JP2005271018A - Hot forming method having excellent strength after forming, and high-strength hot-formed part - Google Patents

Hot forming method having excellent strength after forming, and high-strength hot-formed part Download PDF

Info

Publication number
JP2005271018A
JP2005271018A JP2004086171A JP2004086171A JP2005271018A JP 2005271018 A JP2005271018 A JP 2005271018A JP 2004086171 A JP2004086171 A JP 2004086171A JP 2004086171 A JP2004086171 A JP 2004086171A JP 2005271018 A JP2005271018 A JP 2005271018A
Authority
JP
Japan
Prior art keywords
strength
hot
punch
mold
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004086171A
Other languages
Japanese (ja)
Other versions
JP4837259B2 (en
Inventor
Kazuhisa Kusumi
和久 楠見
Masayoshi Suehiro
正芳 末廣
Jun Maki
純 真木
Masahiro Ogami
正浩 大神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004086171A priority Critical patent/JP4837259B2/en
Publication of JP2005271018A publication Critical patent/JP2005271018A/en
Application granted granted Critical
Publication of JP4837259B2 publication Critical patent/JP4837259B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot forming method having excellent strength after forming, and a high-strength hot-formed part. <P>SOLUTION: In the hot forming method having excellent strength after forming, and the high-strength hot-formed part, a steel plate having the composition consisting of, by mass, 0.05-0.55% C, 0.1 to ≤3% Mn is used, a part of a punch in contact with the steel plate is characterized in that the inner product of the advancing vector of the punch and the normal vector on the surface of the punch is positive, the steel plate is brought into contact with a die at a bottom dead center, and in some cases, cooling can be performed so that the temperature of the die is maintained at ≤300°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動車の構造部材・補強部材に使用されるような強度が必要とされる部材に関し、特に高温成形後の強度に優れた部品の製造方法および熱間成形部品に関するものである。   The present invention relates to a member that requires strength such as that used for a structural member / reinforcing member of an automobile, and more particularly, to a method for manufacturing a part having excellent strength after high-temperature molding and a hot-formed part.

地球環境問題に端を発する自動車の燃費向上対策の一つとして車体の軽量化が進められており、自動車に使用される鋼板をできるだけ高強度化することが必要となる。
しかし、自動車の軽量化のために一般に鋼板を高強度化していくと伸びやr値が低下し、成形性が劣化していく。
このような課題を解決するために、温間で成形し、その際の熱を利用して強度上昇を図る技術が、特許文献1(特開2000−234153号公報)に開示されている。
この技術では、鋼中成分を適切に制御し、200〜850℃の温度域で保持・成形加工し、この温度域での析出強化を利用して強度を上昇させることを狙っている。
As one of the measures to improve the fuel efficiency of automobiles that originated from global environmental problems, the weight reduction of the vehicle body has been promoted, and it is necessary to increase the strength of steel plates used in automobiles as much as possible.
However, in general, when the strength of a steel sheet is increased to reduce the weight of an automobile, the elongation and the r value are lowered, and the formability is deteriorated.
In order to solve such a problem, Patent Document 1 (Japanese Patent Application Laid-Open No. 2000-234153) discloses a technique for forming the article warmly and using the heat at that time to increase the strength.
This technology aims to control the components in steel appropriately, hold and form in a temperature range of 200 to 850 ° C., and increase the strength using precipitation strengthening in this temperature range.

また、特許文献2(特開2000−87183号公報)では、プレス成形精度を向上させる目的で温間プレス時での降伏強度を低く、常温での降伏強度を高くする高強度鋼板が提案されている。
しかしながら、これらの技術では得られる強度に限度がある可能性がある。
より高強度を得る目的で、成形後に高温のオーステナイト単相域に加熱し、その後の冷却過程で硬質の相に変態させる技術が特許文献3(特開2002-282951号公報)に開示されている。
この方法は、金型間のクリアランスを規定し、その間隙に冷媒を導入することで焼き入れを行い高強度でかつ形状凍結性に優れた部品を得ることができるものであるが、冷媒の導入により製造コストが増加する0また、冷媒を使用せずに、特許文献3の実施例に示された側壁がパンチ進行方向と直角の金型形状を用い、クリアランスを板厚の1.3とした曲げ成形を行ったところ、側壁の中央部に焼きが入らず、硬度が充分得られない場合が生じる。
これは、側壁部の鋼板が金型に接触することがないため、冷却速度が遅くなり焼き入れが不十分であったためではないかと考えられる。即ち、上記のように金型のクリアランスを規定するだけでは強度が充分得られない場合が存在する。
特開2000−234153号公報 特開2000−87183号公報 特開2002-282951号公報
Patent Document 2 (Japanese Patent Laid-Open No. 2000-87183) proposes a high-strength steel sheet that has low yield strength during warm pressing and high yield strength at room temperature for the purpose of improving press forming accuracy. Yes.
However, these techniques may limit the strength that can be obtained.
For the purpose of obtaining higher strength, Patent Document 3 (Japanese Patent Laid-Open No. 2002-282951) discloses a technique for heating to a high-temperature austenite single-phase region after molding and then transforming to a hard phase in the subsequent cooling process. .
This method defines the clearance between the molds, and can introduce a refrigerant into the gap to perform quenching to obtain a component having high strength and excellent shape freezing properties. The manufacturing cost is increased by 0. Further, without using a refrigerant, the side wall shown in the example of Patent Document 3 is a mold shape perpendicular to the punch traveling direction, and the clearance is set to 1.3. When bending is performed, there is a case where the central portion of the side wall is not baked and the hardness cannot be obtained sufficiently.
This is probably because the steel plate in the side wall portion does not come into contact with the mold, so that the cooling rate is slow and quenching is insufficient. That is, there are cases where sufficient strength cannot be obtained simply by defining the mold clearance as described above.
JP 2000-234153 A JP 2000-87183 A JP 2002-282951 A

本発明は、上記の問題点を解決して成形後の強度に優れる熱間成形方法および熱間成形部品を提供するものである。   The present invention provides a hot forming method and a hot formed part that solve the above-described problems and are excellent in strength after forming.

本発明者らは、上記課題を解決するために基礎的な検討を実施した。その結果、金型形状を適正化することにより問題を解決できることを見出した。
それは強度が必要とされる部位について、側壁を含めパンチの表面の法線方向とパンチの進行方向の角度が90°未満で、下死点で鋼板に接触する形状の金型とすることである。下死点で鋼板が金型と接触することにより焼き入れに充分な冷却速度が得られる。しかし側壁を含めパンチの表面の法線方向とパンチの進行方向の角度が90°以上である場合には、確実に金型に鋼板を接触させることが困難となるため、パンチの表面の法線方向とパンチの進行方向の角度は90°未満である必要があることがわかった。また、製造個数が多量の場合には、金型を鋼板のマルテンサイト変態終了温度以下に保持するための冷却が必要となる。さらに、1000MPa以上の強度が必要となる場合には用いる鋼板の成分を規定するのが望ましい。
The present inventors conducted basic studies to solve the above problems. As a result, they found that the problem can be solved by optimizing the mold shape.
That is, for the part where strength is required, the angle between the normal direction of the surface of the punch including the side wall and the direction of travel of the punch is less than 90 °, and the die should be in contact with the steel plate at the bottom dead center. . A cooling rate sufficient for quenching can be obtained by contacting the steel plate with the mold at the bottom dead center. However, if the angle between the normal direction of the punch surface including the side wall and the direction in which the punch proceeds is 90 ° or more, it is difficult to reliably bring the steel plate into contact with the mold. It was found that the angle between the direction and the direction of punch travel should be less than 90 °. In addition, when the production number is large, it is necessary to cool the mold to keep it below the martensitic transformation end temperature of the steel sheet. Furthermore, when the strength of 1000 MPa or more is required, it is desirable to define the components of the steel sheet to be used.

すなわち、本発明の要旨とするところは下記のとおりである。
(1)質量%でC:0.05〜0.55%、Mn:0.1%〜3%以下の化学成分を含有する鋼板を、パンチの鋼板に接触する部分がパンチの進行方向ベクトルとパンチ表面の法線ベクトルとの内積が正であるパンチを使用し、下死点にて鋼板が金型に接触するように熱間成形を行うことを特徹とする成形加工後の強度に優れる熱間成形方法。
(2)熱間成形中の金型の温度を300℃以下に保持するように冷却を施すことを特徴とする(1)に記載の成形加工後の強度に優れる熱間成形方法。
(3)(1)または(2)に記載の熱間成形を行い製造されたことを特徴とする成形加工後の強度に優れる高強度熱間成形部品。
That is, the gist of the present invention is as follows.
(1) Mass ratio of C: 0.05 to 0.55% and Mn: 0.1% to 3% or less of the chemical composition, the portion of the punch that contacts the steel plate is the punch direction vector and the punch surface normal vector. Is a hot forming method with excellent strength after forming, using a punch with a positive inner product and hot forming so that the steel plate contacts the mold at the bottom dead center.
(2) The hot forming method having excellent strength after forming as described in (1), wherein the mold is cooled so as to keep the temperature of the mold during hot forming at 300 ° C. or lower.
(3) A high-strength hot-formed part excellent in strength after forming, characterized by being manufactured by performing hot forming according to (1) or (2).

本発明により熱間成形後に強度と形状凍結性に優れた自動車部品が製造でき、車体が軽量で衝突安全性に優れた自動車が製造できるため、社会的貢献が大きいものである。   According to the present invention, an automobile part having excellent strength and shape freezing property can be manufactured after hot forming, and an automobile having a lightweight vehicle body and excellent collision safety can be manufactured.

本発明においては、特定の化学組成を有する熱延素材あるいは冷延素材を用いるが、その熱延素材あるいは冷延素材を製造する手段は特に限定されない。
また、熱間成形とは、Ac3変態点以上のオーステナイト領域に加熱後、Ac3変態点以上の温度で成形(例えばプレス加工)を開始し、成形後と同時に金型で抜熱することにより急速冷却し、マルテンサイト変態させて硬化させる成形加工をいう。
In the present invention, a hot-rolled material or a cold-rolled material having a specific chemical composition is used, but the means for producing the hot-rolled material or the cold-rolled material is not particularly limited.
Also, the hot-forming, after heating to the austenite range above Ac 3 transformation point, to start molding at Ac 3 transformation point or above the temperature (for example, press working), by heat removal simultaneously mold and after molding It refers to a molding process in which it is rapidly cooled, transformed into martensite and cured.

鋼成分の限定理由を以下に示す。
Cは冷却後の組織をマルテンサイトとして材質を確保するために添加する元素であり、強度1000MPa以上を確保するためには0.05%以上添加する必要がある。ところが、添加量が多すぎると、衝撃変形時の強度確保が困難となるため、その上限を0.55%とした。
Mnは強度および焼入れ性を向上させる元素であり、0.1%未満では焼入れ時の強度を十分に得られず、また、3%を超えて添加しても効果が飽和するため、Mnは0.1〜3%の範囲に規定した。
その他、必要に応じて以下の元素を添加しても良い。
Siは固溶強化型の合金元素であるが、1%を超えると、表面スケールの問題が生じる。
また、鋼板表面にメッキ処理を行う場合は、Siの添加量が多いとメッキ性が劣化するため、上限を0.5%とすることが好ましい。
The reasons for limiting the steel components are shown below.
C is an element added to secure the material with the structure after cooling as martensite, and it is necessary to add 0.05% or more in order to secure the strength of 1000 MPa or more. However, if the addition amount is too large, it is difficult to ensure the strength during impact deformation, so the upper limit was made 0.55%.
Mn is an element that improves strength and hardenability. If it is less than 0.1%, sufficient strength at the time of quenching cannot be obtained, and even if added over 3%, the effect is saturated, so Mn is 0.1 to 3 In the range of%.
In addition, the following elements may be added as necessary.
Si is a solid solution strengthened alloy element, but if it exceeds 1%, a problem of surface scale occurs.
In addition, when plating is performed on the steel sheet surface, if the amount of Si added is large, the plating properties deteriorate, so the upper limit is preferably set to 0.5%.

Alは溶鋼の脱酸材として使われる必要な元素であり、またNを固定する元素でもあり、その量は結晶粒径や機械的性質に影響を及ぼす。このような効果を有するためには0.005%以上の含有量が必要であるが、0.1%を超えると非金属介在物が多くなり製品に表面庇が発生しやすくなる。このため、Alは0.005〜0.1%の範囲が望ましい。
Sは鋼中の非金属介在物に影響し、加工性を劣化させるとともに、靭性劣化、異方性および再熱割れ感受性の増大の原因となる。このため、Sは0.02%以下が望ましい。
なお、さらに好ましくは、0.01%以下である。また、Sを0.005%以下に規定することにより、衝撃特性が飛躍的に向上する。
Al is a necessary element used as a deoxidizer for molten steel, and is also an element that fixes N, and its amount affects the crystal grain size and mechanical properties. In order to have such an effect, a content of 0.005% or more is necessary. However, if it exceeds 0.1%, nonmetallic inclusions increase and surface defects are likely to occur in the product. For this reason, Al is desirably in the range of 0.005 to 0.1%.
S affects non-metallic inclusions in the steel, which deteriorates workability and causes increased toughness, anisotropy and reheat cracking sensitivity. For this reason, S is preferably 0.02% or less.
In addition, More preferably, it is 0.01% or less. Further, by defining S to 0.005% or less, the impact characteristics are dramatically improved.

Pは溶接割れ性および靭性に悪影響を及ぼす元素であるため、Pは0.03%以下が望ましい。
なお、好ましくは、0.02%以下である0また、更に好ましくは0.015%以下である。
Crは焼入れ性を向上させる元素であり、またマトリックス中へM23C6型炭化物を析出させる効果を有し、強度を高めるとともに、炭化物を微細化する作用を有する。0.01%未満ではこれらの効果が十分期待できず、また、1%を超えると降伏強度が過度に上昇する傾向にあるため、Crは0.01〜1%の範囲が望ましい。より望ましくは、0.05〜1%である。
Since P is an element that adversely affects weld cracking and toughness, P is preferably 0.03% or less.
In addition, Preferably it is 0.02% or less 0, More preferably, it is 0.015% or less.
Cr is an element that improves hardenability and has the effect of precipitating M 23 C 6 type carbide in the matrix, and has the effect of increasing the strength and miniaturizing the carbide. If it is less than 0.01%, these effects cannot be sufficiently expected, and if it exceeds 1%, the yield strength tends to increase excessively, so Cr is desirably in the range of 0.01 to 1%. More desirably, it is 0.05 to 1%.

Bはプレス成形中あるいはプレス成形後の冷却での焼入れ性を向上させるために添加するが、この効果を発揮させるためには0.0002%以上の添加が必要である。しかしながら、この添加量がむやみに増加すると熱間での割れの懸念があることや、その効果が飽和するためその上限は0.0050%が望ましい。
TiはBの効果を有効に発揮させるため、Bと化合物を生成するNを固着する目的で添加してもよい.
この効果を発揮させるためには、(Ti-3.42×N)が0.001%以上必要であるが、Ti量がむやみに増加するとTiと結合していないC量が減少し冷却後に十分な強度が得られなくなるため、その上限として、Tiと結合していないC量が0.1%
以上確保できるTi当量、すなわち、3.99×(C−0.1)%とするのが望ましい。
スクラップから混入すると考えられるNi,Cu,Snなどの元素が含有してもよい。更に介在物の形状制御の観点からCa,Mg,Y,As,Sb,REMを添加してもよい。さらに強度を向上する目的でTi,Nb,Zr,Mo,Vを添加してもよいが、これらの元素がむやみに増加するとこれらの元素と結合していないC量が減少し冷却後に十分な強度が得られなくなるため、添加する場合にはC・12×(Ti/48+Nb/93+Zr/91+Mo/96+V/51)≧0.1を満足するように含有させるのが望ましい。
B is added in order to improve the hardenability during press molding or cooling after press molding, but 0.0002% or more is necessary to exert this effect. However, if this amount increases excessively, there is a concern of hot cracking and the effect is saturated, so the upper limit is preferably 0.0050%.
Ti may be added for the purpose of fixing B and N to form a compound in order to effectively exhibit the effect of B.
In order to demonstrate this effect, (Ti-3.42 × N) is required to be 0.001% or more. However, if the amount of Ti increases excessively, the amount of C not bonded to Ti decreases, and sufficient strength is obtained after cooling. As the upper limit, the amount of C not bound to Ti is 0.1%.
The Ti equivalent that can be secured above, that is, 3.99 × (C−0.1)% is desirable.
Elements such as Ni, Cu and Sn that are considered to be mixed from scrap may be contained. Furthermore, Ca, Mg, Y, As, Sb, and REM may be added from the viewpoint of shape control of inclusions. Ti, Nb, Zr, Mo, V may be added for the purpose of further improving the strength. However, if these elements increase excessively, the amount of C not bonded to these elements decreases, and sufficient strength is obtained after cooling. Therefore, when added, it is desirable that C · 12 × (Ti / 48 + Nb / 93 + Zr / 91 + Mo / 96 + V / 51) ≧ 0.1 is satisfied.

Nについては特に規定しないが、0.01%を超えると窒化物の粗大化および固溶Nによる時効硬化により、靭性が劣化する傾向がみられる。このため、Nは0.01%以下の含有が望ましい。
Oについても特に規定しないが、過度の添加は靭性に悪影響を及ぼす酸化物の生成の原因となるとともに、疲労破壊の起点となる酸化物を生成するため、0.015%以下の含有が望ましい。
その他、不可避的に含まれる不純物が含有しても特に問題は生じない。
以上の成分の鋼板にアルミめっき、アルミ・亜鉛めっき、亜鉛めっきを施しても良い。その製造方法は酸洗、冷間圧延は常法でよく、その後アルミめっき工程あるいはアルミ−亜鉛めっき工程、亜鉛めっきについても常法で問題ない。
つまり、アルミめっきであれば浴中Si濃度は5〜12%が適しており、アルミ−亜鉛めっきでは浴中zn濃度は40〜50%が適している。また、アルミめっき層中にMgやZnが混在しても、アルミ−亜鉛めっき層中にMgが混在しても特に問題なく同様の特性の鋼板を製造することができる。
N is not particularly specified, but if it exceeds 0.01%, the toughness tends to deteriorate due to coarsening of nitride and age hardening due to solute N. For this reason, the N content is desirably 0.01% or less.
O is not particularly specified, but excessive addition causes generation of an oxide that adversely affects toughness and generates an oxide that becomes a starting point of fatigue fracture. Therefore, the content is preferably 0.015% or less.
In addition, even if impurities inevitably contained, no particular problem occurs.
The steel plate having the above components may be subjected to aluminum plating, aluminum / zinc plating, or galvanization. As for the production method, pickling and cold rolling may be performed by a conventional method, and thereafter, the aluminum plating step, the aluminum-zinc plating step, and the galvanizing may be performed by a conventional method.
In other words, 5 to 12% is suitable for the Si concentration in the bath for aluminum plating, and 40 to 50% for the zn concentration in the bath for aluminum-zinc plating. Moreover, even if Mg or Zn is mixed in the aluminum plating layer or Mg is mixed in the aluminum-zinc plating layer, a steel plate having the same characteristics can be produced without any particular problem.

なお、めっき工程における雰囲気については、無酸化炉を有する連続式めっき設備でも無酸化炉を有しない連続式めっき設備でも通常の条件とすることでめっき可能である。本鋼板は特別な制御を必要としないことから生産性を阻害することもない。また、亜鉛めっき方法であれば、溶融亜鉛めっき、電気亜鉛めっき、合金化溶融亜鉛めっきなどいかなる方法を採用しても良い。
以上の製造条件ではめっき前に鋼板表面に金属プレめっきを施していないが、NiプレめっきやFeプレめっき、その他めっき性を向上させる金属プレめっきを施しても特に問題は無い。また、めっき層表面に異種の金属めっきや無機系、有機系化合物の皮膜などを付与しても特に問題は無い。
In addition, about the atmosphere in a plating process, even if it is a continuous type plating equipment which does not have a non-oxidation furnace even if it is a continuous type plating equipment which has a non-oxidation furnace, it can plate by making it a normal condition. Since this steel plate does not require special control, productivity is not hindered. Further, as long as it is a galvanizing method, any method such as hot dip galvanizing, electrogalvanizing, alloying hot dip galvanizing may be adopted.
Under the above manufacturing conditions, metal pre-plating is not performed on the steel sheet surface before plating, but there is no particular problem even if Ni pre-plating, Fe pre-plating, or other metal pre-plating that improves plating properties is performed. Moreover, there is no particular problem even if different metal plating or a film of inorganic or organic compound is applied to the surface of the plating layer.

パンチの進行方向ベクトルとパンチ表面の法線ベクトルとの内積が正としたのは、この値が負である場合にはパンチにアンダーカットが生じいかなるダイス形状を取っても、下死点で確実に鋼板を金型と接触することができないためである。またこの値が0の場合は板厚と金型のクリアランスが同じであれば下死点で鋼板を金型を接触することができるが、鋼板の板厚精度の問題と、加工により板厚が変化すること(例えば伸び変形して板厚が減少する場合など)により確実に下死点で鋼板を金型に接触させることには困難が生じる。
この場合、クリアランスを板厚以下とすればよいが、その場合には鋼板表面にかじり・疵が生じ、また金型寿命が短くなる可能性がある。
The inner product of the punch direction vector and the normal vector of the punch surface is positive. If this value is negative, the punch will undercut and the die will be sure to be at the bottom dead center regardless of the die shape. This is because the steel plate cannot be brought into contact with the mold. If this value is 0, the plate can be brought into contact with the die at the bottom dead center if the plate thickness and the mold clearance are the same. It is difficult to make sure that the steel plate is brought into contact with the mold at the bottom dead center by changing (for example, when the plate thickness is reduced due to elongation deformation).
In this case, the clearance may be set to be equal to or less than the plate thickness. In this case, there is a possibility that galling and wrinkles occur on the surface of the steel plate and the mold life is shortened.

以上の理由によりパンチの進行方向ベクトルとパンチ表面の法線ベクトルとの内積が正であれば、下死点で確実に鋼板を金型と接触させることができる。
下死点にて鋼板が金型に接触していることとしたのは、下死点で接触していないと焼き入れに必要な充分な冷却速度が得られないためである。
上記の形状の金型を用いて熱間成形加工を行えば、充分焼入れされ強度が上昇した部品を製造することが可能となる。ただし、部品中に焼入れ硬化せずに軟質な箇所を設けたい場合には、その部分については請求項1に示す金型形状でなくても良い。
If the inner product of the punch traveling direction vector and the normal vector of the punch surface is positive for the above reason, the steel plate can be reliably brought into contact with the mold at the bottom dead center.
The reason why the steel plate is in contact with the mold at the bottom dead center is that a sufficient cooling rate necessary for quenching cannot be obtained unless the steel plate is in contact at the bottom dead center.
If hot forming is performed using a mold having the above shape, it is possible to manufacture a part that is sufficiently quenched and has increased strength. However, when it is desired to provide a soft part in the part without quenching and hardening, the part may not have the mold shape shown in claim 1.

加工の間隔が短い場合には、金型の温度が上昇して冷却速度が遅くなりマルテンサイト変態せずに部品の強度が確保できない場合がある。そのような場合には金型冷却を行っても良い。その際の金型温度としては、温度は300℃以下、望ましくは200℃以下にする必要がある。300℃以上の金型温度となると、熱間加工中にマルテンサイト変態が生じず、硬化が不十分となる可能性がある。
冷却の方法については特に規定しないが、金型中に水冷配管する方法、金型の体積を確保し熱容量を大きくする方法、金型表面に冷媒により冷却する方法などを採用してもよい。
When the processing interval is short, the mold temperature rises, the cooling rate becomes slow, and the strength of the part may not be ensured without martensitic transformation. In such a case, mold cooling may be performed. In this case, the mold temperature should be 300 ° C. or lower, preferably 200 ° C. or lower. When the mold temperature is 300 ° C. or higher, martensitic transformation does not occur during hot working, and curing may be insufficient.
The cooling method is not particularly defined, but a method of water cooling piping in the mold, a method of securing the volume of the mold to increase the heat capacity, a method of cooling the mold surface with a refrigerant, and the like may be adopted.

表1に示す化学成分のスラブを鋳造した。これらのスラブを1050〜1350℃に加熱し、熱間圧延にて仕上温度800〜900℃、巻取温度450〜680℃で板厚4mmの熱延鋼板とした。
また、一部の熱延鋼板を冷間圧延により板厚1.4mmの冷延鋼板とした。また、その冷延板の一部に溶融アルミめっき、溶融アルミ−亜鉛めっき、合金化溶融亜鉛めっきを施した。
その後、それらの冷延鋼板、表面処理鋼板を炉加熱によりAc3点以上である950℃のオーステナイト領域に加熱した後、Ac3点以上である900℃から水冷式金型を有するプレス機にて熱間成形を行った。

Figure 2005271018
Slabs with chemical components shown in Table 1 were cast. These slabs were heated to 1050 to 1350 ° C. and hot rolled to form hot rolled steel sheets having a finishing temperature of 800 to 900 ° C. and a winding temperature of 450 to 680 ° C. and a thickness of 4 mm.
Some hot-rolled steel sheets were cold-rolled into cold-rolled steel sheets having a thickness of 1.4 mm. Moreover, hot-dip aluminum plating, hot-dip aluminum-zinc plating, and alloying hot-dip galvanization were performed on a part of the cold-rolled sheet.
Then, after heating those cold-rolled steel sheets and surface-treated steel sheets to an austenite region of 950 ° C that is Ac 3 point or higher by furnace heating, from a 900 ° C that is Ac 3 point or more to a press machine having a water-cooled mold Hot forming was performed.
Figure 2005271018

金型形状を図1,2,3,4,5に示す。その成形品の模式図を図6に示す。
金型はパンチ形状に倣い、板厚1.4mmのクリアランスにてダイスの形状と決定したが、アンダーカットが生じる部位については、金型形状A〜Dは柱状の形状であり、部品の長さは300mmである。形状A〜Dの部品の成形条件としては、ブランクサイズを300mm×244mmとし、パンチ速度10mm/s、加圧力150トン、下死点での保持時間を10秒とした。また金型形状Eの部品は円盤状の形状である。
こちらの成形条件はブランクサイズは直径180mm、しわ押さえ力20トン、パンチ速度10mm/s、加圧力150トン、下死点での保持時間は10秒とした。その後、部品を切り出し、組織観察を行って組織がマルテンサイトが80%以上を合格とした。強度が1000MPa以上必要なものについてはビッカース硬度を測定した。
硬度は成形前の鋼板をAc3点以上である950℃のオーステナイト領域に加熱した後、Ac3点以上である900℃から水焼き入れした時の硬度を基準に、強度が必要とされる部位に70%以下の硬度の部位があった場合不合格とした。その実験結果を表2に示す。

Figure 2005271018
Figures 1, 2, 3, 4, and 5 show the mold shapes. A schematic diagram of the molded product is shown in FIG.
The die was shaped like a die with a clearance of 1.4 mm, following the punch shape, but for parts where undercut occurs, the die shapes A to D are columnar shapes, and the length of the part is 300mm. The molding conditions for the parts having shapes A to D were a blank size of 300 mm × 244 mm, a punch speed of 10 mm / s, a pressing force of 150 tons, and a holding time at the bottom dead center of 10 seconds. The part of the mold shape E has a disk shape.
The molding conditions here were a blank size of 180 mm in diameter, a wrinkle holding force of 20 tons, a punch speed of 10 mm / s, a pressing force of 150 tons, and a holding time at the bottom dead center of 10 seconds. Thereafter, the part was cut out and the structure was observed, and the martensite passed 80% or more of the structure. Vickers hardness was measured for those requiring strength of 1000 MPa or more.
After heating the steel sheet before hardness molded into the austenite region of 950 ° C. is Ac 3 points or more, based on the hardness of when water quenched from 900 ° C. is Ac 3 points or more, sites strength is required Was rejected if there was a part with a hardness of 70% or less. The experimental results are shown in Table 2.
Figure 2005271018

また、いくつかの金型について、連続成形試験を行った。金型中に水冷配管を通し、水量を変化させることにより金型温度を変化させた。その後の評価は上記の断面硬度と組織観察にて行った。その結果を表3に示す。組織観察と硬度の結果についての凡例を表4、5に示す。

Figure 2005271018
Figure 2005271018
Figure 2005271018
実験番号1〜40は金型形状の影響を検討したものである。実験番号1〜24については側壁の角度の検討を行ったものであるが、実験番号9〜24はパンチの鋼板に接触する部分が、パンチの進行方向ベクトルとパンチ表面の法線ベクトルとの内積が負である部位があるため、鋼板が金型に接触せずに冷却速度が遅くなり、硬度が不十分な部位があった。実験番号25〜32は側壁部に凹みをつけた形状であるが、凹み部はパンチの鋼板に接触する部分が、パンチの進行方向ベクトルとパンチ表面の法線ベクトルとの内積が負であるため、鋼板が金型に接触せずに冷却速度が遅くなり、硬度が不十分な部位があった。実験番号1〜8は強度が必要とされる部分について、パンチの鋼板に接触する部分がパンチの進行方向ベクトルとパンチ表面の法線ベクトルとの内積が正であり、金型と鋼板が下死点で接触するため、部品全体が充分硬化した。 Moreover, the continuous molding test was done about several metal mold | dies. The mold temperature was changed by passing water-cooled piping through the mold and changing the amount of water. Subsequent evaluation was performed by the cross-sectional hardness and the structure observation. The results are shown in Table 3. Tables 4 and 5 show the legends on the results of microstructure observation and hardness.
Figure 2005271018
Figure 2005271018
Figure 2005271018
Experiment numbers 1 to 40 examine the influence of the mold shape. In Experiment Nos. 1 to 24, the angle of the side wall was examined. In Experiment Nos. 9 to 24, the portion of the punch that contacts the steel plate is the inner product of the punch traveling direction vector and the punch surface normal vector. Since there is a portion where is negative, the steel plate does not contact the mold, the cooling rate is slow, and there is a portion where the hardness is insufficient. Experiment Nos. 25 to 32 have a shape with a dent on the side wall, but the dent is the portion where the punch contacts the steel plate because the inner product of the punch traveling direction vector and the punch surface normal vector is negative. The steel plate did not come into contact with the mold, and the cooling rate was slow, and there was a portion with insufficient hardness. In Experiment Nos. 1-8, the inner product of the punch traveling direction vector and the punch surface normal vector is positive for the part where strength is required, and the part that contacts the punch steel sheet is dead. The entire part was fully cured due to point contact.

実験番号33〜40は球頭張り出し成形を行ったものであるが、パンチの鋼板に接触する部分がパンチの進行方向ベクトルとパンチ表面の法線ベクトルとの内積が正であり、金型と鋼板が下死点で接触するため、部品全体が充分硬化した。
実験番号41〜64は金型温度の影響を検討したものである。
実験番号45,46,51,52,57,58,63,64は金型温度が制限以上であったため、マルテンサイト変態が充分進まずに硬度が不足する部位があった。
その他の実験では本発明の制限以内の金型温度であるため、部品全体が充分硬化した。
Experiment Nos. 33 to 40 were formed by ball head overhanging, but the inner product of the punch traveling direction vector and the punch surface normal vector was positive at the part contacting the steel plate of the punch. Contacted at the bottom dead center, so the entire part was fully cured.
Experiment Nos. 41 to 64 examine the influence of mold temperature.
In Experiment Nos. 45, 46, 51, 52, 57, 58, 63, and 64, the mold temperature was above the limit, so there was a portion where the martensite transformation did not proceed sufficiently and the hardness was insufficient.
In other experiments, because the mold temperature was within the limits of the present invention, the entire part was fully cured.

本発明の実施例の金型(金型A)を示す図であるIt is a figure which shows the metal mold | die (die A) of the Example of this invention. 本発明の比較例の金型(金型B)を示す図である。It is a figure which shows the metal mold | die (metal mold | die B) of the comparative example of this invention. 本発明の比較例の金型(金型C)を示す図であるIt is a figure which shows the metal mold | die (die C) of the comparative example of this invention. 本発明の比較例の金型(金型D)を示す図であるIt is a figure which shows the metal mold | die (metal mold | die D) of the comparative example of this invention. 本発明の実施例の金型(金型E)示す図であるIt is a figure which shows the metal mold | die (die E) of the Example of this invention. 本発明における金型A〜Eによる成形品を示す図であるIt is a figure which shows the molded article by metal mold | die AE in this invention.

Claims (3)

質量%でC:0.05〜0.55%、Mn:0.1%〜3%以下の化学成分を含有する鋼板を、パンチの鋼板に接触する部分がパンチの進行方向ベクトルとパンチ表面の法線ベクトルとの内積が正であるパンチを使用し、下死点にて鋼板が金型に接触するように熱間成形を行うことを特徴とする成形加工後の強度に優れる熱間成形方法。   A steel plate containing chemical components of C: 0.05 to 0.55% and Mn: 0.1% to 3% or less in mass%, where the punch contact direction vector and the punch surface normal vector A hot forming method with excellent strength after forming, characterized by using a punch with a positive inner product and performing hot forming so that the steel sheet contacts the mold at the bottom dead center. 熱間成形中の金型の温度を300℃以下に保持するように冷却を施すことを特徴とする請求項1に記載の成形加工後の強度に優れる熱間成形方法。   2. The hot forming method with excellent strength after forming according to claim 1, wherein cooling is performed so that the temperature of the mold during hot forming is maintained at 300 ° C. or lower. 請求項1または請求項2に記載の熱間成形を行い製造されたことを特徴とする成形加工後の強度に優れる高強度熱間成形部品。   A high-strength hot-formed part excellent in strength after forming, wherein the hot-formed part is manufactured by performing hot forming according to claim 1 or 2.
JP2004086171A 2004-03-24 2004-03-24 Hot forming method and high strength hot formed parts with excellent strength after forming Expired - Lifetime JP4837259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004086171A JP4837259B2 (en) 2004-03-24 2004-03-24 Hot forming method and high strength hot formed parts with excellent strength after forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004086171A JP4837259B2 (en) 2004-03-24 2004-03-24 Hot forming method and high strength hot formed parts with excellent strength after forming

Publications (2)

Publication Number Publication Date
JP2005271018A true JP2005271018A (en) 2005-10-06
JP4837259B2 JP4837259B2 (en) 2011-12-14

Family

ID=35171212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004086171A Expired - Lifetime JP4837259B2 (en) 2004-03-24 2004-03-24 Hot forming method and high strength hot formed parts with excellent strength after forming

Country Status (1)

Country Link
JP (1) JP4837259B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149184A (en) * 2008-11-21 2010-07-08 Sumitomo Metal Ind Ltd Hot press molded product, and equipment and method for manufacturing the same
JP2011240373A (en) * 2010-05-19 2011-12-01 Topre Corp Hot pressing device and hot pressing product
CN102764807A (en) * 2011-05-02 2012-11-07 本田技研工业株式会社 Manufacturing method of press product and press forming apparatus
JP2013202619A (en) * 2012-03-27 2013-10-07 Aisin Takaoka Ltd Hot press molding apparatus and hot press molding method
JPWO2012160699A1 (en) * 2011-05-26 2014-07-31 トヨタ自動車株式会社 Hot press equipment
JP2016089274A (en) * 2014-11-04 2016-05-23 株式会社神戸製鋼所 Plating steel sheet for hot stamp
WO2023068361A1 (en) * 2021-10-21 2023-04-27 株式会社日立ハイテク Aluminum alloy sheet processing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143612A (en) * 1995-11-21 1997-06-03 Kobe Steel Ltd High strength hot rolled steel plate member low in yield ratio
JP2002102980A (en) * 2000-07-28 2002-04-09 Aisin Takaoka Ltd Manufacturing method for collision reinforcing material for vehicle and collision reinforcing material
JP2003147499A (en) * 2001-11-07 2003-05-21 Sumitomo Metal Ind Ltd Steel sheet for hot press, and production method therefor
JP2003183802A (en) * 2001-12-18 2003-07-03 Nippon Steel Corp High-strength aluminum-plated steel sheet excellent in heat resistance and after-coating corrosion resistance, and high-strength automotive part
JP2003328031A (en) * 2002-05-13 2003-11-19 Nissan Motor Co Ltd Method for quenching pressed parts, quenching device, and pressed parts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143612A (en) * 1995-11-21 1997-06-03 Kobe Steel Ltd High strength hot rolled steel plate member low in yield ratio
JP2002102980A (en) * 2000-07-28 2002-04-09 Aisin Takaoka Ltd Manufacturing method for collision reinforcing material for vehicle and collision reinforcing material
JP2003147499A (en) * 2001-11-07 2003-05-21 Sumitomo Metal Ind Ltd Steel sheet for hot press, and production method therefor
JP2003183802A (en) * 2001-12-18 2003-07-03 Nippon Steel Corp High-strength aluminum-plated steel sheet excellent in heat resistance and after-coating corrosion resistance, and high-strength automotive part
JP2003328031A (en) * 2002-05-13 2003-11-19 Nissan Motor Co Ltd Method for quenching pressed parts, quenching device, and pressed parts

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149184A (en) * 2008-11-21 2010-07-08 Sumitomo Metal Ind Ltd Hot press molded product, and equipment and method for manufacturing the same
JP2011240373A (en) * 2010-05-19 2011-12-01 Topre Corp Hot pressing device and hot pressing product
CN102764807A (en) * 2011-05-02 2012-11-07 本田技研工业株式会社 Manufacturing method of press product and press forming apparatus
JPWO2012160699A1 (en) * 2011-05-26 2014-07-31 トヨタ自動車株式会社 Hot press equipment
JP5783249B2 (en) * 2011-05-26 2015-09-24 トヨタ自動車株式会社 Hot press equipment
JP2013202619A (en) * 2012-03-27 2013-10-07 Aisin Takaoka Ltd Hot press molding apparatus and hot press molding method
JP2016089274A (en) * 2014-11-04 2016-05-23 株式会社神戸製鋼所 Plating steel sheet for hot stamp
WO2023068361A1 (en) * 2021-10-21 2023-04-27 株式会社日立ハイテク Aluminum alloy sheet processing method

Also Published As

Publication number Publication date
JP4837259B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4288138B2 (en) Steel sheet for hot forming
JP4513608B2 (en) Hot-pressed steel sheet member and its manufacturing method
JP5194986B2 (en) Manufacturing method of high-strength parts and high-strength parts
KR101621639B1 (en) Steel sheet, plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet
US20150064052A1 (en) Warm press forming method and automobile frame component
WO2015147216A1 (en) High-strength hot-formed steel sheet member
US20150078956A1 (en) Warm press forming method and automobile frame component
JP6719486B2 (en) HPF molded member excellent in peeling resistance and method for manufacturing the same
WO2011105600A1 (en) Heat-treated steel material, method for producing same, and base steel material for same
WO2004106573A1 (en) Method for hot forming and hot formed member
JPWO2012120692A1 (en) Steel sheet for hot stamping, manufacturing method thereof, and manufacturing method of high-strength parts
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
JP2012041613A (en) Steel sheet for hot press having excellent delayed fracture resistance and collision safety, and method for producing the same
JP5652321B2 (en) Steel sheet for hot stamping excellent in hot composite formability and delayed fracture resistance of punched parts, and its manufacturing method
US20140186655A1 (en) Press hardened parts and method of producing the same
CN114438418A (en) Hot-formed member and method for manufacturing same
TW201602360A (en) Hot-formed steel sheet member
JP4987272B2 (en) Manufacturing method of high-strength parts and high-strength parts
JP4975245B2 (en) Manufacturing method of high strength parts
JP5857913B2 (en) Hot-formed steel plate member, method for producing the same, and hot-formed steel plate
JP4837259B2 (en) Hot forming method and high strength hot formed parts with excellent strength after forming
CN112840056B (en) Thin steel sheet and method for producing same
JP5870825B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP4317506B2 (en) Manufacturing method of high strength parts
JP4551169B2 (en) Manufacturing method of high strength parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101006

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4837259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350