音波による衝撃などにより処理することが知
られている。これは、被覆層形成の過程で被覆層に生じ
た残留引張応力を解放、もしくは圧縮応力の領域にまで
残留応力を与えようとするものである。具体的な方法と
しては、ショットピーニングもしくはショットブラスト
による処理が良く知られており、ショットピーニングに
よる処理をより効果的なものとするためにショット投射
速度を高めることが行われている。。しかし、ショット
投射速度を高めるためには、より高性能な装置が必要と
なりコストがかかる。
Eighth, it is known that the surface of the coated cemented carbide is treated by mechanical impact, thermal impact, ultrasonic impact or the like in order to further enhance the peeling resistance and fracture resistance of the coating layer. ing. This is intended to release the residual tensile stress generated in the coating layer in the process of forming the coating layer, or to give the residual stress even to the region of compressive stress. As a concrete method, processing by shot peening or shot blasting is well known, and shot projection speed is increased in order to make the processing by shot peening more effective. . However, in order to increase the shot projection speed, a higher performance device is required, which is costly.

【0017】本願発明では、前述の結合相富化層を基体
に採用することでこの問題を解決した。本願発明者等の
研究により、基体の硬度が高いほどショット処理による
被覆層中の応力解放の効果が小さいことを見出した。こ
の知見に基づき被覆層直下に硬度の低い結合相富化層を
設けたところ、従来の低投射速度(投射速度=40〜5
0m/s)のショット装置で充分な効果が得られること
がわかった。この理由については未だ充分に明らかでは
ないが、恐らく、軟質の基体表面のため、衝撃を受けた
時の被覆層の変形が大きく、被覆層中で、最も大きい残
留応力がかかっている部分である基体と接した部分に、
さらに衝撃に伴う変形による引張応力が集中し、被覆層
に効率よく亀裂を発生させることができるためである、
と思われた。
In the present invention, this problem is solved by adopting the above-mentioned binder phase enriched layer as the substrate. The inventors of the present application have found that the higher the hardness of the substrate, the smaller the effect of releasing stress in the coating layer by the shot treatment. On the basis of this finding, when a binder phase-enriched layer having a low hardness was provided immediately below the coating layer, the conventional low projection speed (projection speed = 40 to 5) was obtained.
It was found that a sufficient effect can be obtained with a shot device of 0 m / s). Although the reason for this is not yet fully clear, it is probably the portion of the coating layer where the largest residual stress is applied due to the large deformation of the coating layer upon impact due to the soft substrate surface. In the part that touches the base,
This is because tensile stress due to deformation due to impact is concentrated, and cracks can be efficiently generated in the coating layer.
So I thought.

【0018】残留応力の値はX線回折による2θ−si
2Ψ法で測定できる。具体的な残留応力の値としては
±10kgf/mm2(±98MPa)に調整できれば
よい。ここに「+」の符号は引張応力、「−」の符号は
圧縮応力を示す。被覆層中残留引張応力20〜30kg
f/mm2の被覆超硬合金に対し粒径0.5mmのガラ
ス球を投射速度40m/sでショットしたところ5分間
で残留応力は0〜2kg/mm2となり、ほぼ完全に解
放された。さらに処理を続けて合計10分間で−6〜0
kg/mm2となった。さらに処理を続けて合計20分
間で−11kg/mm2に達した。その後、処理を追加
し合計120分間の処理を行ったが、残留圧縮応力の増
加は少なく−12kg/mm2であった。残留応力が圧
縮領域のものは特に耐欠損性に優れるが、長い処理時間
が必要な上、ショット処理による製品の破損率も増え製
品歩留まりが低下する。実用的には±10kgf/mm
2が適当である。残留引張応力が10kgf/mm2以上
のものは耐欠損性、耐チッピング性に劣る。尚、ショッ
ト材としてはガラス球の他にセラミック球、スチールグ
リッド、アルミナ、超硬合金等が使用できる。
The value of the residual stress is 2θ-si by X-ray diffraction.
It can be measured by the n 2 Ψ method. The specific residual stress value may be adjusted to ± 10 kgf / mm 2 (± 98 MPa). Here, the symbol "+" indicates tensile stress, and the symbol "-" indicates compressive stress. Residual tensile stress in coating layer 20-30kg
When a glass ball having a particle diameter of 0.5 mm was shot at a projection speed of 40 m / s with respect to a coated cemented carbide of f / mm 2 , the residual stress was 0 to 2 kg / mm 2 in 5 minutes, and it was almost completely released. Further processing continues for a total of 10 minutes, -6 to 0
It became kg / mm 2 . Further treatment was continued to reach -11 kg / mm 2 for a total of 20 minutes. After that, the treatment was added and the treatment was performed for a total of 120 minutes, but the increase in residual compressive stress was small and was -12 kg / mm 2 . Those with a residual stress in the compression region are particularly excellent in fracture resistance, but require a long processing time, and also increase the damage rate of the product due to shot processing and reduce the product yield. Practically ± 10 kgf / mm
2 is appropriate. If the residual tensile stress is 10 kgf / mm 2 or more, chipping resistance and chipping resistance are poor. In addition to glass balls, ceramic balls, steel grids, alumina, cemented carbide and the like can be used as the shot material.

【0019】[0019]

【実施例】次に実施例にて具体的に説明する。原料粉末
としてWC、Co、TiC、TiCN、TaC、Zr
C、HfCを用意し、基体の組成が表1に示したように
なるように所定量を配合後、ボールミルにて湿式混合、
乾燥、圧粉成形、焼結、研削加工の各工程を経てCNM
G120408型の切削用チップを得た。続いて、内層
としてTiNを0.3μm、中間層としてTiCNを1
0μm、外層としてTiCを0.5μm、Al23
1.5μm、TiNを0.5μm、それぞれ化学蒸着法
により設けた。中間層のCl量は0.5at%であっ
た。さらに、ショットピーニングにて試料番号5以外の
試料の被覆層中の残留応力を±5kgf/mm2の範囲
に調整した。但し、試料番号5についてはショットピー
ニングの後も13kgf/mm2の引張残留応力が残っ
た。これらを次の3種類の旋削による切削テストに供し
た。
EXAMPLES Next, examples will be specifically described. WC, Co, TiC, TiCN, TaC, Zr as raw material powder
C and HfC were prepared, and predetermined amounts were mixed so that the composition of the substrate was as shown in Table 1, and then wet-mixed with a ball mill,
CNM through each process of drying, powder compaction, sintering and grinding
A cutting tip of G120408 type was obtained. Then, TiN is 0.3 μm as the inner layer and TiCN is 1 as the intermediate layer.
0 μm, TiC 0.5 μm as an outer layer, Al 2 O 3 1.5 μm, and TiN 0.5 μm were provided by a chemical vapor deposition method. The amount of Cl in the intermediate layer was 0.5 at%. Further, the residual stress in the coating layers of the samples other than the sample No. 5 was adjusted to be within ± 5 kgf / mm 2 by shot peening. However, with respect to Sample No. 5, a residual tensile stress of 13 kgf / mm 2 remained after shot peening. These were subjected to cutting tests by the following three types of turning.

【0020】テスト1として、被削材:S53C丸棒、
切削速度:250m/min、送り:0.4mm/re
v、切込み:2mm、湿式にて20分間の切削を行った
後のチップのニゲ面の摩耗幅を測定した。テスト2とし
て、被削材:FCD70丸棒、切削速度:150m/m
in、送り:0.3mm/rev、切込み:2mm、湿
式にて20分間の切削を行った後のチップのニゲ面の摩
耗幅を測定した。工具の耐欠損性を調べる為にテスト3
を行った。テスト3として、被削材:SCM435 4
ッ溝付丸棒、切削速度:150m/min、送り:0.
3mm/rev、切込み:2mm、湿式にて30秒間切
削を行った。これを10回行って欠損、チッピングした
個数を調べた。以上の結果をまとめて表1に併記する。
As Test 1, the work material: S53C round bar,
Cutting speed: 250 m / min, feed: 0.4 mm / re
v, Depth of cut: 2 mm, the wear width of the negative surface of the chip after cutting for 20 minutes by a wet method was measured. As test 2, work material: FCD70 round bar, cutting speed: 150 m / m
In, feed: 0.3 mm / rev, depth of cut: 2 mm, and the wear width of the negative surface of the chip after cutting for 20 minutes by a wet method was measured. Test 3 to check tool fracture resistance
Was done. As Test 3, Work Material: SCM435 4
Round bar with groove, cutting speed: 150 m / min, feed: 0.
3 mm / rev, depth of cut: 2 mm, wet cutting was performed for 30 seconds. This was repeated 10 times to check the number of defects and chippings. The above results are collectively shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】Zr、Hfのいずれも含まないものは切削
中に刃先が塑性変形するために摩耗が早く、テスト1、
テスト2の途中で切削不能となった。Zr量が多すぎる
ものは脆化しておりテスト3で多くの欠損を生じた。結
合相富化層を設けないものは、テスト1、2でチッピン
グを生じた。γ1/γ2≧1のものは、テスト1では問題
なかったが他ではやや膜が剥離しやすい傾向にあった。
Hfを添加したものもZr添加のものとほぼ同等の性能
が得られた。
Those containing neither Zr nor Hf wear quickly because the cutting edge is plastically deformed during cutting, and the test 1,
It became impossible to cut during Test 2. Those containing too much Zr were brittle and many defects were generated in Test 3. Those without the binder phase enriched layer produced chipping in tests 1 and 2. In the case of γ 1 / γ 2 ≧ 1, there was no problem in Test 1, but in other cases, the film tended to peel off slightly.
The performance with Hf added was almost the same as that with Zr added.

【0023】被覆層の構成を変えた以外はすべて試料番
号3と同じにして前述の切削テストを行った。結果をま
とめて表2に示す。
The above cutting test was conducted in the same manner as in Sample No. 3 except that the constitution of the coating layer was changed. Table 2 summarizes the results.

【0024】[0024]

【表2】 [Table 2]

【0025】TiCN層やAl23層が厚すぎるものは
被覆層の脱落に起因するとみられる摩耗が見られた。残
留応力を調整しないものはチッピング、欠損が起こりや
すい傾向にあった。Al23が薄いものには境界摩耗が
目立った。TiCN層中のCl量が多いものは摩耗が早
く、少ないものは耐欠損性に劣った。試料番号17につ
いてはチップの摩耗の程度は試料番号3と同等であった
が、切削の初期における被削材の面粗さが良好であっ
た。試料番号3によるテスト1の条件による1分間の切
削では、被削面の面粗さはRmax=50〜60μmであ
ったが、試料番号17の場合ではRmax=37μmであ
った。
When the TiCN layer and the Al 2 O 3 layer were too thick, abrasion was considered to be caused by the falling of the coating layer. Those without adjusting the residual stress tended to cause chipping and chipping. Boundary wear was conspicuous for the thin Al 2 O 3 . A TiCN layer with a large amount of Cl has a fast wear, and a small amount has a poor fracture resistance. With respect to sample No. 17, the degree of chip wear was equivalent to that of sample No. 3, but the surface roughness of the work material at the early stage of cutting was good. The surface roughness of the surface to be cut was R max = 50 to 60 μm in the case of cutting for 1 minute under the condition of Test 1 of Sample No. 3, but in the case of Sample No. 17, R max was 37 μm.

【0026】[0026]

【発明の効果】本願発明品は、従来品と比べ広い範囲の
切削条件下で長時間の使用に耐え、かつ良好な被削面が
得られる。従って、切削加工の省力・無人化に適した汎
用性の高い切削工具の材料として優れた性能を発揮する
ものである。
EFFECTS OF THE INVENTION The product of the present invention can withstand long-term use under a wider range of cutting conditions than that of the conventional product and can obtain a good work surface. Therefore, it exhibits excellent performance as a highly versatile cutting tool material suitable for labor saving and unmanned cutting.

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 ジルコニウム及び/又はハフニウムを含
有する炭化タングステン基超硬合金基体のジルコニウム
及びハフニウムの総量をM1、チタンの総量をM2とした
ときにモル比で0.01≦M1/M2<0.25であり、
該基体の表面近傍に該基体の平均的な結合相含有量より
も結合相が富化した結合相富化層を有し、該基体に接す
る内層として窒化チタンでなる層を設け、該内層に接す
る中間層として炭窒化チタンでなる層を設け、該中間層
に接する外層として、炭化チタン、窒化チタン、炭窒化
チタン、炭酸化チタン、炭窒酸化チタン、アルミナより
選ばれる1種以上の物質よりなり、少なくとも1層以上
のアルミナ層を含む1層以上の層を設けたことを特徴と
する被覆超硬合金。
1. A molar ratio of 0.01 ≦ M 1 / when the total amount of zirconium and hafnium of the tungsten carbide based cemented carbide substrate containing zirconium and / or hafnium is M 1 and the total amount of titanium is M 2. M 2 <0.25,
A binder phase-enriched layer having a binder phase richer than the average binder phase content of the substrate is provided near the surface of the substrate, and a titanium nitride layer is provided as an inner layer in contact with the substrate. A layer made of titanium carbonitride is provided as a contacting intermediate layer, and an outer layer in contact with the intermediate layer is made of one or more substances selected from titanium carbide, titanium nitride, titanium carbonitride, titanium carbonate, titanium carbonitride oxide, and alumina. And a coated cemented carbide, wherein at least one layer including at least one alumina layer is provided.
【請求項2】 該基体の表面における結合相含有率をγ
1、該基体の内部における平均結合相含有率をγ2とした
ときにγ1/γ2≦1である超硬合金基体を用いたことを
特徴とする請求項1に記載の被覆超硬合金。
2. The binder phase content on the surface of the substrate is γ
1. The coated cemented carbide according to claim 1, wherein a cemented carbide substrate having γ 1 / γ 2 ≦ 1 when the average binder phase content inside the substrate is γ 2. .
【請求項3】 該中間層が柱状晶よりなることを特徴と
する請求項1乃至2に記載の被覆超硬合金。
3. The coated cemented carbide according to claim 1, wherein the intermediate layer comprises columnar crystals.
【請求項4】 該中間層の厚さが該外層の厚さより大で
あることを特徴とする請求項3に記載の被覆超硬合金。
4. The coated cemented carbide according to claim 3, wherein the thickness of the intermediate layer is larger than the thickness of the outer layer.
【請求項5】 該中間層が、0.01at%より大かつ
1.2at%以下のClを含有する炭窒化チタン層であ
ることを特徴とする請求項1乃至4に記載の被覆超硬合
金。
5. The coated cemented carbide according to claim 1, wherein the intermediate layer is a titanium carbonitride layer containing Cl in an amount of more than 0.01 at% and 1.2 at% or less. .
【請求項6】 該内層、該中間層、該外層の全ての層の
厚さの合計が8μm以上30μm以下であることを特徴
とする請求項1乃至5に記載の被覆超硬合金。
6. The coated cemented carbide according to claim 1, wherein the total thickness of all layers of the inner layer, the intermediate layer, and the outer layer is 8 μm or more and 30 μm or less.
【請求項7】 少なくとも厚さ1μm以上、2.5μm
未満のアルミナ層を該外層が含むことを特徴とする、請
求項1乃至6に記載の被覆超硬合金。
7. A thickness of at least 1 μm and 2.5 μm
Coated cemented carbide according to claims 1 to 6, characterized in that the outer layer comprises less than a layer of alumina.
【請求項8】 該アルミナ層の厚さが1.3μm以上
1.7μm以下であることを特徴とする請求項7に記載
の被覆超硬合金。
8. The coated cemented carbide according to claim 7, wherein the thickness of the alumina layer is 1.3 μm or more and 1.7 μm or less.
【請求項9】 該外層が少なくともアルミナ層と、該ア
ルミナ層の基体側に接するチタン化合物層を含み、該チ
タン化合物層の厚さが1μm未満であることを特徴とす
る請求項1乃至8に記載の被覆超硬合金。
9. The method according to claim 1, wherein the outer layer includes at least an alumina layer and a titanium compound layer in contact with the alumina layer on the substrate side, and the thickness of the titanium compound layer is less than 1 μm. The coated cemented carbide described.
【請求項10】 該チタン化合物層が炭化チタン層であ
ることを特徴とする請求項9に記載の被覆超硬合金。
10. The coated cemented carbide according to claim 9, wherein the titanium compound layer is a titanium carbide layer.
【請求項11】 該中間層の厚さが8μm以上であるこ
とを特徴とする請求項1乃至10に記載の被覆超硬合
金。
11. The coated cemented carbide according to claim 1, wherein the intermediate layer has a thickness of 8 μm or more.
【請求項12】 該中間層の厚さが9.5μm以上であ
ることを特徴とする請求項11に記載の被覆超硬合金。
12. The coated cemented carbide according to claim 11, wherein the thickness of the intermediate layer is 9.5 μm or more.
【請求項13】 該外層の中で、最も外側に位置する層
である最外層が少なくともチタンと窒素を含む請求項1
乃至12に記載の被覆超硬合金において、該最外層と該
最外層に接する層の間に空孔があることを特徴とする被
覆超硬合金。
13. The outermost layer, which is the outermost layer of the outer layers, contains at least titanium and nitrogen.
13. The coated cemented carbide according to any one of 1 to 12 above, wherein voids are present between the outermost layer and a layer in contact with the outermost layer.
【請求項14】 ジルコニウム及び/又はハフニウムを
含有する炭化タングステン基超硬合金基体のジルコニウ
ム及びハフニウムの総量をM1、チタンの総量をM2とし
たときにモル比で0.01≦M1/M2<0.25であ
り、該基体の表面近傍に該基体の平均的な結合相含有量
よりも結合相が富化した結合相富化層を有し、該基体に
接する内層として窒化チタンでなる層を設け、該内層に
接する中間層として炭窒化チタンでなる層を設け、該中
間層に接する外層として、炭化チタン、窒化チタン、炭
窒化チタン、炭酸化チタン、炭窒酸化チタン、アルミナ
より選ばれる1種以上の物質よりなり、少なくとも1層
以上のアルミナ層を含む1層以上の層を設けた被覆超硬
合金に、被覆層形成後、該被覆超硬合金表面を力学的衝
撃により処理したことを特徴とする被覆超硬合金。
14. A molar ratio of 0.01 ≦ M 1 / when the total amount of zirconium and hafnium in the tungsten carbide based cemented carbide substrate containing zirconium and / or hafnium is M 1 and the total amount of titanium is M 2. M 2 <0.25, having a binder phase-enriched layer in which the binder phase is richer than the average binder phase content of the substrate near the surface of the substrate, and titanium nitride is used as an inner layer in contact with the substrate. And a layer made of titanium carbonitride as an intermediate layer in contact with the inner layer, and titanium carbide, titanium nitride, titanium carbonitride, titanium carbonate, titanium carbonitride oxide, alumina as an outer layer in contact with the intermediate layer. A coated cemented carbide comprising one or more substances selected from the group consisting of at least one alumina layer and at least one layer, and then the coated cemented carbide surface is formed by mechanical impact on the coated cemented carbide surface. Processed Coated cemented carbide characterized and.
【請求項15】 該外層の中で最も外側に位置する層で
ある最外層が少なくともチタンと窒素を含み、該最外層
を設ける以前に力学的衝撃により処理したことを特徴と
する、請求項14に記載の被覆超硬合金。
15. The outermost layer, which is the outermost layer of the outer layers, contains at least titanium and nitrogen, and is treated by mechanical impact before the outermost layer is provided. The coated cemented carbide according to.
【請求項16】 被覆層中の残留応力が−0.1〜+
0.1GPaであることを特徴とする請求項14又は1
5に記載の被覆超硬合金。
16. The residual stress in the coating layer is -0.1 to +.
It is 0.1 GPa, It is characterized by the above-mentioned.
5. The coated cemented carbide according to item 5.
JP13105396A 1996-04-26 1996-04-26 Coated cemented carbide Expired - Fee Related JP3872544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13105396A JP3872544B2 (en) 1996-04-26 1996-04-26 Coated cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13105396A JP3872544B2 (en) 1996-04-26 1996-04-26 Coated cemented carbide

Publications (2)

Publication Number Publication Date
JPH09291378A true JPH09291378A (en) 1997-11-11
JP3872544B2 JP3872544B2 (en) 2007-01-24

Family

ID=15048918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13105396A Expired - Fee Related JP3872544B2 (en) 1996-04-26 1996-04-26 Coated cemented carbide

Country Status (1)

Country Link
JP (1) JP3872544B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014000674A (en) * 2000-08-11 2014-01-09 Kennametal Inc Coated cutting insert
JP2014172157A (en) * 2013-03-12 2014-09-22 Mitsubishi Materials Corp Surface-coated cutting tool
JP2015168047A (en) * 2014-03-11 2015-09-28 三菱日立ツール株式会社 COATED CUTTING TOOL AND Ni-BASE SUPER ALLOY CUTTING METHOD

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014000674A (en) * 2000-08-11 2014-01-09 Kennametal Inc Coated cutting insert
JP2014172157A (en) * 2013-03-12 2014-09-22 Mitsubishi Materials Corp Surface-coated cutting tool
JP2015168047A (en) * 2014-03-11 2015-09-28 三菱日立ツール株式会社 COATED CUTTING TOOL AND Ni-BASE SUPER ALLOY CUTTING METHOD

Also Published As

Publication number Publication date
JP3872544B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
EP1950189A1 (en) cBN SINTERED BODY FOR HIGH-QUALITY SURFACE PROPERTY MACHINING, cBN SINTERED BODY CUTTING TOOL, AND METHOD OF CUTTING WORK THEREWITH
EP1932816A1 (en) CBN SINTERED BODY FOR HIGH-QUALITY SURFACE ASPECT MACHINING AND CUTTING TOOL OF cBN SINTERED BODY
JPH08119774A (en) Combined material having high hardness for tool
WO2005053887A1 (en) Surface-coated cutting tool
JP3719731B2 (en) Coated cutting tool / Coated wear-resistant tool
JPWO2008026700A1 (en) Cutting tool, manufacturing method thereof and cutting method
WO2012032839A1 (en) Surface-coated cutting tool
JPH05177411A (en) Cover cutting tool and its manufacture
JP6052502B2 (en) Surface coated cemented carbide cutting tool
JP3269305B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JPH09291378A (en) Coated cemented carbide
JP2008137129A (en) Surface coated cutting tool
JPS5928628B2 (en) Surface coated cemented carbide tools
JPH08118105A (en) Surface-coated cemented carbide alloy cutting tool with tungsten carbide group having hard coating layer excellent in interlayer adhesion
JPH11267905A (en) Coated cemented carbide tool
JPH06330321A (en) Coated hard alloy member
JP4210930B2 (en) Surface-coated throw-away tip that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP3230396B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JP2018164950A (en) Surface-coated cutting tool
JP2010284759A (en) Surface coated cutting tool
JP3265885B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JP2004306228A (en) Hard coating
JP2018164951A (en) Surface-coated cutting tool
JP2004306237A (en) Coated end mill and roughing
JP2002239808A (en) Surface covered cemented carbide cutting tool

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061020

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees