JPH08127841A - Multiply-layered steel sheet excellent in deep drawability, dent resistance and fatigue property and production thereof - Google Patents

Multiply-layered steel sheet excellent in deep drawability, dent resistance and fatigue property and production thereof

Info

Publication number
JPH08127841A
JPH08127841A JP26417894A JP26417894A JPH08127841A JP H08127841 A JPH08127841 A JP H08127841A JP 26417894 A JP26417894 A JP 26417894A JP 26417894 A JP26417894 A JP 26417894A JP H08127841 A JPH08127841 A JP H08127841A
Authority
JP
Japan
Prior art keywords
steel sheet
layer
steel
surface layer
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26417894A
Other languages
Japanese (ja)
Inventor
Kazumasa Yamazaki
一正 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26417894A priority Critical patent/JPH08127841A/en
Publication of JPH08127841A publication Critical patent/JPH08127841A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE: To produce a multiply-layered steel sheet excellent in deep drawability, dent resistance and fatigue properties by constituting it of an internal layer contg. specified amounts of C, Si, Mn, P, S, Al, N, Ti and Nb and a surface layer contg. Cu as well. CONSTITUTION: The components in the internal layer of a multiply layered steel sheet are constituted of, by weight, 0.0002 to 0.0090% C, 0.002 to 1.0% Si, 0.02 to 3.0% Mn, 0.002 to 0.150% P, 0.002 to 0.050% S, 0.002 to 0.100% Al, 0.0002 to 0.0100% N and one or more kinds of 0.005 to 0.10% Ti and 0.005 to 0.15% Nb as carbon nitride forming components, furthermore of 0.0003 to 0.0050% B if necessary, and the balance Fe with inevitable impurities. The components in the surface layer at the part of 0.015 t to 0.15 t ((t) denotes sheet thickness) per side of the surface and rear faces are constituted of the ones obtd. by adding the same components with 0.50 to 3.0$ Cu and furthermore with 0.05 to 4.0% Ni as well according to necessary. This multiply- layered steel sheet can be obtd. by adding Cu or the like to the surface of the molten steel having the same internal layer components and executing continuous casting while a magnetic field is applied to a mold.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車車体、家庭電化
製品、建材等に利用される薄鋼板およびその製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin steel sheet used for automobile bodies, home electric appliances, building materials and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】鋼板の耐デント性を向上させようとする
試みは数多くなされ、例えば特開平4-191330号公報に見
られるような複層構造の鋼板が知られている。ところが
このような鋼は、耐デント性の向上技術として表層のC
含有量を高めて表層のみを強化し、これにより耐デント
性を得ようとするもので、焼鈍の際にCの拡散が起こ
り、Cが内層中に侵入するため固溶Cの作用により高い
r値が得られないという欠点を有していた。したがっ
て、このような鋼板は、特に高い深絞り性が必要とされ
る部品には適用できないものである。また、一般に深絞
り性の良い極低炭素鋼は、低炭素鋼に比べて疲労特性が
劣るという欠点を有していた。
2. Description of the Related Art Many attempts have been made to improve the dent resistance of a steel sheet, and for example, a steel sheet having a multi-layer structure as disclosed in Japanese Patent Laid-Open No. 4-191330 is known. However, such a steel has a C surface layer as a technique for improving dent resistance.
By increasing the content and strengthening only the surface layer to obtain dent resistance, the diffusion of C occurs during annealing, and since C penetrates into the inner layer, the effect of solid solution C causes a high r. It had the drawback that no value could be obtained. Therefore, such a steel sheet cannot be applied to parts that require particularly high deep drawability. Further, in general, an ultra-low carbon steel having a good deep drawability has a drawback that its fatigue property is inferior to that of a low carbon steel.

【0003】[0003]

【発明が解決しようとする課題】本発明は、従来の極低
炭素鋼が耐デント性を向上させようとすると、深絞り性
が劣るようになるという欠点、および疲労特性が劣って
いたという欠点を解消するためになされた複層鋼板及び
その製造方法である。
SUMMARY OF THE INVENTION According to the present invention, when the conventional ultra-low carbon steel attempts to improve the dent resistance, the deep drawability becomes inferior and the fatigue property is inferior. A multi-layer steel sheet and a method for manufacturing the same have been made to solve the above problems.

【0004】[0004]

【課題を解決するための手段】本願発明の要旨は、表層
と内層において成分の異なる複層鋼板において、内層成
分として、重量比でC:0.0002〜0.0090%、Si:0.00
2 〜1.00%、Mn:0.02〜3.0 %、P:0.002 〜0.150
%、S:0.002 〜0.050 %、Al:0.002 〜0.100 %、
N:0.0002〜0.0100%、Ti:0.005 〜0.050 %とN
b:0.005 〜0.050 %の1種または2種、残部:Fe及
び不可避的不純物(以上の成分系を(A)とする)から
なるか、又は成分系(A)に加えてさらにB:0.0003〜
0.0050%を含有し、板厚をtとすると、表裏面から0.01
5 t〜0.15tの部分の表層成分が、C、Si、Mn、
P、S、Al、N、Ti、Nb、B、Fe及び不可避的
不純物については内層成分と同一であり、かつCu:0.
50〜3.0 %、又は、Cu:0.50〜3.0 %、とNi:0.05
〜4.0 %を含有する深絞り性と耐デント性と疲労特性に
優れた複層鋼板である。
The gist of the present invention is, in a multi-layer steel sheet having different components in the surface layer and the inner layer, the weight ratio of C: 0.0002 to 0.0090%, Si: 0.00 as the inner layer component.
2 to 1.00%, Mn: 0.02 to 3.0%, P: 0.002 to 0.150
%, S: 0.002-0.050%, Al: 0.002-0.100%,
N: 0.0002 to 0.0100%, Ti: 0.005 to 0.050% and N
b: 0.005 to 0.050% of one or two kinds, the balance: Fe and inevitable impurities (the above component system is (A)), or B: 0.0003 to the component system (A).
If 0.0050% is included and the plate thickness is t, 0.01 from the front and back
The surface layer components in the 5t to 0.15t portion are C, Si, Mn,
P, S, Al, N, Ti, Nb, B, Fe and unavoidable impurities are the same as those of the inner layer component, and Cu: 0.
50-3.0% or Cu: 0.50-3.0% and Ni: 0.05
It is a multi-layer steel sheet containing up to 4.0% with excellent deep drawability, dent resistance and fatigue characteristics.

【0005】更に本発明は連続鋳造用の鋳型へ前記内層
成分を有する鋼を気体とともに垂直下向き又は斜め下向
きに注入し、この溶鋼注入位置より上部で鋳型内の幅方
向全幅に静磁場を付与して該鋼の上昇流を減速し、該磁
場の付与位置より上部にある該鋼へCu又はCuとNi
を添加して、前記注入気体の撹拌により上部の溶鋼を上
記の表層成分となるようにし、鋳型引き抜きにより、前
記の成分構成を有するスラブとなし、ついで、鋼板製造
の常法に基づき、熱延、脱スケール処理、冷延、焼鈍を
施し、内層に前記の内層成分を有し、板厚をtとする
と、表裏面から片面あたり0.015 t〜0.15tの表層成分
が前記表層成分を含有する冷延鋼板となすことを特徴と
する深絞り性と耐デント性と疲労特性に優れた複層鋼板
の製造方法にある。
Further, according to the present invention, the steel having the inner layer component is injected vertically downward or obliquely downward into a mold for continuous casting, and a static magnetic field is applied to the entire width direction in the mold above the molten steel injection position. To slow down the ascending flow of the steel to the steel above the position where the magnetic field is applied.
Was added so that the molten steel in the upper part becomes the above surface layer composition by stirring the injected gas, and by drawing the mold, a slab having the above component composition was formed, and then hot rolling was performed based on the ordinary method of steel plate production. , Descaling, cold rolling, annealing, and having the above-mentioned inner layer components in the inner layer, and the plate thickness is t, 0.015 t to 0.15 t per one surface from the front and back surfaces are cold components containing the above surface layer components. It is a method for producing a multi-layer steel sheet excellent in deep drawability, dent resistance, and fatigue characteristics, which is characterized in that it is formed of a rolled steel sheet.

【0006】本発明の特徴は、深絞り性に影響を与えず
に強度の上昇がはかれるCuを、特に耐デント性に効果
のある鋼板の表面部位にのみ限定して存在させて耐デン
ト性を確保することにある。また、Cuによる強化は疲
労強度に優れるという特徴があり、これを鋼板表面に限
定して存在させることにより、鋼板全体の強度に比して
非常に高い曲げ疲労強度を得ることができる。
A feature of the present invention is that the dent resistance is improved by making Cu, whose strength is increased without affecting the deep drawability, limited to only the surface portion of the steel sheet which is particularly effective for the dent resistance. To secure. Further, the strengthening by Cu is characterized in that it is excellent in fatigue strength, and by making it exist only on the surface of the steel sheet, it is possible to obtain a very high bending fatigue strength as compared with the strength of the entire steel sheet.

【0007】以下、内層成分を限定する理由を述べる。
Cは、0.0002%未満では、脱炭するためのコストが著し
く高くなり経済的でなくなるので、0.0002%を下限とす
る。また、0.0090%を越えると炭化物形成元素を加えて
も、炭化物量が多くなり加工性が劣化するので、0.0090
%を上限とする。Siは、0.002 %未満に低減すること
は製造コストを著しく上昇させ経済性を損なうので、0.
002 %を下限とし、1.0 %を越えると加工性が劣化する
ので1.0%を上限とする。
The reasons for limiting the components of the inner layer will be described below.
If C is less than 0.0002%, the cost for decarburization becomes extremely high and it is not economical, so 0.0002% is made the lower limit. Further, if it exceeds 0.0090%, even if a carbide forming element is added, the amount of carbide increases and the workability deteriorates.
% Is the upper limit. If Si is reduced to less than 0.002%, the manufacturing cost is significantly increased and the economic efficiency is impaired.
The lower limit is 002%, and if it exceeds 1.0%, the workability deteriorates, so 1.0% is the upper limit.

【0008】Mnは、0.02%未満に低減することは製造
コストを飛躍的に上昇させ経済性を損なうので、0.02%
を下限とし、3.0 %を越えると加工性が劣化するので3.
0 %を上限とする。Pは、0.002 %未満に低減すること
は製造コストを飛躍的に上昇させ経済性を損なうので、
0.002 %を下限とし、0.150 %を越えると加工性が劣化
するので0.150 %を上限とする。
If Mn is reduced to less than 0.02%, the manufacturing cost will be dramatically increased and the economic efficiency will be impaired.
Is the lower limit, and if it exceeds 3.0%, the workability deteriorates, so 3.
The upper limit is 0%. If P is reduced to less than 0.002%, the manufacturing cost will increase dramatically and the economic efficiency will be impaired.
The lower limit is 0.002%, and if it exceeds 0.150%, the workability deteriorates, so 0.150% is the upper limit.

【0009】Sは、0.002 %未満に低減することは製造
コストを飛躍的に上昇させ経済性を損なうので、0.002
%を下限とし、0.050 %を越えると加工性が劣化するの
で0.050 %を上限とする。Alは、0.002 %未満では、
脱酸が不足し鋼中にブローホールが生じるようになり、
鋼板としての清浄性を損ない、プレス時の割れ、表面疵
の原因になるので0.002 %を下限とし、また、0.100 %
を越えると加工性が劣化するようになるので、0.100 %
を上限とする。
If S is reduced to less than 0.002%, the manufacturing cost is dramatically increased and the economic efficiency is impaired.
% Is the lower limit, and if it exceeds 0.050%, the workability deteriorates, so 0.050% is the upper limit. Al is less than 0.002%,
Due to lack of deoxidation, blowholes will occur in the steel,
0.002% is the lower limit because it impairs cleanliness as a steel plate and causes cracks and surface defects during pressing.
If it exceeds 0.10%, the workability will deteriorate, so 0.100%
Is the upper limit.

【0010】Nは、極力少ない方が好ましいが、0.0002
%未満にすることは、製造コストの大幅な上昇を伴うの
で、0.0002%を下限とし、0.0100%を越えると、時効硬
化性が高くなり、加工性が劣化するので、0.0100%を上
限とする。炭窒化物形成元素群のTiおよびNbは、鋼
中のC、Nを析出固定させ、加工性を劣化させる固溶
C、固溶Nを低減するために添加する。
N is preferably as small as possible, but 0.0002
If it is less than 0.1%, the production cost is significantly increased, so 0.0002% is the lower limit, and if it exceeds 0.0100%, age hardening becomes high and the workability deteriorates, so 0.0100% is made the upper limit. Carbon and nitride forming element groups, Ti and Nb, are added in order to precipitate and fix C and N in the steel and reduce solid solution C and solid solution N that deteriorate workability.

【0011】Tiは、0.005 %未満では炭窒化物を形成
せしめる量としては不十分となり、鋼中の固溶C、固溶
Nが多くなり加工性が劣化するので0.005 %を下限と
し、0.10%を越えると固溶Tiとして鋼中に存在する量
が多くなり、この場合も加工性を劣化させるので0.10%
を上限とする。
If the content of Ti is less than 0.005%, the amount of carbonitrides formed is insufficient, and the amount of solid solution C and solid solution N in the steel increases to deteriorate the workability. Therefore, 0.005% is the lower limit, and 0.10% If the content exceeds 0.10%, the amount of solid solution Ti present in the steel increases, and in this case as well, workability deteriorates.
Is the upper limit.

【0012】Nbは、0.005 %未満では炭窒化物を形成
せしめる量としては不十分となり、鋼中の固溶C、固溶
Nが多くなり加工性が劣化するので0.005 %を下限と
し、0.15%を越えると固溶Nbとして鋼中に存在する量
が多くなり、この場合も加工性を劣化させるので0.15%
を上限とする。
If the amount of Nb is less than 0.005%, the amount of carbonitrides formed is insufficient, and the amount of solid solution C and solid solution N in the steel increases to deteriorate the workability. Therefore, 0.005% is the lower limit, and 0.15% If the content exceeds 0.15%, the amount of solute Nb present in the steel increases, and in this case too, the workability deteriorates.
Is the upper limit.

【0013】Bは、極低炭素鋼を深絞り用途に用いると
2次加工割れを起こすことがあるので、これを防止する
ために添加する。Bの添加により耐2次加工割れ性は飛
躍的に向上する。添加量は、0.0003%未満では、2次加
工割れ防止効果がなくなるので0.0003%を下限とし、0.
0050%を越えて含有すると、再結晶温度が上昇し焼鈍が
困難になったり、熱間圧延のときに熱間割れを起こした
りするので0.0050%を上限とする。
When ultra-low carbon steel is used for deep drawing, B may cause secondary work cracking, so B is added to prevent this. The addition of B dramatically improves the resistance to secondary work cracking. If the addition amount is less than 0.0003%, the effect of preventing secondary work cracking is lost, so 0.0003% is the lower limit, and
If the content exceeds 50%, the recrystallization temperature rises and annealing becomes difficult, or hot cracking occurs during hot rolling, so 0.0050% is made the upper limit.

【0014】次に、表層の成分を限定する理由を述べ
る。Cuは、耐デント性の確保に必須の元素である。C
uは固溶体強化により鋼板の強度を上昇させる。0.50%
未満では、この耐デント性向上効果が十分発揮出来なく
なるので、0.50%を下限とする。また、3.0 %以上含有
すると、延性が劣化し、特に張り出し加工時に割れが生
じるようになるので、3.0 %を上限とする。
Next, the reason for limiting the components of the surface layer will be described. Cu is an essential element for ensuring the dent resistance. C
u increases the strength of the steel sheet by solid solution strengthening. 0.50%
If it is less than 0.5%, the effect of improving dent resistance cannot be sufficiently exhibited, so 0.50% is made the lower limit. Further, if it is contained in an amount of 3.0% or more, the ductility deteriorates, and cracks particularly occur during the overhanging process, so 3.0% is made the upper limit.

【0015】Niは、Cuを添加したときに発生する表
面割れを防止するために添加する。Cuを含有する鋼を
製造する際に、熱間圧延前の加熱段階で加熱温度が高い
場合には、網割れと称する割れが表面に発生する。これ
を防止するために添加するが、添加量としては、Cu含
有量の0.1 〜1.3 倍程度含有させる必要がある。この
め、0.05〜3.0 %を含有させる。加熱温度を低くできる
製造設備(例えば1050℃以下の加熱が可能な場合)
では、表面の割れ発生がないので添加の必要はない。
Ni is added to prevent surface cracks that occur when Cu is added. When producing steel containing Cu, if the heating temperature is high in the heating stage before hot rolling, cracks called net cracks occur on the surface. It is added to prevent this, but the amount of addition must be about 0.1 to 1.3 times the Cu content. For this reason, 0.05 to 3.0% is contained. Manufacturing equipment that can lower the heating temperature (for example, when heating below 1050 ° C is possible)
Then, it is not necessary to add it because there is no cracking on the surface.

【0016】本発明では、上記表層成分になるように、
連続鋳造の際に表層成分を調整する。その方法は、連続
鋳造用の鋳型へ上述の内層成分を有する鋼を気体ととも
に垂直下向き又は斜め下向きに注入し、この溶鋼注入位
置より上部で鋳型内の幅方向全幅に静磁場を付与して該
鋼の上昇流を減速し、該磁場の付与位置より上部にある
該鋼へCu又はCuとNiを添加して、前記注入気体の
撹拌により上部の溶鋼を上述の表層成分となるように
し、鋳型引き抜きにより、前述の成分構成を有するスラ
ブとなす方法である。
In the present invention, the above-mentioned surface layer component is provided,
The surface layer component is adjusted during continuous casting. The method, the steel having the above-mentioned inner layer component is injected vertically downward or obliquely downward with gas into a mold for continuous casting, and a static magnetic field is applied to the entire width direction in the mold above the molten steel injection position, The ascending flow of steel is decelerated, Cu or Cu and Ni are added to the steel above the position where the magnetic field is applied, and the molten steel in the upper part becomes the above-mentioned surface layer component by stirring the injected gas. This is a method of forming a slab having the above-mentioned composition by drawing.

【0017】この方法を、図面に基づき説明する。図1
及び図2において、長辺鋳型1と短辺鋳型2からなる連
続鋳造用鋳型3内には下端解放型の浸漬ノズル4を図示
しないタンディッシュに接続させた状態として配置させ
てあり、また、鋳型3の外側には溶鋼注入位置である前
記浸漬ノズル4の下端の注入口6より上部において鋳型
3内に静磁場を付与する静磁界(N極)5と静磁界(S
極)5aを前記長辺鋳型1の幅方向、つまり鋳片7の幅
方向全幅にわたるように配置してある。
This method will be described with reference to the drawings. FIG.
In FIG. 2, in the continuous casting mold 3 including the long-side mold 1 and the short-side mold 2, the lower end open type immersion nozzle 4 is arranged so as to be connected to a tundish (not shown). 3, a static magnetic field (N pole) 5 and a static magnetic field (S) for imparting a static magnetic field in the mold 3 are provided above the injection port 6 at the lower end of the immersion nozzle 4, which is the molten steel injection position.
5a is arranged so as to extend over the entire width of the long side mold 1, that is, the width of the slab 7.

【0018】鋳造に際しては、浸漬ノズル4により鋳型
3内へは上記内層成分を有する溶鋼11を注入し、同時
に浸漬ノズル4の気体吹き込み口8から気体を吹き込
む。
At the time of casting, the molten steel 11 having the above-mentioned inner layer components is injected into the mold 3 by the immersion nozzle 4, and at the same time, gas is blown from the gas blowing port 8 of the immersion nozzle 4.

【0019】一方、溶鋼11の注入位置となる浸漬ノズ
ル4の下端の注入口6より上部では、長辺鋳型1の幅方
向全幅にわたるように配置された前記静磁界5、5aよ
り鋳型3内へ注入された溶鋼中へ静磁場を付与し、この
静磁場で溶鋼の上昇流を減速しつつ表層とすべき前記溶
鋼11に追加すべき元素9(Cu又はCuとNi)を添
加してこの鋳型3内の上部の溶鋼を前述の表層成分を含
有する合金となす。
On the other hand, above the injection port 6 at the lower end of the dipping nozzle 4 at the pouring position of the molten steel 11, the static magnetic fields 5 and 5a arranged so as to cover the entire width of the long side mold 1 into the mold 3. A static magnetic field is applied to the injected molten steel, and the element 9 (Cu or Cu and Ni) to be added to the molten steel 11 to be the surface layer is added while decelerating the upward flow of the molten steel by this static magnetic field The molten steel in the upper part of 3 is an alloy containing the above-mentioned surface layer components.

【0020】そして、これを連続鋳造して鋳片7として
下方に引き抜き、図3に示すごとく表層10aのみに前
述の表層成分が添加され、内層11aが前記内層成分で
ある複層鋳片7を鋳造する。
Then, this is continuously cast and drawn out downward as a slab 7, and as shown in FIG. 3, the above-mentioned surface layer component is added only to the surface layer 10a, and the inner layer 11a forms a multi-layer slab 7 which is the inner layer component. To cast.

【0021】しかして、浸漬ノズル4から鋳型3内へ注
入される溶鋼11は、気体とともに浸漬ノズル4の注入
口6から垂直(下方)方向へ注入されると、鋳型3内で
矢示するような反転上昇流12となって上方へ移動し、
ここで注入口6より上部にある静磁界5、5aにより静
磁場が付与される。このように静磁場が付与されると溶
鋼11の反転した上昇流は急激に減速されることになる
が、減速されて静磁界5、5aの上部へ溶鋼11が移動
し、ここで溶鋼11に追加すべき元素9が添加されて合
金溶鋼10となる。
The molten steel 11 injected from the immersion nozzle 4 into the mold 3 is shown by an arrow in the mold 3 when injected vertically (downward) from the injection port 6 of the immersion nozzle 4 together with the gas. It becomes a reverse reversal upward flow 12 and moves upward,
Here, a static magnetic field is applied by the static magnetic fields 5 and 5 a located above the injection port 6. When the static magnetic field is applied in this manner, the reversed upward flow of the molten steel 11 is rapidly decelerated, but the decelerated speed causes the molten steel 11 to move to the upper part of the static magnetic fields 5 and 5a. The element 9 to be added is added to form molten alloy steel 10.

【0022】一方、溶鋼11とともに浸漬ノズル4の注
入口6から垂直方向へ注入された気体は、気泡13とな
って微細分散し溶鋼中の全域を上昇し、添加した注入口
6より上部では添加された元素9を撹拌して均一化され
た合金溶鋼10を形成する。そして、鋳型3から鋳片7
として下方へ引き抜くことにより静磁界5、5aより上
部の合金溶鋼10はその表面が冷却されて凝固し、静磁
界5、5aの下方へ引く抜かれて移動したとき、追加の
元素が添加されていない溶鋼11の凝固による鋼を内層
11aとし、表面のみは引き抜き移動とともに合金溶鋼
10の凝固層が序々に拡大した合金鋼の表層10aを形
成した複層鋳片7となる。
On the other hand, the gas injected vertically from the injection port 6 of the dipping nozzle 4 together with the molten steel 11 is finely dispersed as bubbles 13 and rises in the entire area of the molten steel, and is added above the added injection port 6. The molten element 9 is stirred to form a homogenized molten alloy steel 10. And from the mold 3 to the slab 7
The surface of the molten alloy steel 10 above the static magnetic fields 5 and 5a is cooled and solidified by pulling downward as the solid magnetic field, and no additional element is added when the molten steel 10 is drawn and moved below the static magnetic fields 5 and 5a. The steel obtained by the solidification of the molten steel 11 becomes the inner layer 11a, and only the surface becomes the multi-layer cast piece 7 in which the surface layer 10a of the alloy steel in which the solidified layer of the molten alloy 10 gradually expands is formed with the movement.

【0023】このように、溶鋼11を浸漬ノズル4の注
入口6から垂直下向きに気体とともに注入することで、
溶鋼11の注入流は下方へ達した後、気体の浮力により
反転し上昇流12となって上昇するが、このときの流速
が上昇にともない静磁界5、5aの近傍では緩やかにな
るうえに浸漬ノズル4の注入口6より上部ではこの静磁
界5、5aによる静磁場の付与により急速に上昇流が抑
えらる。
In this way, by injecting the molten steel 11 vertically downward from the injection port 6 of the immersion nozzle 4 together with the gas,
After the injection flow of the molten steel 11 reaches the lower side, it is reversed by the buoyancy of the gas and rises to the ascending flow 12, but as the flow velocity at this time rises, it becomes gentle in the vicinity of the static magnetic fields 5 and 5a and is immersed. Above the injection port 6 of the nozzle 4, the upward magnetic field is rapidly suppressed by applying the static magnetic field by the static magnetic fields 5 and 5a.

【0024】従って、この静磁界5、5aより上部にあ
る合金鋼10は大きく撹乱されることがないうえに、鋳
型3内の下部の溶鋼11にも静磁場の遮断作用と、溶鋼
自信の上昇流12によって合金溶鋼10が混入すること
もなく、確実に安定して合金鋼10aが鋼の内層11a
の表面に形成された複層鋳片7を得ることができる。た
だし、浸漬ノズルの注入口は、図1の1孔式でも、通常
の2孔式でもかまわない。なお、表層10aの層厚さ
は、鋳造速度つまり引き抜き速度と静磁場の設置位置に
より正確に制御することができる。
Therefore, the alloy steel 10 above the static magnetic fields 5 and 5a is not greatly disturbed, and the molten steel 11 below the mold 3 has a static magnetic field blocking action and an increase in molten steel confidence. The molten steel 10 is not mixed by the flow 12, and the alloy steel 10a is reliably and stably formed in the inner layer 11a of the steel.
It is possible to obtain the multilayer cast slab 7 formed on the surface of the. However, the injection port of the immersion nozzle may be a one-hole type as shown in FIG. 1 or an ordinary two-hole type. The layer thickness of the surface layer 10a can be accurately controlled by the casting speed, that is, the drawing speed and the installation position of the static magnetic field.

【0025】本発明においては、表層の厚さは全厚tの
0.015〜0.15tとする。この理由は、表層厚さが0.03t
未満では、耐デント性を確保するに十分な強度上昇が得
られないため、0.015 tを下限とし、0.15tを越える
と、高い合金成分を含んだ層の割合が高くなり、鋼板全
体の強度が高くなって本発明の目的である深絞り性を損
なうので0.15tを上限とする。
In the present invention, the thickness of the surface layer is the total thickness t.
It is 0.015 to 0.15t. The reason for this is that the surface layer thickness is 0.03t.
If it is less than 0.15 t, the strength cannot be sufficiently increased to secure the dent resistance. Therefore, if the lower limit is 0.015 t, and if it exceeds 0.15 t, the ratio of the layer containing high alloy components becomes high, and the strength of the entire steel sheet is Since it becomes higher and the deep drawability which is the object of the present invention is impaired, the upper limit is 0.15 t.

【0026】具体的には、鋳型内に静磁場を設置する場
合、引き抜き速度0.3〜2.0m/分表層厚10〜3
0mmに制御することができ、引き抜き速度が低速になる
ほど表層厚は厚くなり、また、高速になるほど表層厚は
薄くなる。すなわち、低速であればそれだけ合金溶鋼1
0の表面が鋳型3との接触時間が長くなり、従って、冷
却される時間が長くなることになって凝固層となる表面
層10aの厚みが厚くなり、逆に高速になればそれだけ
合金溶鋼10の表面が鋳型3での接触時間が短くなり冷
却される時間が短くなり、凝固層となる表面層10aの
厚みは薄くなるからである。内層と表面層との境界にお
ける成分の混合によって本発明鋼板の性質が変化するこ
とはないので、表層と内層の成分の混合は許される。
Specifically, when a static magnetic field is set in the mold, the drawing speed is 0.3 to 2.0 m / min, and the surface layer thickness is 10 to 3
It can be controlled to 0 mm, and the lower the drawing speed, the thicker the surface layer, and the higher the speed, the thinner the surface layer. That is, at low speeds, that much molten alloy steel 1
The surface of No. 0 is in contact with the mold 3 for a long time, and accordingly, the time for cooling becomes long, and the thickness of the surface layer 10a serving as a solidification layer becomes thicker. This is because the contact time of the surface of the mold with the mold 3 is shortened, the cooling time is shortened, and the thickness of the surface layer 10a serving as the solidified layer is reduced. The mixing of the components at the boundary between the inner layer and the surface layer does not change the properties of the steel sheet of the present invention, so that the mixing of the components of the surface layer and the inner layer is allowed.

【0027】以上のようにして得られたスラブを鋼板製
造の常法に従い鋼板となす。まず、該スラブを連続鋳造
後直接又は一度適当な温度まで冷却したのち加熱炉で加
熱する。この加熱温度は、熱間圧延が可能な900℃か
ら1300℃程度とするのが望ましい。加熱後に行う熱
間圧延はA3 変態点を下回って熱延してもよいが、十分
な加工性が得られないため好ましくはA3 変態点以上と
する。
The slab obtained as described above is made into a steel plate according to a conventional method for manufacturing a steel plate. First, the slab is continuously cast, cooled directly or once to an appropriate temperature, and then heated in a heating furnace. It is desirable that the heating temperature is about 900 ° C. to 1300 ° C. at which hot rolling can be performed. The hot rolling performed after heating may be hot rolled below the A3 transformation point, but it is preferably at least the A3 transformation point because sufficient workability cannot be obtained.

【0028】熱延後、適当な温度で巻き取って熱延鋼板
とする。このまま製品とすることもできるが、さらに薄
い板厚の鋼板、あるいはより高い加工性が必要な場合
は、この後、酸洗などの脱スケール処理を施した後、5
0%以上の冷間圧延を施し、ついで再結晶温度以上の温
度で焼鈍を施して冷延鋼板となす。冷延後スキンパス圧
延を施すなどして製品となす。
After hot rolling, the hot rolled steel sheet is wound at an appropriate temperature. Although the product can be used as it is, if a steel plate having a thinner plate thickness or higher workability is required, after this, after performing descaling treatment such as pickling, 5
Cold rolling of 0% or more is performed, and then annealing is performed at a temperature of a recrystallization temperature or higher to obtain a cold rolled steel sheet. After cold rolling, skin pass rolling is performed to obtain a product.

【0029】また、本発明の方法で得られた熱延鋼板、
冷延鋼板上に、耐食性、塗装性、溶接性を改善する目的
で片面又は両面に溶融めっき及び/又は電気めっきを施
すことも可能であり、本発明を逸脱するものではない。
Further, a hot-rolled steel sheet obtained by the method of the present invention,
It is possible to perform hot dipping and / or electroplating on one side or both sides of the cold rolled steel sheet for the purpose of improving corrosion resistance, paintability, and weldability, which does not depart from the present invention.

【0030】また、本発明の複層鋼板に各種の処理を付
加して施すことも勿論可能であり、例えばクロメート処
理、燐酸塩処理、燐酸塩処理性を向上させるための処
理、潤滑性向上処理、溶接性向上処理、樹脂皮膜処理等
を施したとしても本発明の範囲を逸脱するものではな
く、付加的に必要な特性に応じて各種の処理を行うこと
ができる。
It is of course possible to add various treatments to the multi-layer steel sheet of the present invention, for example, chromate treatment, phosphate treatment, treatment for improving phosphate treatment, and lubricity improving treatment. Even if the weldability improving treatment and the resin coating treatment are performed, it does not depart from the scope of the present invention, and various treatments can be additionally performed depending on the required characteristics.

【0031】[0031]

【実施例】【Example】

実施例1 内層成分として、表1に掲げる成分の溶鋼を準備した。
ついで、以下の方法で鋳造し、鋼板となした。
Example 1 Molten steel having the components listed in Table 1 was prepared as an inner layer component.
Then, it was cast by the following method to obtain a steel plate.

【表1】 1)鋳型サイズ 245mm(短辺)×1200mm(長辺) 鋳型高さ 900mm 2)静磁界位置(電磁コイル中心位置)溶鋼表面430mm下 3)浸漬ノズル注入口位置 静磁界位置から50mm下 4)浸漬ノズル注入口径 φ90mm[Table 1] 1) Mold size 245 mm (short side) x 1200 mm (long side) Mold height 900 mm 2) Static magnetic field position (electromagnetic coil center position) Molten steel surface 430 mm below 3) Immersion nozzle injection port position 50 mm below static magnetic field position 4) Immersion Nozzle inlet diameter φ90mm

【0032】このような連続鋳造装置に、表1の溶鋼を
浸漬ノズルから3.0 l/分のArガスとともに鋳型内
に注入し、一方、静磁界から上部の溶鋼中へ純Cuワイ
ヤーを添加するとともに、5000ガウスの静磁場を付
与しながら引き抜き速度1.3m/分で鋳造した。純C
uワイヤーの添加速度を制御することにより、表層部の
Cu含有量が、0.54〜1.85%、表層部の厚みが
12〜13mmの均一に生成した表層部を有する複層鋳片
を得た。
Into such a continuous casting apparatus, the molten steel shown in Table 1 was injected into the mold from an immersion nozzle together with 3.0 l / min of Ar gas, while a pure Cu wire was added into the molten steel from the static magnetic field. In addition, while applying a static magnetic field of 5000 gauss, casting was performed at a drawing speed of 1.3 m / min. Pure C
By controlling the addition rate of the u-wire, the Cu content of the surface layer part is 0.54 to 1.85%, and the thickness of the surface layer part is 12 to 13 mm. Obtained.

【0033】ついで、該鋳片を1050℃に加熱し、そ
の後910℃で熱延を行い、700℃で巻き取って板厚
4.8mmの熱延鋼板とした。該鋼板を酸洗してスケール
を除去した後、冷間圧延を施して、1.0mmの鋼板とし
た。ついで、800℃×60秒の連続焼鈍を施し、0.
8%のスキンパス圧延を施して冷延鋼板となした。ま
た、比較例として外層のCu量の少ないもの及び外層に
Cuが添加されていない鋼板を製造した。
Then, the slab was heated to 1050 ° C., then hot rolled at 910 ° C. and wound at 700 ° C. to obtain a hot rolled steel sheet having a plate thickness of 4.8 mm. The steel sheet was pickled to remove the scale and then cold rolled to obtain a 1.0 mm steel sheet. Then, continuous annealing was performed at 800 ° C. for 60 seconds, and
8% skin pass rolling was performed to obtain a cold rolled steel sheet. In addition, as comparative examples, a steel sheet having a small amount of Cu in the outer layer and a steel sheet having no Cu added to the outer layer were manufactured.

【0034】これらの鋼板の耐デント性、疲労特性、深
絞り性を評価した。耐デント性は、幅300 mmの鋼板を6
50mmの曲率半径をもつかまぼこ型パネルに成形し、中
央部に半径10mmの鋼製球状圧子を20kgの荷重で押
しつけて、そのときに発生したくぼみの深さを測定し、
この値で評価した。
The dent resistance, fatigue property and deep drawability of these steel sheets were evaluated. For dent resistance, use a steel plate with a width of 300 mm.
Molded into a semi-cylindrical panel with a radius of curvature of 50 mm, press a spherical steel indenter with a radius of 10 mm against the center with a load of 20 kg, and measure the depth of the depression that occurred at that time.
Evaluation was made based on this value.

【0035】疲労特性は、両振り平面曲げ疲労試験によ
り、107 回の疲労限の強度を求め、この値と静的引張
により測定した引張強さとの比でもって評価した。深絞
り性は、φ80mmに打ち抜いた円形鋼板を用いて、種々
の絞り比で平底円筒深絞りを施し、限界絞り比を求める
ことによって評価した。
The fatigue characteristics were evaluated by obtaining the strength at the fatigue limit of 10 7 times by the double swing plane bending fatigue test, and using the ratio of this value to the tensile strength measured by static tension. The deep drawability was evaluated by using a circular steel plate punched out to a diameter of 80 mm, performing a flat-bottomed cylinder deep draw at various draw ratios, and determining the limit draw ratio.

【0036】評価結果を表2に示す。この表から本発明
鋼は比較例と比べて、深絞り性が2.0以上の高い値を
示すにもかかわらず、へこみ深さが0.4mm以下の高い
耐デント性を有し、また疲労限度比0.55以上の高い
疲労特性を有していることがわかる。
The evaluation results are shown in Table 2. From this table, the steel of the present invention has a high dent resistance with a dent depth of 0.4 mm or less, even though the deep drawability shows a high value of 2.0 or more, as compared with the comparative example, and fatigue It can be seen that it has high fatigue characteristics with a limit ratio of 0.55 or more.

【0037】[0037]

【表2】 [Table 2]

【0038】実施例2 内層成分として、表1中のAの成分を有する溶鋼を準備
した。ついで、以下の方法で鋳造し、鋼板となした。 1)鋳型サイズ 245mm(短辺)×1500mm(長辺) 鋳型高さ 900mm 2)静磁界位置(コイル中心位置) 溶鋼表面430mm下 3)浸漬ノズル注入口位置 静磁界位置から50mm下 4)浸漬ノズル注入口径 φ90mm
Example 2 Molten steel having the component A in Table 1 as an inner layer component was prepared. Then, it was cast by the following method to obtain a steel plate. 1) Mold size 245 mm (short side) × 1500 mm (long side) Mold height 900 mm 2) Static magnetic field position (coil center position) Molten steel surface 430 mm below 3) Immersion nozzle injection port position 50 mm below static magnetic field position 4) Immersion nozzle Injection port diameter 90mm

【0039】このような連続鋳造装置に、表1の溶鋼を
浸漬ノズルから3.0 l/分のArガスとともに鋳型内
に注入し、一方、静磁界から上部の溶鋼中へ純Cuワイ
ヤーと純Niワイヤーを添加するとともに、5000ガ
ウスの静磁場を付与しながら引き抜き速度2.5m/
分、1.3m/分、0.3m/分の3条件で鋳造した。
純Cuワイヤー、純Niワイヤーの添加速度を制御する
ことにより、表層成分として、表3に示す成分を有する
鋳片を得た。
Into such a continuous casting apparatus, the molten steel shown in Table 1 was injected from the dipping nozzle into the mold together with 3.0 l / min of Ar gas. Withdrawing speed 2.5m / while adding Ni wire and applying static magnetic field of 5000 gauss
Min, 1.3 m / min, and 0.3 m / min.
By controlling the addition rate of the pure Cu wire and the pure Ni wire, a cast piece having the components shown in Table 3 as the surface layer component was obtained.

【表3】 [Table 3]

【0040】ついで、該鋳片を1250℃に加熱し、そ
の後910℃で熱延を行い、700℃で巻き取って板厚
4.0mmの熱延鋼板とした。該鋼板を酸洗してスケール
を除去した後、冷間圧延を施して、0.8mmの鋼板とし
た。ついで、800℃×60秒の連続焼鈍を施し、0.
8%のスキンパス圧延を施して冷延鋼板となした。
Then, the cast slab was heated to 1250 ° C., then hot rolled at 910 ° C. and wound at 700 ° C. to obtain a hot rolled steel sheet having a plate thickness of 4.0 mm. The steel sheet was pickled to remove scale, and then cold rolled to give a 0.8 mm steel sheet. Then, continuous annealing was performed at 800 ° C. for 60 seconds, and
8% skin pass rolling was performed to obtain a cold rolled steel sheet.

【0041】これらの鋼板の特性を実施例1と同様の方
法で評価した。評価結果を表4に示す。この表から本発
明鋼は比較例と比べて、深絞り性が同等の高い値を示す
にもかかわらず、高い耐デント性を有し、また高い疲労
特性を有していることがわかる。
The characteristics of these steel sheets were evaluated in the same manner as in Example 1. Table 4 shows the evaluation results. From this table, it can be seen that the steels of the present invention have high dent resistance and high fatigue properties, even though they show the same high values of deep drawability as compared with the comparative examples.

【0042】[0042]

【表4】 [Table 4]

【0043】[0043]

【発明の効果】本発明によれば、深絞り性を損なわず
に、耐デント性と疲労特性に優れた鋼板を得ることがで
きる。本発明によれば、鋼板の表面に深絞り性を損なわ
ずに強度を上昇させる元素であるCuを多く含有し、鋼
板内部は深絞り性の特に良い極低炭素鋼であるため、耐
デント性と疲労特性に優れた鋼板を提供することができ
る。また、該鋼板の製造方法において、表層厚さの制御
が、鋳片の引き抜き速度と静磁場設置位置で的確にでき
るので安定した表層厚さを有する耐デント性と深絞り性
に優れた複層鋼板を製造することができる。
According to the present invention, a steel sheet excellent in dent resistance and fatigue characteristics can be obtained without impairing the deep drawability. According to the present invention, the surface of the steel sheet contains a large amount of Cu, which is an element that increases the strength without impairing the deep drawability, and the inside of the steel sheet is an extremely low carbon steel with a particularly good deep drawability, so that the dent resistance is improved. It is possible to provide a steel sheet having excellent fatigue characteristics. Further, in the method for producing the steel sheet, the surface layer thickness can be accurately controlled by the withdrawal speed of the slab and the static magnetic field installation position, so that the multilayered layer has a stable surface layer thickness and is excellent in dent resistance and deep drawability. Steel sheets can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の鋳造工程を説明する側面図である。FIG. 1 is a side view illustrating a casting process of the present invention.

【図2】本発明の鋳造工程を説明する平面図である。FIG. 2 is a plan view illustrating a casting process of the present invention.

【図3】本発明により鋳造された複層鋳片の断面図であ
る。
FIG. 3 is a cross-sectional view of a multi-layer cast piece cast according to the present invention.

【符号の説明】[Explanation of symbols]

3 鋳型 4 浸漬ノズル 5 静磁界(N極) 5a 静磁界(S極) 6 浸漬ノズルの注入口 8 気体吹き込み口 9 追加する元素を含むワイヤー 10a 表層(表層成分を有する溶鋼の凝固層) 11 溶鋼 11a 内層(溶鋼の凝固層) 3 Mold 4 Immersion Nozzle 5 Static Magnetic Field (N Pole) 5a Static Magnetic Field (S Pole) 6 Immersion Nozzle Inlet 8 Gas Inlet 9 Wire Containing Additional Element 10a Surface Layer (Solidified Layer of Molten Steel Having Surface Layer Components) 11 Molten Steel 11a Inner layer (solidified layer of molten steel)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B32B 15/01 A C22C 38/14 38/16 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location B32B 15/01 A C22C 38/14 38/16

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 表層と内層において成分の異なる複層鋼
板において、内層成分として、重量%で C :0.0002〜0.0090%、 Si:0.002 〜1.0 %、 Mn:0.02〜3.0 %、 P :0.002 〜0.150 %、 S :0.002 〜0.050 %、 Al:0.002 〜0.100 %、 N :0.0002〜0.0100%、 炭窒化物形成元素群のTi、Nbから Ti:0.005 〜0.10%、Nb:0.005 〜0.15%の1種ま
たは2種、 残部:Fe及び不可避的不純物 を含有し、板厚をtとすると、表裏面から片面あたり0.
015 t〜0.15tの部分の表層成分が、C、Si、Mn、
P、S、Al、N、Ti、Nb、Fe及び不可避的不純
物については内層成分と同一であり、かつ Cu:0.50〜3.0 %、 を含有する深絞り性と耐デント性と疲労特性に優れた複
層鋼板。
1. In a multi-layered steel sheet having different components in the surface layer and the inner layer, C: 0.0002 to 0.0090%, Si: 0.002 to 1.0%, Mn: 0.02 to 3.0%, P: 0.002 to 0.150 by weight% as an inner layer component. %, S: 0.002-0.050%, Al: 0.002-0.100%, N: 0.0002-0.0100%, Ti and Nb of carbonitride forming element group Ti: 0.005-0.10%, Nb: 0.005-0.15% Or 2 types, the balance: Fe and unavoidable impurities are contained, and the plate thickness is t.
The surface layer component of the portion of 015t to 0.15t is C, Si, Mn,
P, S, Al, N, Ti, Nb, Fe and unavoidable impurities are the same as the components of the inner layer, and Cu: 0.50 to 3.0% is contained, which is excellent in deep drawability, dent resistance and fatigue characteristics. Multi-layer steel sheet.
【請求項2】 表層と内層において成分の異なる複層鋼
板において、請求項1記載の成分構成を有し、内層成分
及び表層成分として、請求項1記載の成分に加えて、 B:0.0003〜0.0050% を含有する深絞り性と耐デント性と疲労特性に優れた複
層鋼板。
2. A multi-layer steel sheet having different components in the surface layer and the inner layer, which has the component structure according to claim 1, and as an inner layer component and a surface layer component, in addition to the component according to claim 1, B: 0.0003 to 0.0050. %, A multi-layer steel sheet with excellent deep drawability, dent resistance, and fatigue properties.
【請求項3】 表層と内層において成分の異なる複層鋼
板において、内層成分として、請求項1又は2記載の内
層成分を有し、板厚をtとすると、表裏面から片面あた
り0.015 t〜0.15tの部分の表層成分が請求項1又は2
記載の表層成分に加えて、 Ni:0.05〜4.0 % を含有する深絞り性と耐デント性と疲労特性に優れた複
層鋼板。
3. A multi-layer steel sheet having different components in the surface layer and the inner layer, having the inner layer component according to claim 1 or 2 as the inner layer component and having a plate thickness t, 0.015 t to 0.15 per side from the front and back surfaces. The surface layer component in the portion t is claim 1 or 2.
In addition to the listed surface layer components, a multi-layer steel sheet containing Ni: 0.05 to 4.0% and having excellent deep drawability, dent resistance, and fatigue characteristics.
【請求項4】 連続鋳造用の鋳型へ請求項1又は2記載
の内層成分を有する鋼を気体とともに垂直下向き又は斜
め下向きに注入し、この溶鋼注入位置より上部で鋳型内
の幅方向全幅に静磁場を付与して該鋼の上昇流を減速
し、該磁場の付与位置より上部にある該鋼へCu又はC
uとNiを添加して、前記注入気体の撹拌により上部の
溶鋼を請求項1又は3記載の表層成分となるようにし、
鋳型引き抜きにより、請求項1、2又は3記載の成分構
成を有するスラブとなし、ついで、鋼板製造の常法に基
づき、熱延、脱スケール処理、冷延、焼鈍を施し、内層
に請求項1又は2記載の成分を有し、板厚をtとする
と、表裏面から片面あたり0.015 t〜0.15tの表層成分
が請求項1、2又は3記載の表層成分を含有する冷延鋼
板となすことを特徴とする深絞り性と耐デント性と疲労
特性に優れた複層鋼板の製造方法。
4. The steel having the inner layer component according to claim 1 or 2 is injected vertically downward or obliquely downward together with a gas into a continuous casting mold, and statically filled over the entire width direction in the mold above the molten steel injection position. A magnetic field is applied to slow down the ascending flow of the steel, and Cu or C is added to the steel above the position where the magnetic field is applied.
u and Ni are added so that the molten steel in the upper portion becomes the surface layer component according to claim 1 or 3 by stirring the injected gas.
A slab having the composition according to claim 1, 2 or 3 is obtained by drawing the mold, and then hot rolling, descaling treatment, cold rolling and annealing are performed based on a conventional method for producing a steel sheet. Or, having the components described in 2 and having a plate thickness of t, a cold rolled steel sheet containing 0.015 t to 0.15 t of surface layer components from one surface to the other surface is the cold rolled steel sheet containing the surface layer components of claim 1, 2 or 3. A method for producing a multi-layer steel sheet having excellent deep drawability, dent resistance, and fatigue characteristics.
JP26417894A 1994-10-27 1994-10-27 Multiply-layered steel sheet excellent in deep drawability, dent resistance and fatigue property and production thereof Withdrawn JPH08127841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26417894A JPH08127841A (en) 1994-10-27 1994-10-27 Multiply-layered steel sheet excellent in deep drawability, dent resistance and fatigue property and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26417894A JPH08127841A (en) 1994-10-27 1994-10-27 Multiply-layered steel sheet excellent in deep drawability, dent resistance and fatigue property and production thereof

Publications (1)

Publication Number Publication Date
JPH08127841A true JPH08127841A (en) 1996-05-21

Family

ID=17399552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26417894A Withdrawn JPH08127841A (en) 1994-10-27 1994-10-27 Multiply-layered steel sheet excellent in deep drawability, dent resistance and fatigue property and production thereof

Country Status (1)

Country Link
JP (1) JPH08127841A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1347070A1 (en) * 2000-12-21 2003-09-24 Toyo Kohan Co., Ltd. Steel sheet for porcelain enameling and method for production thereof, and enameled product and method for production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1347070A1 (en) * 2000-12-21 2003-09-24 Toyo Kohan Co., Ltd. Steel sheet for porcelain enameling and method for production thereof, and enameled product and method for production thereof
EP1347070A4 (en) * 2000-12-21 2004-08-04 Toyo Kohan Co Ltd Steel sheet for porcelain enameling and method for production thereof, and enameled product and method for production thereof

Similar Documents

Publication Publication Date Title
WO2015147216A1 (en) High-strength hot-formed steel sheet member
JP5471837B2 (en) Bake-hardening cold-rolled steel sheet and method for producing the same
CN111647821B (en) Hot-dip galvanized steel plate with yield strength of 550MPa and production method thereof
JP2007138261A (en) High strength steel sheet and its manufacturing method
KR100264258B1 (en) Cold rolled steel strip and hot dip coated cold rolled steel strip for use as building material and manufacturing method thereof
CN113528940B (en) Aluminum-silicon alloy plating layer hot forming steel and preparation method thereof
JP2007077495A (en) High strength cold rolled steel sheet, and method for producing the same
JP3793490B2 (en) High-strength hot-rolled steel sheet for processing excellent in strength-hole expansion ratio balance and shape freezing property, and method for producing the same
JP4258215B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JPH08143952A (en) Production of high strength hot rolled steel plate excellent in workability, fatigue characteristic, and surface characteristic
JPH08127841A (en) Multiply-layered steel sheet excellent in deep drawability, dent resistance and fatigue property and production thereof
JPH08283897A (en) Multi-layered steel sheet excellent in workability and fatigue characteristic and its production
JPH08277436A (en) Double-layered steel sheet excellent in fatigue characteristic and its production
JP2005271018A (en) Hot forming method having excellent strength after forming, and high-strength hot-formed part
JP4486518B2 (en) Alloyed hot-dip galvanized steel sheet with excellent press formability and coating adhesion during press forming
JPH08283903A (en) Multi-layered steel sheet excellent in brazing crack resistance and its production
JPH08127840A (en) Multiply-layered steel layer for deep drawing excellent in corrosion resistance and production thereof
JPH09143617A (en) Steel sheet for double layer nitriding excellent in deep drawability and its production
JPH08283898A (en) Multi-layered steel sheet excellent in corrosion resistance, weldability, and fatigue characteristic and its production
JPH0466653A (en) Manufacture of hot-dip galvanized steel sheet for high working excellent in surface property
JP2857762B2 (en) Manufacturing method of continuous cast enameled steel sheet with excellent nail skip resistance
JP3861640B2 (en) Cold-rolled steel sheet and manufacturing method thereof
JP2726874B2 (en) Cu-added thin steel sheet with extremely excellent surface properties
JPS6213332A (en) High fatigue limit ratio clad steel plate having excellent moldability
JPH08127839A (en) Multiply-layered steel sheet excellent in corrosion resistance and workability and production thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115