JPH09291335A - Duplex-layer steel plate, excellent in surface characteristic and fatigue characteristic, and its production - Google Patents

Duplex-layer steel plate, excellent in surface characteristic and fatigue characteristic, and its production

Info

Publication number
JPH09291335A
JPH09291335A JP10248096A JP10248096A JPH09291335A JP H09291335 A JPH09291335 A JP H09291335A JP 10248096 A JP10248096 A JP 10248096A JP 10248096 A JP10248096 A JP 10248096A JP H09291335 A JPH09291335 A JP H09291335A
Authority
JP
Japan
Prior art keywords
inner layer
molten steel
surface layer
layer
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10248096A
Other languages
Japanese (ja)
Inventor
Kazumasa Yamazaki
一正 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10248096A priority Critical patent/JPH09291335A/en
Publication of JPH09291335A publication Critical patent/JPH09291335A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve surface characteristic and fatigue characteristic by incorporating specific amounts of C, Si, Mn, P, S, Al, N, and Fe into the inner layer part and additionally incorporating specific amounts of Ni into a part of specific thickness in the surface layer. SOLUTION: The inner layer has a composition consisting of, by weight, 0.02-0.15% C, 0.2-3% Si, 0.6-3% Mn, 0.002-0.03% P, 0.001-0.05% S, 0.002-0.1% Al, 0.0002-0.01% N, and the balance essentially Fe. The surface layer has a composition constituted by additionally incorporating 0.06-2% Ni into the composition of the inner layer. At this time, the surface layer means respective parts in the regions from the surface and the rear side surface to positions at a depth of 0.015-0.15t per side from the surface and the rear side surface, respectively, when plate thickness is represented by (t). A molten steel 11 is poured into a mold 3 via an immersion nozzle 4, together with gas downward perpendicularly. The molten steel 11 is reversed by the buoyancy of the gas and allowed to ascend as an ascending stream 12. Since a magnetostatic field 5 suppresses the ascending stream 12, and an alloy steel, in the part higher than the magnetostatic field 5, is allowed to flow stably, a surface layer 10a into which an Ni wire 9 is penetrated is formed stably on the surface of an inner layer 11a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、表面性状と疲労特
性の優れた複層鋼板及びその製造方法に関するものであ
り、特に自動車のホイール、足まわり部品等に利用され
る熱延鋼板およびその製造方法として好適なものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-layer steel sheet having excellent surface properties and fatigue properties and a method for producing the same, and particularly to a hot-rolled steel sheet used for automobile wheels, suspension parts and the like, and its production. It is a suitable method.

【0002】[0002]

【従来の技術】鋼板の疲労強度を向上させようとする試
みは数多くなされ、疲労強度に対する複合組織強化の有
利性が認められ、例えば特開昭60−145355号公
報、特開昭60−43425号公報に見られるような複
合組織強化高強度鋼板が知られている。ところが、この
ような鋼においては,延性を向上させるため多くのSi
を含有量させなければならず、熱延段階において、Si
スケールと称される、酸洗では落とし難く、仮に落ちた
としても表面に微細な凹凸が残存する強固なスケールを
生じる。Siスケールは、均一には生じず、鋼板表面に
斑に生じる。このため従来の複合組織強化高強度鋼板で
は、Siスケールにより、表面外観が劣るとともに疲労
強度も本来複合組織鋼板が持つ性能よりも低くなるとい
う欠点を有していた。
2. Description of the Related Art Numerous attempts have been made to improve the fatigue strength of steel sheets, and the advantages of strengthening the composite structure with respect to the fatigue strength have been recognized. For example, Japanese Patent Application Laid-Open Nos. 60-145355 and 60-43425 disclose the advantages. BACKGROUND ART A composite structure reinforced high-strength steel sheet as disclosed in a gazette is known. However, in such a steel, a large amount of Si is added to improve ductility.
At the hot rolling stage.
It is difficult to remove by pickling, which is called a scale, and even if it falls, a strong scale is left with fine irregularities remaining on the surface. The Si scale is not uniformly generated, but is unevenly formed on the surface of the steel sheet. For this reason, the conventional composite structure reinforced high-strength steel sheet has a defect that the surface appearance is inferior and the fatigue strength is lower than the performance originally provided by the composite structure steel sheet due to the Si scale.

【0003】[0003]

【発明が解決しようとする課題】本発明は、従来のSi
を多く含有する鋼板の表面性状性が劣っている点を解消
するとともに、疲労特性をさらに向上させるためにさな
れたものである。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention
It is intended to eliminate the inferior surface property of a steel sheet containing a large amount of aluminum and to further improve the fatigue characteristics.

【0004】[0004]

【課題を解決するための手段】本願発明の要旨は、表層
と内層において成分の異なる複層鋼板において、内層成
分として、重量%で、C :0.02〜0.15%、S
i:0.20〜3.00%、Mn:0.60〜3.00
%、P :0.002〜0.030%、S :0.00
1〜0.050%、Al:0.002〜0.100%、
N :0.0002〜0.0100% 残部:Fe及び不可避的不純物を含有し、板厚をtとす
ると、表裏面から片面あたり0.015t〜0.15t
の部分の表層成分として、前記内層成分に加えて、N
i:0.060〜2.00%を含有せしめた表面性状と
疲労特性に優れた複層鋼板、及び該鋼板の内層の組織が
主としてフェライトとマルテンサイトの2相からなる複
層鋼板、及びその製造方法として、連続鋳造用の鋳型へ
前記成分構成を有する溶鋼を気体とともに垂直下向き又
は斜め下向きに注入し、この溶鋼注入位置より上部で鋳
型内の幅方向全幅に静磁場を付与して該溶鋼の上昇流を
減速し、該磁場の付与位置より上部にある該溶鋼へNi
を添加して、前記注入気体の攪拌により上部の溶鋼を上
記の表層成分となるようにし、鋳型引き抜きにより、前
記の成分構成を有するスラブとなし、次いで、熱延を施
し、熱延鋼板とする表面性状と疲労特性に優れた複層鋼
板の製造方法、及び熱延をするに際し、Ar1 変態点以
上の仕上温度で熱延を終了し、空冷を経るかまたは終了
後直ちに(Ar1 変態点−30℃)以上の温度域から、
15℃/s以上200℃/s以下の冷却速度で200℃
以下まで冷却し、前記成分構成を有し、内層の組織が主
としてフェライトとマルテンサイトの2相からなる熱延
鋼板となすことを特徴とする表面性状と疲労特性に優れ
た複層鋼板の製造方法にある。
SUMMARY OF THE INVENTION The gist of the present invention is to provide a multi-layer steel sheet having different components in the surface layer and the inner layer, wherein C: 0.02 to 0.15% by weight as an inner layer component,
i: 0.20 to 3.00%, Mn: 0.60 to 3.00
%, P: 0.002-0.030%, S: 0.00
1 to 0.050%, Al: 0.002 to 0.100%,
N: 0.0002 to 0.0100% Remainder: Fe and unavoidable impurities are contained, and when the plate thickness is t, 0.015t to 0.15t per surface from the front and back surfaces.
In addition to the inner layer component,
i: a multi-layer steel sheet containing 0.060 to 2.00% and having excellent surface properties and fatigue properties, and a multi-layer steel sheet whose inner layer structure mainly comprises two phases of ferrite and martensite, and As a manufacturing method, molten steel having the above-mentioned composition is injected vertically downward or obliquely downward together with gas into a mold for continuous casting, and a static magnetic field is applied to the entire widthwise width in the mold above this molten steel injection position. Slows down the ascending flow of Ni to the molten steel above the position where the magnetic field is applied.
Is added so that the molten steel in the upper part becomes the above surface layer component by stirring the injected gas, and by drawing the mold, a slab having the above component composition is formed, and then hot rolling is performed to obtain a hot rolled steel plate. In the method for producing a multi-layer steel sheet having excellent surface properties and fatigue properties, and in hot rolling, hot rolling is finished at a finishing temperature of Ar 1 transformation point or higher and air cooling is performed or immediately after completion (Ar 1 transformation point From the temperature range above -30 ℃,
200 ° C at a cooling rate of 15 ° C / s or more and 200 ° C / s or less
A method for producing a multi-layered steel sheet having excellent surface properties and fatigue characteristics, characterized in that the hot-rolled steel sheet is cooled to the following temperature and has the above-mentioned composition, and the structure of the inner layer is mainly composed of two phases of ferrite and martensite It is in.

【0005】Siは、変態組織強化鋼板において、延性
を向上させる元素である。しかしながら、Siが多量に
含有されると、Siスケールと称される強固なスケール
が生じる。このスケールは、2FeO・SiO2 の組成
で、鋼板表面に凹凸状に深く入り込んだ形で形成され
る。また、形成される箇所も、鋼板表面に均一に形成さ
れるのではなくではなく、斑に形成される。このスケー
ルは、通常のスケール比べて酸洗で落ちにくく、また、
落ちたとしても表面に微細な凹凸が残存するので、鋼板
表面に斑状の模様が残ることになる。これが、Siスケ
ール模様となって表面性状を劣化させる原因になってい
る。また、酸洗後に微細な表面凹凸が存在するために、
この部分の疲労強度が劣化するという欠点を有してい
る。
Si is an element that improves the ductility of a transformed structure strengthened steel sheet. However, when a large amount of Si is contained, a strong scale called Si scale is generated. This scale has a composition of 2FeO.SiO 2 and is formed in a shape of deeply and irregularly penetrating into the surface of the steel sheet. Further, the portions to be formed are not uniformly formed on the surface of the steel sheet, but are formed in spots. This scale is less likely to fall off by pickling than a normal scale,
Even if it falls, fine irregularities remain on the surface, so that a mottled pattern remains on the steel sheet surface. This causes a Si scale pattern to deteriorate the surface properties. Also, due to the presence of fine surface irregularities after pickling,
There is a disadvantage that the fatigue strength of this part is deteriorated.

【0006】本願発明はこのような欠点を解消するため
になされたものである。本願発明者らは、Siスケール
の生成に及ぼす第3元素の影響について種々検討した結
果、Niを含有させることにより、いわゆるSiスケー
ルと地鉄との界面に均一のスケール層が形成され、デス
ケーリングおよび酸洗の際に不均一なスケールの除去が
起きず、斑模様の生成が抑制されることを見出した。本
願発明はこの知見をもとになされたもので、その基本的
な技術思想は、Niを特に表面性状改善に有効な鋼板の
表面部位にのみ多量に含有せしめてSiスケールの生成
に起因する斑模様を抑え、表面性状とひいては疲労特性
を向上させることにある。Siスケールと地鉄との界面
に均一な層を生成せしめることにより、酸洗後にSiス
ケールの痕跡が残存しないために、表面が平滑になり、
疲労強度を向上させる。これだけでも疲労強度は上昇す
るが、さらに内層の金属組織をフェライトとマルテンサ
イトの2相組織とすることにより疲労強度は上昇する。
The present invention has been made to solve such a drawback. As a result of various studies on the influence of the third element on the formation of Si scale, the inventors of the present application have found that the inclusion of Ni forms a uniform scale layer at the interface between the so-called Si scale and the base metal, resulting in descaling. It was also found that non-uniform scale removal does not occur during pickling and the generation of spot patterns is suppressed. The invention of the present application is based on this knowledge, and the basic technical idea is that Ni is contained in a large amount only in the surface portion of the steel sheet which is particularly effective for improving the surface texture, and unevenness caused by the formation of Si scale is caused. It is to suppress the pattern and improve the surface texture and eventually the fatigue property. By forming a uniform layer at the interface between the Si scale and the base iron, the surface becomes smooth because no trace of the Si scale remains after pickling.
Improves fatigue strength. This alone increases the fatigue strength, but further increases the fatigue strength by making the metal structure of the inner layer a two-phase structure of ferrite and martensite.

【0007】以下、成分を限定する理由を述べる。C
は、0.02%未満では、Mn,Siなどの変態組織強化を
促進する元素を多量に含有させても、強度向上に寄与す
るマルテンサイト組織の分率が高まらず、十分な強度の
向上が図れないので、0.02%を下限とする。また、
0.15%を越えるとマルテンサイトの分率が高くなり
すぎ、部品に加工する際の加工性が劣るようになるの
で、0.15%を上限とする。Siは、0.20%未満
では延性の低下を招くとともに、必要なマルテンサイト
量が確保されなくなるので、0.20%を下限とする。
また、3.00%を越えて含有させると、かえって加工
性が劣化するようになるので、3.00%を上限とす
る。
The reasons for limiting the components will be described below. C
Is less than 0.02%, even if a large amount of elements such as Mn and Si that promote transformation structure strengthening are contained, the fraction of the martensite structure that contributes to strength improvement does not increase and sufficient strength cannot be achieved. Therefore, the lower limit is 0.02%. Also,
If it exceeds 0.15%, the fraction of martensite becomes too high, resulting in poor workability in processing into parts, so 0.15% is made the upper limit. If Si is less than 0.20%, ductility is lowered and the necessary amount of martensite cannot be secured, so 0.20% is the lower limit.
Further, if the content exceeds 3.00%, the workability is rather deteriorated, so the upper limit is 3.00%.

【0008】Mnは、0.60%未満では延性の低下を
招くとともに、必要なマルテンサイト量が確保されなく
なるので、0.60%を下限とする。また、3.00%
を越えて含有させると、かえって加工性が劣化するよう
になるので、3.00%を上限とする。Pは、0.00
2%未満に低減することは製造コストを飛躍的に上昇さ
せ経済性を損なうので、0.002%を下限とし、0.
030%以上では溶接性が劣化するので0.030%を
上限とする。
If Mn is less than 0.60%, ductility is deteriorated and a necessary amount of martensite cannot be secured, so the lower limit is 0.60%. 3.00%
If it is contained in excess of 0.1%, the workability will rather deteriorate, so the upper limit is 3.00%. P is 0.00
If it is reduced to less than 2%, the manufacturing cost will be drastically increased and the economic efficiency will be impaired.
If it is 030% or more, the weldability deteriorates, so 0.030% is made the upper limit.

【0009】Sは、0.001%未満に低減することは
製造コストを飛躍的に上昇させ経済性を損なうので、
0.001%を下限とし、0.050%を越えると加工
性が劣化するので0.050%を上限とする。Alは、
0.002%未満では、脱酸が不足し鋼中にブローホー
ルが生じるようになり、鋼板としての清浄性を損ない、
プレス時の割れ、表面疵の原因になるので0.002%
を下限とし、また、0.100%を越えると加工性が劣
化するようになるので、0.100%を上限とする。
If S is reduced to less than 0.001%, the manufacturing cost will be dramatically increased and the economy will be impaired.
The lower limit is 0.001%, and if it exceeds 0.050%, the workability deteriorates, so 0.050% is the upper limit. Al is
If it is less than 0.002%, deoxidation is insufficient and blowholes are generated in the steel, deteriorating the cleanliness of the steel sheet.
0.002% as it causes cracks and surface defects during pressing
Is set as the lower limit, and when it exceeds 0.100%, workability deteriorates, so 0.100% is set as the upper limit.

【0010】Nは、極力少ない方が好ましいが、0.0
002%未満にすることは製造コストの上昇を伴うの
で、0.0002%を下限とし、0.0100%を越え
ると、時効硬化性が高くなり、加工性が劣化するので、
0.0100%を上限とする。表層に添加するNiは、
0.060%未満では、Siスケールと地鉄界面に均一
なスケール層が生成されないので、0.060%を下限
とする。また、2.00%を越えて含有すると加工性が
劣化するようになるので、2.00%を上限とする。こ
れにより、表層成分は、内層成分に加えて、Niを多く
含有することになる。
It is preferable that N is as small as possible, but 0.0
If it is less than 002%, the manufacturing cost is increased, so 0.0002% is the lower limit, and if it exceeds 0.0100%, age hardening becomes high and workability deteriorates.
The upper limit is 0.0100%. Ni added to the surface layer is
If it is less than 0.060%, a uniform scale layer is not formed at the interface between the Si scale and the base iron, so 0.060% is made the lower limit. Further, if the content exceeds 2.00%, the workability deteriorates, so 2.00% is made the upper limit. As a result, the surface layer component contains a large amount of Ni in addition to the inner layer component.

【0011】本発明では、上記表層成分になるように、
連続鋳造段階で表層成分を調整する。その方法は、連続
鋳造用の鋳型へ上述の内層成分を有する溶鋼を気体とと
もに垂直下向き又は斜め下向きに注入し、この溶鋼注入
位置より上部で鋳型内の幅方向全幅に静磁場を付与して
該溶鋼の上昇流を減速し、該磁場の付与位置より上部に
ある該溶鋼へNiの鉄合金を内包するワイヤーを添加
し、前記注入気体の攪拌により上部の溶鋼を上述の表層
成分となるようにし、鋳型引き抜きにより、上述の成分
構成を有するスラブとなす方法である。
In the present invention, the above-mentioned surface layer component is added,
The surface layer components are adjusted in the continuous casting stage. That method, the molten steel having the above-mentioned inner layer component is injected vertically downward or obliquely downward with gas into a mold for continuous casting, and a static magnetic field is applied to the entire width in the width direction in the mold above the molten steel injection position, The rising flow of the molten steel is slowed down, a wire containing an iron alloy of Ni is added to the molten steel above the position where the magnetic field is applied, and the molten steel in the upper portion is made to become the above-mentioned surface layer component by stirring the injected gas. , A method of forming a slab having the above-mentioned composition by drawing the mold.

【0012】この方法を、図面に基づき説明する。図1
及び図2において、長辺鋳型1と短辺鋳型2からなる連
続鋳造用鋳型3内には下端解放型の浸漬ノズル4を図示
しないタンディッシュに接続させた状態として配置させ
てあり、また、鋳型3の外側には溶鋼注入位置である前
記浸漬ノズル4の下端の注入口6より上部において鋳型
3内に静磁場を付与する静磁界(N極)5と静磁界5a
(S極)を前記長辺鋳型1の幅方向,つまり鋳片7の幅
方向全幅にわたるように配置してある。鋳造に際して
は、浸漬ノズル4により鋳型3内へは上記内層成分を有
する溶鋼11を注入し、同時に浸漬ノズル4の気体吹き
込み口8から気体を吹き込む。
This method will be described with reference to the drawings. FIG.
In FIG. 2, a continuous bottom casting mold 3 consisting of a long-side mold 1 and a short-side mold 2 is provided with a lower end open type immersion nozzle 4 connected to a tundish (not shown). 3, a static magnetic field (N pole) 5 and a static magnetic field 5a for applying a static magnetic field in the mold 3 above the injection port 6 at the lower end of the immersion nozzle 4 at the molten steel injection position.
The (S pole) is arranged so as to extend over the entire width of the long-side mold 1, that is, the width of the slab 7. At the time of casting, molten steel 11 having the above-described inner layer component is injected into mold 3 by immersion nozzle 4, and gas is blown from gas inlet 8 of immersion nozzle 4 at the same time.

【0013】一方、溶鋼11の注入位置となる浸漬ノズ
ル4の下端の注入口6より上部では、長辺鋳型1の幅方
向全幅にわたるように配置された前記静磁界5,5aよ
り鋳型3内へ注入された溶鋼中へ静磁場を付与し、この
静磁場で溶鋼の上昇流を減速しつつ表層とすべき前記溶
鋼11に追加すべき9(Ni)を添加してこの鋳型3内
の上部の溶鋼を上述の表層成分を含有する合金となす。
そして、これを連続鋳造して鋳片7として下方に引き抜
き、図3に示すごとく表層10aのみに前述の表層成分
が添加され、内層11aが前記内層成分である複層鋳片
7を鋳造する。
On the other hand, above the injection port 6 at the lower end of the dipping nozzle 4 at the pouring position of the molten steel 11, the static magnetic fields 5 and 5a arranged so as to cover the entire width of the long side mold 1 into the mold 3. A static magnetic field is applied to the injected molten steel, and 9 (Ni) to be added to the molten steel 11 to be the surface layer is added by decelerating the rising flow of the molten steel by this static magnetic field, The molten steel is an alloy containing the above surface layer components.
Then, this is continuously cast and drawn downward as a slab 7, and as shown in FIG. 3, the above-described surface layer component is added only to the surface layer 10a, and the multilayer slab 7 in which the inner layer 11a is the inner layer component is cast.

【0014】しかして、浸漬ノズル4から鋳型3内へ注
入される溶鋼11は、気体とともに浸漬ノズル4の注入
口6から垂直(下方)方向へ注入されると、鋳型3内で
矢示するような反転上昇流12となって上方へ移動し、
ここで注入口6より上部にある静磁界5,5aにより静
磁場が付与される。このように静磁場が付与されると溶
鋼11の反転した上昇流は急激に減速されることになる
が、減速されて静磁界5,5aの上部へ溶鋼11が移動
し、ここで溶鋼11に追加すべき元素9が添加されて合
金溶鋼10となる。
When the molten steel 11 injected from the immersion nozzle 4 into the mold 3 is injected vertically together with the gas from the injection port 6 of the immersion nozzle 4 in the vertical (downward) direction, the molten steel 11 shows an arrow in the mold 3. It becomes a reverse reversal upward flow 12 and moves upward,
Here, a static magnetic field is applied by the static magnetic fields 5 and 5a above the injection port 6. When the static magnetic field is applied as described above, the inverted upward flow of the molten steel 11 is rapidly decelerated, but the speed is reduced and the molten steel 11 moves to the upper part of the static magnetic fields 5, 5a. The element 9 to be added is added to form the molten alloy steel 10.

【0015】一方、溶鋼11とともに浸漬ノズル4の注
入口6から垂直方向へ注入された気体は、気泡13とな
って微細分散し溶鋼中の全域を上昇し、添加した注入口
6より上部では添加された元素9を攪拌して均一化され
た合金溶鋼10を形成する。そして、鋳型3から鋳片7
として下方へ引き抜くことにより静磁界5,5aより上
部の合金溶鋼10はその表面が冷却されて凝固し、静磁
界5,5aの下方へ引く抜かれて移動したとき、追加の
元素が添加されていない溶鋼11の凝固による鋼を内層
11aとし、表面のみは引き抜き移動とともに合金溶鋼
10の凝固層が序々に拡大した合金鋼の表層10aを形
成した複層鋳片7となる。
On the other hand, the gas injected vertically from the injection port 6 of the dipping nozzle 4 together with the molten steel 11 becomes finely dispersed as bubbles 13 and rises in the entire area of the molten steel, and is added above the added injection port 6. The molten element 9 is stirred to form a homogenized molten alloy steel 10. Then, from the mold 3 to the slab 7
When the alloy molten steel 10 above the static magnetic field 5, 5a is cooled down and solidified by being drawn downward, no additional element is added when the alloy steel 10 is drawn and moved below the static magnetic field 5, 5a. The steel obtained by solidification of the molten steel 11 is used as the inner layer 11a, and only the surface becomes the multilayer slab 7 in which the surface layer 10a of the alloy steel in which the solidified layer of the alloy molten steel 10 gradually expands with the drawing movement.

【0016】このように、溶鋼11を浸漬ノズル4の注
入口6から垂直下向きに気体とともに注入することで、
溶鋼11の注入流は下方へ達した後、気体の浮力により
反転し上昇流12となって上昇するが、このときの流速
が上昇にともない静磁界5,5aの近傍では緩やかにな
るうえに浸漬ノズル4の注入口6より上部ではこの静磁
界5,5aによる静磁場の付与により急速に上昇流を抑
えられ、従って、この静磁界5,5aより上部にある合
金鋼10は大きく攪乱されることがないうえに、鋳型3
内の下部の溶鋼11にも静磁場の遮断作用と、溶鋼自信
の上昇流12によって合金溶鋼10が混入することもな
く、確実に安定して合金鋼10aが鋼の内層11aの表
面に形成された複層鋳片7を得ることができる。ただ
し、浸漬ノズルの注入口は、図1の1孔式でも,複数孔
式(2孔以上)でもかまわない。なお、表層10aの層
厚さは、鋳造速度つまり引き抜き速度と静磁場の設置位
置により正確に制御することができる。
In this way, by injecting the molten steel 11 vertically downward from the injection port 6 of the immersion nozzle 4 together with the gas,
After the injection flow of the molten steel 11 reaches the downward direction, it is reversed by the buoyancy of the gas and rises to the ascending flow 12, but as the flow velocity at this time rises, it becomes gentle in the vicinity of the static magnetic fields 5 and 5a and is immersed. Above the injection port 6 of the nozzle 4, the upward magnetic field is rapidly suppressed by applying the static magnetic field by the static magnetic fields 5 and 5a, so that the alloy steel 10 above the static magnetic fields 5 and 5a is greatly disturbed. There is no mold 3
The molten steel 11 in the lower part of the inside is prevented from being mixed with the molten steel alloy 10 by the static magnetic field blocking action and the rising flow 12 of the molten steel self, and the alloy steel 10a is reliably and stably formed on the surface of the inner layer 11a of the steel. It is possible to obtain the multi-layer cast slab 7. However, the injection port of the immersion nozzle may be a single-hole type as shown in FIG. 1 or a multiple-hole type (two or more holes). The layer thickness of the surface layer 10a can be accurately controlled by the casting speed, that is, the drawing speed and the installation position of the static magnetic field.

【0017】本発明においては、表層の厚さは片面あた
り全厚tの0.005〜0.10tとする。この理由
は、表層厚さが片面あたり0.005t未満では、熱延
前の加熱の段階でのSiスケール生成を抑制するのに必
要なNi量が十分確保されないので、0.005tを下
限とする。また、0.15tを越えると、高い合金成分
を含んだ層の割合が高くなり、鋼板全体の強度が高くな
って加工性を損なうようになるので0.15tを上限と
する。
In the present invention, the thickness of the surface layer is 0.005 to 0.10 t, which is the total thickness t per surface. The reason for this is that if the surface layer thickness is less than 0.005 t per side, the amount of Ni required to suppress Si scale generation in the heating stage before hot rolling is not sufficiently secured, so 0.005 t is the lower limit. . On the other hand, if it exceeds 0.15 t, the proportion of the layer containing a high alloy component increases, and the strength of the entire steel sheet increases, resulting in impairing the workability. Therefore, the upper limit is 0.15 t.

【0018】具体的には、鋳型内に静磁場を設置する場
合、引き抜き速度0.3〜2.0m/分で表層厚10〜
30mmに制御することができ、引き抜き速度が低速に
なるほど表層厚は厚くなり、また、高速になるほど表層
厚は薄くなる。すなわち、低速であればそれだけ合金溶
鋼10の表面が鋳型3との接触時間が長くなり、従っ
て、冷却される時間が長くなることになって凝固層とな
る表面層10aの厚みが厚くなり、逆に高速になればそ
れだけ合金溶鋼10の表面が鋳型3での接触時間が短く
なり冷却される時間が短くなり、凝固層となる表面層1
0aの厚みは薄くなるからである。内層と表面層との境
界における成分の混合によって本発明鋼板の性質が変化
することはないので、表層と内層の成分の混合は許され
る。
Specifically, when a static magnetic field is set in the mold, the drawing speed is 0.3 to 2.0 m / min and the surface layer thickness is 10 to 10.
It can be controlled to 30 mm, and the lower the drawing speed, the thicker the surface layer, and the higher the speed, the thinner the surface layer. That is, if the speed is low, the contact time of the surface of the molten alloy steel 10 with the mold 3 is correspondingly long, and accordingly, the cooling time becomes long, and the thickness of the surface layer 10a serving as a solidification layer becomes thicker. The higher the speed, the shorter the contact time of the surface of the molten alloy steel 10 in the mold 3 and the shorter the cooling time, and the surface layer 1 that becomes the solidified layer.
This is because the thickness of 0a becomes thin. The mixing of the components at the boundary between the inner layer and the surface layer does not change the properties of the steel sheet of the present invention, so that the mixing of the components of the surface layer and the inner layer is allowed.

【0019】以上のようにして得られたスラブを鋼板製
造の常法に従い鋼板となす。まず、該スラブを連続鋳造
後直接又は一度適当な温度まで冷却したのち加熱炉で加
熱する。加熱は、熱間圧延が可能な900℃から125
0℃程度とするのが望ましい。鋼板の用途によっては、
該スラブの温度が1000℃以上の場合には、加熱を省
略してもかまわない。加熱後に行う熱間圧延(加熱しな
い場合も含め)は、Ar1 変態点以上の仕上温度で熱延
する。通常はこのまま熱延鋼板となすが、さらに高い疲
労強度を得るために仕上熱延後以下の方法で冷却する。
仕上温度が高い場合には、仕上熱延後、1秒〜50秒間
の空冷を行いオーステナイト中へのCの濃化を促進する
か、あるいは、仕上温度がAr1 変態点に近い場合に
は、直ちに冷却を開始することができる。
The slab obtained as described above is made into a steel plate according to a conventional method for manufacturing a steel plate. First, the slab is continuously cast, cooled directly or once to an appropriate temperature, and then heated in a heating furnace. The heating is from 900 ℃ to 125
It is desirable to set it to about 0 ° C. Depending on the application of the steel sheet,
When the temperature of the slab is 1000 ° C. or higher, heating may be omitted. Hot rolling (including non-heating) performed after heating is hot-rolled at a finishing temperature equal to or higher than the Ar 1 transformation point. Usually, the hot rolled steel sheet is formed as it is, but in order to obtain higher fatigue strength, it is cooled by the following method after finishing hot rolling.
When the finishing temperature is high, after finishing hot rolling, air cooling is performed for 1 second to 50 seconds to promote the concentration of C in austenite, or when the finishing temperature is close to the Ar 1 transformation point, Cooling can be started immediately.

【0020】冷却開始温度は(Ar1 変態点−30℃)
以上の温度域からとする。これは、この温度よりも低い
温度からでは、フェライトの生成が多くなり、マルテン
サイトの生成が不十分となるからである。冷却速度は1
5℃/s以上200℃/sとする。15℃/s未満では
マルテンサイトの生成が不十分となり、また200℃/
sを越えると冷却設備膨大となり製造コストが著しく上
昇するためである。冷却の終了温度は200℃以下とす
る。200℃を越えるとマルテンサイトの生成が不十分
となるためである。この後、酸洗等により脱スケールを
施し、製品となす。
The cooling start temperature is (Ar 1 transformation point −30 ° C.)
From the above temperature range. This is because, at a temperature lower than this temperature, the generation of ferrite increases and the generation of martensite becomes insufficient. Cooling rate is 1
5 ° C./s or more and 200 ° C./s. If it is less than 15 ° C / s, the formation of martensite becomes insufficient, and if it is 200 ° C / s.
This is because if s is exceeded, the cooling equipment will become huge and the manufacturing cost will rise significantly. The ending temperature of the cooling is 200 ° C. or less. This is because if the temperature exceeds 200 ° C, the formation of martensite becomes insufficient. After that, descaling is performed by pickling or the like to obtain a product.

【0021】[0021]

【発明の実施の形態】内層成分として、表1に掲げる成
分の溶鋼を準備した。次いで、以下の方法で鋳造し、鋼
板となした。 (1)鋳型サイズ 245mm(短辺)×1200mm(長辺)、鋳型高さ 900mm (2)静磁界位置(コイル中心位置) 溶鋼表面430mm下 (3)浸漬ノズル注入口位置 静磁界位置から50mm下 (4)浸漬ノズル注入口径 φ90mm
BEST MODE FOR CARRYING OUT THE INVENTION Molten steel having the components listed in Table 1 was prepared as an inner layer component. Then, it was cast by the following method to obtain a steel plate. (1) Mold size 245 mm (short side) x 1200 mm (long side), mold height 900 mm (2) Static magnetic field position (coil center position) Molten steel surface 430 mm below (3) Immersion nozzle injection port position 50 mm below static magnetic field position (4) Immersion nozzle inlet diameter φ90mm

【0022】[0022]

【表1】 [Table 1]

【0023】このような連続鋳造装置に、表1の溶鋼を
浸漬ノズルから3.0l/分のArガスとともに鋳型内
に注入し、一方、静磁界から上部の溶鋼中へNiの鉄合
金を内包するワイヤーを添加するとともに、5000ガ
ウスの静磁場を付与しながら引き抜き速度1.3m/分
で鋳造した。該ワイヤーの添加速度を制御することによ
り、表層部のNi含有量が、0.5%、表層部の厚みが
20mmの均一に生成した表層部を有する複層鋳片を得
た。次いで、該鋳片を1250℃に加熱し、その後84
0℃で熱延を行い、8秒間空冷の後760℃から200
℃以下まで25℃/secの冷却速度で冷却し、巻き取
って板厚3.2mmの熱延鋼板とした。該鋼板を酸洗し
てスケールを除去した。
Into such a continuous casting apparatus, the molten steel shown in Table 1 was injected from the dipping nozzle into the mold together with 3.0 l / min of Ar gas, while the iron alloy of Ni was contained in the molten steel above from the static magnetic field. Was added and a static magnetic field of 5000 gauss was applied, and casting was performed at a drawing speed of 1.3 m / min. By controlling the addition rate of the wire, a multilayer cast slab having a uniformly formed surface layer portion having a surface layer portion Ni content of 0.5% and a surface layer portion thickness of 20 mm was obtained. The slab is then heated to 1250 ° C. and then 84
Hot-roll at 0 ℃, air cool for 8 seconds, then 760 ℃ to 200 ℃
It was cooled at a cooling rate of 25 ° C./sec to a temperature equal to or lower than 0 ° C., and wound to obtain a hot-rolled steel plate having a plate thickness of 3.2 mm. The steel sheet was pickled to remove scale.

【0024】以上の方法により、表層に0.26mmの
Niを多く含む層を有し、内層の金属組織が15%のマ
ルテンサイトと残部フェライトからなる2相組織である
鋼板を得た。また該鋼板の表面には斑状のSiスケール
は観察されなかった。該鋼板の平面曲げ疲労試験を実施
したところ、1千万回の疲労試験においても破壊が発生
しない最大の応力を母材の引張強度で割った値すなわち
疲労限度比は0.53を示し、優れた疲労特性を示すこ
とが確認できた。
By the above method, a steel sheet having a 0.26 mm layer containing a large amount of Ni in the surface layer and having a two-phase structure in which the metal structure of the inner layer was 15% of martensite and the balance ferrite was obtained. No spot-like Si scale was observed on the surface of the steel sheet. When a plane bending fatigue test was performed on the steel sheet, a value obtained by dividing the maximum stress that would not cause fracture even in a fatigue test of 10 million times by the tensile strength of the base material, that is, the fatigue limit ratio was 0.53, which was excellent. It was confirmed that the steel showed a high fatigue characteristic.

【0025】[0025]

【実施例】内層成分として、表2に掲げる成分の溶鋼を
準備した。次いで、以下の方法で鋳造し、鋼板となし
た。 (1)鋳型サイズ 245mm(短辺)×1200mm(長辺)、鋳型高さ 900mm (2)静磁界位置(コイル中心位置) 溶鋼表面430mm下 (3)浸漬ノズル注入口位置 静磁界位置から50mm下 (4)浸漬ノズル注入口径 φ90mm
Example As the inner layer component, molten steel having the components listed in Table 2 was prepared. Then, it was cast by the following method to obtain a steel plate. (1) Mold size 245 mm (short side) x 1200 mm (long side), mold height 900 mm (2) Static magnetic field position (coil center position) Molten steel surface 430 mm below (3) Immersion nozzle injection port position 50 mm below static magnetic field position (4) Immersion nozzle inlet diameter φ90mm

【0026】[0026]

【表2】 [Table 2]

【0027】このような連続鋳造装置に、表1の溶鋼を
浸漬ノズルから3.0l/分のArガスとともに鋳型内
に注入し、一方、静磁界から上部の溶鋼中へNiの鉄合
金を内包するワイヤーを添加するとともに、5000ガ
ウスの静磁場を付与しながら引き抜き速度1.3〜2.
0m/分で鋳造した。該ワイヤーの添加速度を制御する
ことにより、表層部のNi含有量が、0.06〜1.5
6%、表層部の厚みが3.9〜31mmの均一に生成し
た表層部を有する複層鋳片を得た。次いで、該鋳片を1
050〜1250℃に加熱し、その後840〜910℃
で熱延を行い、3〜10秒間の空冷の後、20〜100
℃/sの冷却速度で250℃以下まで冷却し、巻き取っ
て板厚2.9〜5.6mmの熱延鋼板とした。該鋼板を
酸洗してスケールを除去した。
Into such a continuous casting apparatus, the molten steel shown in Table 1 was injected from the dipping nozzle into the mold together with 3.0 l / min of Ar gas, while the static iron magnetic field contained Ni iron alloy in the upper molten steel. And a drawing speed of 1.3 to 2 while applying a static magnetic field of 5000 Gauss.
It was cast at 0 m / min. By controlling the addition rate of the wire, the Ni content of the surface layer portion is 0.06 to 1.5.
A multilayer cast product having a uniformly generated surface layer portion having a surface layer portion thickness of 6% and a thickness of the surface layer portion of 3.9 to 31 mm was obtained. Then, the slab 1
Heat to 050 ~ 1250 ℃, then 840 ~ 910 ℃
Hot-rolling is performed, and after air cooling for 3 to 10 seconds, 20 to 100
It was cooled to 250 ° C or lower at a cooling rate of ° C / s and wound to obtain a hot-rolled steel sheet having a plate thickness of 2.9 to 5.6 mm. The steel sheet was pickled to remove scale.

【0028】また、比較例として表層にNiを添加しな
かった鋼板(表3中のNo.12〜16)を製造した。
これらの鋼板の疲労特性を評価した。疲労特性は、両振
り平面曲げ疲労試験により、107回の疲労限の強度を
求め、この値と静的引張により測定した引張強さとの比
でもって評価した。また、酸洗後の表面外観を観察し
た。表面の斑状のSiスケールの痕跡が有るか無いかに
よって表面性状を評価した。評価結果を表3に示す。こ
の表から本発明鋼は比較例と比べて、Siスケールの痕
跡がなく、また疲労限度比が0.5以上あり、優れた疲
労特性を示すことがわかる。
As a comparative example, steel sheets (No. 12 to 16 in Table 3) in which Ni was not added to the surface layer were manufactured.
The fatigue properties of these steel sheets were evaluated. Fatigue properties were evaluated by determining the strength at the fatigue limit of 10 7 times by the double swing plane bending fatigue test and using the ratio between this value and the tensile strength measured by static tension. Further, the surface appearance after pickling was observed. The surface properties were evaluated based on whether or not there were traces of mottled Si scale on the surface. Table 3 shows the evaluation results. From this table, it can be seen that the steel of the present invention has no trace of Si scale, has a fatigue limit ratio of 0.5 or more, and exhibits excellent fatigue characteristics, as compared with the comparative example.

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【発明の効果】本発明によれば、表層にSiスケールを
無害化するNiを多く含有させるため、Siスケールの
発生がなく、鋼板内部は疲労特性と延性に優れた鋼板と
なるため、表面性状性と疲労特性に優れた鋼板を得るこ
とができる。また、該鋼板の製造方法において、表層厚
さの制御が、鋳片の引き抜き速度と静磁場設置位置で的
確にできるので安定した表層厚さを有する表面性状性と
疲労特性に優れた鋼板を提供することができる。
According to the present invention, since the surface layer contains a large amount of Ni for detoxifying the Si scale, there is no generation of Si scale, and the inside of the steel sheet becomes a steel sheet having excellent fatigue characteristics and ductility. It is possible to obtain a steel sheet having excellent properties and fatigue properties. Further, in the method for producing the steel sheet, the surface layer thickness can be controlled accurately at the slab drawing speed and the static magnetic field installation position, so that a steel sheet having a stable surface layer and excellent in surface properties and fatigue properties is provided. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の工程を説明する側面図である。FIG. 1 is a side view illustrating a process of the present invention.

【図2】本発明の工程を説明する平面図である。FIG. 2 is a plan view illustrating a process of the present invention.

【図3】本発明により鋳造された複層鋳片の断面図であ
る。
FIG. 3 is a cross-sectional view of a multilayer slab cast according to the present invention.

【符号の説明】[Explanation of symbols]

3 鋳型 4 浸漬ノズル 5 静磁界(N極) 5a 静磁界(S極) 6 浸漬ノズルの注入口 8 気体吹き込み口 9 追加する元素を含むワイヤー 10a 表層(表層成分を有する溶鋼の凝固層) 11 溶鋼 11a 内層(溶鋼の凝固層) 3 Mold 4 Immersion Nozzle 5 Static Magnetic Field (N Pole) 5a Static Magnetic Field (S Pole) 6 Immersion Nozzle Inlet 8 Gas Inlet 9 Wire Containing Additional Element 10a Surface Layer (Solidified Layer of Molten Steel Having Surface Layer Components) 11 Molten Steel 11a Inner layer (solidified layer of molten steel)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 表層と内層において成分の異なる複層鋼
板において、内層成分として、重量%で、 C :0.02〜0.15%、 Si:0.20〜3.00%、 Mn:0.60〜3.00%、 P :0.002〜0.030%、 S :0.001〜0.050%、 Al:0.002〜0.100%、 N :0.0002〜0.0100% 残部:Fe及び不可避的不純物 を含有し、板厚をtとすると、表裏面から片面あたり
0.015t〜0.15tの部分の表層成分として、前
記内層成分に加えて、 Ni:0.060〜2.00% を含有せしめた表面性状と疲労特性に優れた複層鋼板。
1. In a multi-layered steel sheet having different components in the surface layer and the inner layer, C: 0.02 to 0.15%, Si: 0.20 to 3.00%, Mn: 0 by weight% as the inner layer component. .60 to 3.00%, P: 0.002 to 0.030%, S: 0.001 to 0.050%, Al: 0.002 to 0.100%, N: 0.0002 to 0.0100. % Balance: containing Fe and unavoidable impurities, and assuming that the plate thickness is t, as a surface layer component of 0.015 t to 0.15 t per surface from the front and back surfaces, in addition to the inner layer components, Ni: 0.060 A multi-layered steel sheet containing up to 2.00% and having excellent surface properties and fatigue characteristics.
【請求項2】 表層と内層において成分の異なる複層鋼
板において、内層成分として、重量%で、 C :0.02〜0.15%、 Si:0.20〜3.00%、 Mn:0.60〜3.00%、 P :0.002〜0.030%、 S :0.001〜0.050%、 Al:0.002〜0.100%、 N :0.0002〜0.0100% 残部:Fe及び不可避的不純物 を含有し、板厚をtとすると、表裏面から片面あたり
0.015t〜0.15tの部分の表層成分として、前
記内層成分に加えて、 Ni:0.060〜2.00% を含有せしめ、かつ内層の金属組織が主としてフェライ
トとマルテンサイトの2相からなる表面性状と疲労特性
に優れた複層鋼板。
2. In a multi-layer steel sheet having different components in the surface layer and the inner layer, C: 0.02 to 0.15%, Si: 0.20 to 3.00%, Mn: 0 in% by weight as the inner layer component. .60 to 3.00%, P: 0.002 to 0.030%, S: 0.001 to 0.050%, Al: 0.002 to 0.100%, N: 0.0002 to 0.0100. % Balance: containing Fe and unavoidable impurities, and assuming that the plate thickness is t, as a surface layer component of 0.015 t to 0.15 t per surface from the front and back surfaces, in addition to the inner layer components, Ni: 0.060 % To 2.00%, and the inner layer metallographic structure is mainly composed of two phases, ferrite and martensite, and has excellent surface properties and fatigue properties.
【請求項3】 連続鋳造用の鋳型へ請求項1記載の内層
成分を有する溶鋼を気体とともに垂直下向き又は斜め下
向きに注入し、この溶鋼注入位置より上部で鋳型内の幅
方向全幅に静磁場を付与して該溶鋼の上昇流を減速し、
該磁場の付与位置より上部にある該溶鋼へNiを添加し
て、前記注入気体の攪拌により上部の溶鋼を請求項1記
載の表層成分となるようにし、鋳型引き抜きにより、請
求項1記載の成分構成を有するスラブとなす。次いで、
熱延を施し、内層に請求項1記載の成分を有し、板厚を
tとすると、表裏面から0.015t〜0.15tの表
層成分が請求項1記載の表層成分を有する熱延鋼板とな
すことを特徴とする表面性状と疲労特性に優れた複層鋼
板の製造方法。
3. A molten steel having the inner layer component according to claim 1 is injected vertically downward or obliquely downward together with a gas into a mold for continuous casting, and a static magnetic field is applied to the entire width direction in the mold above the position where the molten steel is injected. To slow down the rising flow of the molten steel,
Ni is added to the molten steel above the position where the magnetic field is applied, the molten steel in the upper portion is made to become the surface layer component according to claim 1 by stirring the injected gas, and the component according to claim 1 is extracted by mold drawing. The slab has a structure. Then
A hot-rolled steel sheet having a surface layer component of 0.015t to 0.15t from the front and back surfaces, which is hot-rolled and has the components according to claim 1 in the inner layer and the plate thickness is t. A method for producing a multi-layer steel sheet having excellent surface properties and fatigue characteristics, characterized by:
【請求項4】 連続鋳造用の鋳型へ請求項1記載の内層
成分を有する溶鋼を気体とともに垂直下向き又は斜め下
向きに注入し、この溶鋼注入位置より上部で鋳型内の幅
方向全幅に静磁場を付与して該溶鋼の上昇流を減速し、
該磁場の付与位置より上部にある該溶鋼へNiを添加し
て、前記注入気体の攪拌により上部の溶鋼を請求項1記
載の表層成分となるようにし、鋳型引き抜きにより、請
求項1記載の成分構成を有するスラブとなす。次いで、
Ar1 変態点以上の仕上温度で熱延を施し、空冷を経る
かまたは終了後直ちに(Ar1 変態点−30℃)以上の温
度域から15℃/sec以上200℃/s以下の冷却速
度で200℃以下まで冷却し、内層に請求項1記載の成
分を有し、板厚をtとすると、表裏面から0.015t
〜0.15tの表層成分が請求項1記載の表層成分を含
有し、内層の金属組織が主としてフェライトとマルテン
サイトの2相からなる熱延鋼板となすことを特徴とする
表面性状と疲労特性に優れた複層鋼板の製造方法。
4. A molten steel having the inner layer component according to claim 1 is injected vertically downward or obliquely downward together with a gas into a continuous casting mold, and a static magnetic field is applied to the entire width direction in the mold above the position where the molten steel is injected. To slow down the rising flow of the molten steel,
Ni is added to the molten steel above the position where the magnetic field is applied, the molten steel in the upper portion is made to become the surface layer component according to claim 1 by stirring the injected gas, and the component according to claim 1 is extracted by mold drawing. The slab has a structure. Then
Hot rolling is performed at a finishing temperature of Ar 1 transformation point or higher, and air-cooling is performed or immediately after completion (Ar 1 transformation point −30 ° C.) or higher temperature range at a cooling rate of 15 ° C./sec or more and 200 ° C./s or less. When cooled to 200 ° C. or lower, the inner layer contains the component according to claim 1, and the plate thickness is t, 0.015 t from the front and back surfaces.
The surface properties and fatigue properties are characterized in that the surface layer component of 0.15 t contains the surface layer component according to claim 1 and the inner layer metallographic structure is a hot rolled steel sheet mainly composed of two phases of ferrite and martensite. An excellent method for manufacturing multi-layer steel sheets.
JP10248096A 1996-04-24 1996-04-24 Duplex-layer steel plate, excellent in surface characteristic and fatigue characteristic, and its production Withdrawn JPH09291335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10248096A JPH09291335A (en) 1996-04-24 1996-04-24 Duplex-layer steel plate, excellent in surface characteristic and fatigue characteristic, and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10248096A JPH09291335A (en) 1996-04-24 1996-04-24 Duplex-layer steel plate, excellent in surface characteristic and fatigue characteristic, and its production

Publications (1)

Publication Number Publication Date
JPH09291335A true JPH09291335A (en) 1997-11-11

Family

ID=14328627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10248096A Withdrawn JPH09291335A (en) 1996-04-24 1996-04-24 Duplex-layer steel plate, excellent in surface characteristic and fatigue characteristic, and its production

Country Status (1)

Country Link
JP (1) JPH09291335A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190107077A (en) * 2017-02-20 2019-09-18 닛폰세이테츠 가부시키가이샤 Grater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190107077A (en) * 2017-02-20 2019-09-18 닛폰세이테츠 가부시키가이샤 Grater

Similar Documents

Publication Publication Date Title
JP2005509740A (en) Welded structural steel with excellent weld heat affected zone toughness, manufacturing method thereof, and welded structure using the same
JP2009242912A (en) Method for melting and manufacturing titanium-added ultra-low carbon steel and method for producing titanium-added ultra-low carbon steel cast slab
JP3728287B2 (en) Method for producing alloyed galvanized steel sheet
JPH09291335A (en) Duplex-layer steel plate, excellent in surface characteristic and fatigue characteristic, and its production
JPH10204583A (en) Multilayer steel plate excellent in surface characteristic and fatigue characteristic, and its production
CN112626418A (en) QStE420TM hot-rolled pickled plate and production method thereof
JP3861640B2 (en) Cold-rolled steel sheet and manufacturing method thereof
JPH08283898A (en) Multi-layered steel sheet excellent in corrosion resistance, weldability, and fatigue characteristic and its production
JP2000178655A (en) Steel sheet excellent in surface property and its production
JP2009270165A (en) Extra-low carbon steel sheet, and method for producing the same
JPH08283897A (en) Multi-layered steel sheet excellent in workability and fatigue characteristic and its production
JPH08277436A (en) Double-layered steel sheet excellent in fatigue characteristic and its production
JP2613699B2 (en) Steel material excellent in low-temperature toughness and method for producing the same
JPH08283903A (en) Multi-layered steel sheet excellent in brazing crack resistance and its production
JP2857762B2 (en) Manufacturing method of continuous cast enameled steel sheet with excellent nail skip resistance
JPH11264022A (en) Production of steel sheet excellent in surface property
JPH08127839A (en) Multiply-layered steel sheet excellent in corrosion resistance and workability and production thereof
JPH0578752A (en) Manufacture of high strength cold rolled steel sheet excellent in chemical convertibility and stretch-flanging property
JP2960288B2 (en) Manufacturing method of multilayer steel sheet by continuous casting
JPH08127841A (en) Multiply-layered steel sheet excellent in deep drawability, dent resistance and fatigue property and production thereof
JPH0430461B2 (en)
JP3005144B2 (en) Manufacturing method of weather-resistant steel sheet with excellent net cracking resistance
JPH08127840A (en) Multiply-layered steel layer for deep drawing excellent in corrosion resistance and production thereof
JPS5858410B2 (en) Method for producing cold-rolled steel sheets with good workability by applying continuous casting and continuous annealing
JPH0312132B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030701