JPH10204583A - Multilayer steel plate excellent in surface characteristic and fatigue characteristic, and its production - Google Patents

Multilayer steel plate excellent in surface characteristic and fatigue characteristic, and its production

Info

Publication number
JPH10204583A
JPH10204583A JP1170097A JP1170097A JPH10204583A JP H10204583 A JPH10204583 A JP H10204583A JP 1170097 A JP1170097 A JP 1170097A JP 1170097 A JP1170097 A JP 1170097A JP H10204583 A JPH10204583 A JP H10204583A
Authority
JP
Japan
Prior art keywords
inner layer
molten steel
steel sheet
surface layer
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1170097A
Other languages
Japanese (ja)
Inventor
Kazumasa Yamazaki
一正 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1170097A priority Critical patent/JPH10204583A/en
Publication of JPH10204583A publication Critical patent/JPH10204583A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the problem of inferior surface characteristic of the conventional high Si steel late and to improve fatigue characteristic to a greater extent. SOLUTION: In the multilayer steel plate where the composition of a surface layer is different from that of an inner layer, the inner layer has a composition consisting of, by weight, 0.02-0.15% C, 0.20-3.00% Si, 0.60-3.00% Mn, 0.002-0.030% P, 0.001-0.050% S, 0.002-0.100% Al, 0.0002-0.0100% N, and the balance Fe with inevitable impurities. Further, as to the composition of a surface layer in the part between a position at a depth, per side, of 0.015-0.15t, where (t) means plate thickness, and the surface and the rear surface, respectively, Ni is incorporated by 0.060-2.00% other than the components of the composition of the inner layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面性状と疲労特
性の優れた複層鋼板及びその製造方法に関するものであ
り、特に自動車のホイール、足まわり部品等に好適な熱
延鋼板及びその製造方法に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-layered steel sheet having excellent surface properties and fatigue properties, and a method for producing the same. Particularly, a hot-rolled steel sheet suitable for automobile wheels and underbody parts, and a method for producing the same. It is related to.

【0002】[0002]

【従来の技術】鋼板の疲労強度を向上させようとする試
みは数多くなされ、疲労強度に対する複合組織強化の有
利性が認められ、例えば特開昭60−145355号公
報、特開昭60−43425号公報に見られるような複
合組織強化高強度鋼板が知られている。ところが、この
ような鋼においては、延性を向上させるため多くのSi
を含有量させなければならず、熱延段階において、Si
スケールと称される、酸洗では落とし難く、仮に落ちた
としても表面に微細な凹凸が残存する強固なスケールを
生じる。Siスケールは、均一には生じず、鋼板表面に
斑に生じる。このため従来の複合組織強化高強度鋼板で
は、Siスケールにより、表面外観が劣るとともに疲労
強度も本来複合組織鋼板が持つ性能よりも低くなるとい
う欠点を有していた。
2. Description of the Related Art Numerous attempts have been made to improve the fatigue strength of steel sheets, and the advantages of strengthening the composite structure with respect to the fatigue strength have been recognized. For example, Japanese Patent Application Laid-Open Nos. 60-145355 and 60-43425 disclose the advantages. BACKGROUND ART A composite structure reinforced high-strength steel sheet as disclosed in a gazette is known. However, in such steels, a large amount of Si is required to improve ductility.
At the hot rolling stage.
It is difficult to remove by pickling, which is called a scale, and even if it falls, a strong scale is left with fine irregularities remaining on the surface. The Si scale is not uniformly generated, but is unevenly formed on the surface of the steel sheet. For this reason, the conventional composite structure reinforced high-strength steel sheet has a defect that the surface appearance is inferior and the fatigue strength is lower than the performance originally provided by the composite structure steel sheet due to the Si scale.

【0003】[0003]

【本発明が解決しようとする課題】本発明は、従来のS
iを多く含有する鋼板の表面性状性が劣っている点を解
消するとともに、疲労特性をさらに向上させるためにさ
なれたものである。
SUMMARY OF THE INVENTION The present invention relates to a conventional S
The purpose of the present invention is to eliminate the inferior surface properties of a steel sheet containing a large amount of i and to further improve the fatigue properties.

【0004】[0004]

【課題を解決するための手段】本願発明の要旨は、表層
と内層において成分の異なる複層鋼板において、内層成
分として、重量%で、C :0.02〜0.15%、S
i:0.20〜3.00%、Mn:0.60〜3.0
%、P :0.002〜0.030%未満、S :0.
001〜0.050%、Al:0.002〜0.100
%、N :0.0002〜0.0100%、残部:Fe
及び不可避的不純物を含有し、板厚をtとすると、表裏
面から片面あたり0.015t〜0.15tの部分の表
層成分として、前記内層成分に加えて、Ni:0.06
0〜2.00%を含有せしめたことを特徴とする表面性
状と疲労特性に優れた複層鋼板、或いは該鋼板の内層の
組織が主としてフェライトとマルテンサイトの2相から
なる複層鋼板にある。
SUMMARY OF THE INVENTION The gist of the present invention is to provide a multi-layer steel sheet having different components in the surface layer and the inner layer, wherein C: 0.02 to 0.15% by weight as an inner layer component,
i: 0.20 to 3.00%, Mn: 0.60 to 3.0
%, P: 0.002 to less than 0.030%, S: 0.
001 to 0.050%, Al: 0.002 to 0.100
%, N: 0.0002 to 0.0100%, balance: Fe
And unavoidable impurities, and assuming that the plate thickness is t, Ni: 0.06 in addition to the inner layer component as a surface layer component of 0.015 t to 0.15 t per surface from the front and back surfaces.
A multi-layered steel sheet having excellent surface properties and fatigue characteristics characterized by containing 0 to 2.00%, or a multi-layered steel sheet mainly composed of two phases of ferrite and martensite. .

【0005】また、その製造方法として、連続鋳造用の
鋳型へ前記成分構成を有する溶鋼を気体とともに垂直下
向きまたは斜め下向きに注入し、この溶鋼注入位置より
上部で鋳型内の幅方向全幅に静磁場を付与して該溶鋼の
上昇流を減速し、該磁場の付与位置より上部にある該溶
鋼へNiを添加して、前記注入気体の撹拌により上部の
溶鋼を上記の表層成分となるようにし、鋳型引き抜きに
より、前記の成分構成を有するスラブとなし、ついで、
熱延を施し、熱延鋼板とする表面性状と疲労特性に優れ
た複層鋼板の製造方法、或いは上記熱延をするに際し、
Ar1 変態点以上の仕上温度で熱延を終了し、空冷を経
るか、または終了後直ちに(Ar1 変態点−30℃)以
上の温度域から、15℃/sec以上200℃/sec以下の冷
却速度で200℃以下まで冷却し、前記成分構成を有
し、内層の組織が主としてフェライトとマルテンサイト
の2相からなる熱延鋼板となすことを特徴とする表面性
状と疲労特性に優れた複層鋼板の製造方法にある。
Further, as a method of manufacturing the same, molten steel having the above-mentioned composition is injected vertically or obliquely downward together with a gas into a continuous casting mold, and a static magnetic field is applied to the entire width in the mold above the molten steel injection position. To reduce the ascending flow of the molten steel, Ni is added to the molten steel above the application position of the magnetic field, so that the molten steel in the upper portion becomes the above-mentioned surface layer component by stirring the injected gas, By squeezing the mold, a slab having the above-mentioned composition is obtained.
Hot rolled, when manufacturing a multi-layered steel sheet with excellent surface properties and fatigue properties as a hot rolled steel sheet, or when performing the hot rolling,
The hot rolling is completed at a finishing temperature not lower than the Ar 1 transformation point, and is subjected to air cooling, or immediately after the completion, from a temperature range of (Ar 1 transformation point −30 ° C.) or higher, from 15 ° C./sec to 200 ° C./sec or lower. Cooling at a cooling rate of 200 ° C. or less, the composite having the above-mentioned composition and having an inner layer structure of a hot-rolled steel sheet mainly composed of two phases of ferrite and martensite. A method for manufacturing a laminated steel sheet.

【0006】Siは、変態組織強化鋼板において、延性
を向上させる元素である。しかしながら、Siが多量に
含有されると、Siスケールと称される強固なスケール
が生じる。このスケールは、2FeO・SiO2 の組成
で、鋼板表面に凹凸状に深く入り込んだ形で形成され
る。また、形成される箇所も、鋼板表面に均一に形成さ
れるのではなくではなく、斑に形成される。このスケー
ルは、通常のスケール比べて酸洗で落ちにくく、また、
落ちたとしても表面に微細な凹凸が残存するので、鋼板
表面に斑状の模様が残ることになる。これが、Siスケ
ール模様となって表面性状を劣化させる原因になってい
る。また、酸洗後に微細な表面凹凸が存在するために、
この部分の疲労強度が劣化するという欠点を有してい
る。
[0006] Si is an element that improves ductility in a transformed structure strengthened steel sheet. However, when a large amount of Si is contained, a strong scale called Si scale is generated. This scale has a composition of 2FeO.SiO 2 and is formed in a shape of deeply and irregularly penetrating into the surface of the steel sheet. Further, the portions to be formed are not uniformly formed on the surface of the steel sheet, but are formed in spots. This scale is less likely to fall off by pickling than a normal scale,
Even if it falls, fine irregularities remain on the surface, so that a mottled pattern remains on the steel sheet surface. This causes a Si scale pattern to deteriorate the surface properties. Also, due to the presence of fine surface irregularities after pickling,
There is a disadvantage that the fatigue strength of this part is deteriorated.

【0007】本願発明はこのような欠点を解消するため
になされたものである。本願発明者らは、Siスケール
の生成に及ぼす第3元素の影響について種々検討した結
果、Niを含有させることにより、いわゆるSiスケー
ルと地鉄との界面に均一のスケール層が形成され、デス
ケーリング及び酸洗の際に不均一なスケールの除去が起
きず、斑模様の生成が抑制されることを見出した。
[0007] The present invention has been made to solve such a drawback. The present inventors have conducted various studies on the effect of the third element on the formation of Si scale. As a result, by adding Ni, a uniform scale layer was formed at the interface between the so-called Si scale and the ground iron, In addition, it was found that non-uniform scale was not removed at the time of pickling and the formation of spots was suppressed.

【0008】本願発明はこの知見をもとになされたもの
で、その基本的な技術思想は、Niを特に表面性状改善
に有効な鋼板の表面部位にのみ多量に含有せしめてSi
スケールの生成に起因する斑模様を抑え、表面性状とひ
いては疲労特性を向上させることにある。Siスケール
と地鉄との界面に均一な層を生成せしめることにより、
酸洗後にSiスケールの痕跡が残存しないために、表面
が平滑になり、疲労強度を向上させる。これだけでも疲
労強度は上昇するが、さらに内層の金属組織をフェライ
トとマルテンサイトの2相組織とすることにより疲労強
度は上昇する。
The present invention has been made based on this finding. The basic technical idea is that Ni is contained in a large amount only in the surface portion of a steel sheet which is particularly effective for improving the surface properties.
An object of the present invention is to suppress a mottled pattern caused by the formation of scale and to improve surface properties and, consequently, fatigue characteristics. By generating a uniform layer at the interface between Si scale and ground iron,
Since no trace of Si scale remains after pickling, the surface becomes smooth and the fatigue strength is improved. This alone increases the fatigue strength, but further increases the fatigue strength by making the metal structure of the inner layer a two-phase structure of ferrite and martensite.

【0009】[0009]

【発明の実施の形態】以下に本発明を詳細に説明する。
まず、成分を限定する理由を述べる。Cは、0.02%
未満では、Mn,Siなどの変態組織強化を促進する元
素を多量に含有させても、強度向上に寄与するマルテン
サイト組織の分率が高まらず、十分な強度の向上が図れ
ないので、0.02%を下限とする。また、0.15%
を超えるとマルテンサイトの分率が高くなりすぎ、部品
に加工する際の加工性が劣るようになるので、0.15
%を上限とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
First, the reasons for limiting the components will be described. C is 0.02%
If it is less than 0.1%, even if a large amount of an element that promotes the strengthening of the transformed structure, such as Mn or Si, is contained, the fraction of the martensite structure contributing to the strength improvement does not increase, and the strength cannot be sufficiently improved. 02% is the lower limit. In addition, 0.15%
If the ratio exceeds 0.15%, the fraction of martensite becomes too high, and the workability when processing into a part becomes inferior.
% As the upper limit.

【0010】Siは、0.20%未満では延性の低下を
招くとともに、必要なマルテンサイト量が確保されなく
なるので、0.20%を下限とする。また、3.00%
を超えて含有させると、かえって加工性が劣化するよう
になるので、3.00%を上限とする。
If the content of Si is less than 0.20%, the ductility is reduced, and the required amount of martensite cannot be secured. Therefore, the lower limit is set to 0.20%. 3.00%
If the content exceeds 0.1%, the workability is rather deteriorated, so the upper limit is 3.00%.

【0011】Mnは、0.60%未満では延性の低下を
招くとともに、必要なマルテンサイト量が確保されなく
なるので、0.60%を下限とする。また、3.00%
を超えて含有させると、かえって加工性が劣化するよう
になるので、3.00%を上限とする。
If the Mn content is less than 0.60%, the ductility is reduced, and the required amount of martensite cannot be secured. Therefore, the lower limit of Mn content is 0.60%. 3.00%
If the content exceeds 0.1%, the workability is rather deteriorated, so the upper limit is 3.00%.

【0012】Pは、0.002%未満に低減することは
製造コストを飛躍的に上昇させ経済性を損なうので、
0.002%を下限とし、0.030%以上では溶接性
が劣化するので0.030%を上限とする。
Since reducing P to less than 0.002% dramatically increases manufacturing costs and impairs economic efficiency,
The lower limit is 0.002%, and if it is 0.030% or more, the weldability deteriorates, so 0.030% is made the upper limit.

【0013】Sは、0.001%未満に低減することは
製造コストを飛躍的に上昇させ経済性を損なうので、
0.001%を下限とし、0.050%を超えると加工
性が劣化するので0.050%を上限とする。
[0013] Since reducing S to less than 0.001% dramatically increases the production cost and impairs the economic efficiency,
The lower limit is 0.001%, and if it exceeds 0.050%, the workability deteriorates, so the upper limit is 0.050%.

【0014】Alは、0.002%未満では、脱酸が不
足し鋼中にブローホールが生じるようになり、鋼板とし
ての清浄性を損ない、プレス時の割れ、表面疵の原因に
なるので0.002%を下限とし、また、0.100%
を超えると加工性が劣化するようになるので、0.10
0%を上限とする。
If Al is less than 0.002%, deoxidation is insufficient and blowholes occur in the steel, impairing the cleanliness of the steel sheet, causing cracking and surface flaws during pressing. 0.002% as the lower limit, and 0.100%
Exceeds 0.10, the workability deteriorates.
0% is the upper limit.

【0015】Nは、極力少ない方が好ましいが、0.0
002%未満にすることは、製造コストの上昇を伴うの
で、0.0002%を下限とし、0.0100%を超え
ると、時効硬化性が高くなり、加工性が劣化するので、
0.0100%を上限とする。
N is preferably as small as possible.
When the content is less than 002%, the production cost is increased. Therefore, the lower limit is 0.0002%, and when the content is more than 0.0100%, the age hardenability increases, and the workability deteriorates.
0.0100% is made the upper limit.

【0016】表層に添加するNiは、0.060%未満
では、Siスケールと地鉄界面に均一なスケール層が生
成されないので、0.060%を下限とする。また、
2.00%を超えて含有すると加工性が劣化するように
なるので、2.00%を上限とする。これにより、表層
成分は、内層成分に加えて、Niを多く含有することに
なる。
If the amount of Ni added to the surface layer is less than 0.060%, a uniform scale layer is not formed at the interface between the Si scale and the iron base, so the lower limit is 0.060%. Also,
If the content exceeds 2.00%, the workability deteriorates, so the upper limit is 2.00%. As a result, the surface layer component contains a large amount of Ni in addition to the inner layer component.

【0017】本発明では、上記表層成分になるように、
連続鋳造段階で表層成分を調整する。その方法は、連続
鋳造用の鋳型へ上述の内層成分を有する溶鋼を気体とと
もに垂直下向きまたは斜め下向きに注入し、この溶鋼注
入位置より上部で鋳型内の幅方向全幅に静磁場を付与し
て該溶鋼の上昇流を減速し、該磁場の付与位置より上部
にある該溶鋼へNiの鉄合金を内包するワイヤーを添加
し、前記注入気体の撹拌により上部の溶鋼を上述の表層
成分となるようにし、鋳型引き抜きにより、上述の成分
構成を有するスラブとなす方法である。
In the present invention, the above-mentioned surface layer component is
The surface layer components are adjusted in the continuous casting stage. The method involves injecting molten steel having the above-mentioned inner layer component into a continuous casting mold together with gas in a vertically downward or obliquely downward direction, and applying a static magnetic field to the entire width in the mold above the molten steel injection position to apply the static magnetic field. The ascending flow of the molten steel is slowed down, a wire containing a Ni iron alloy is added to the molten steel above the position where the magnetic field is applied, and the upper molten steel becomes the above-described surface layer component by stirring the injected gas. This is a method of forming a slab having the above-mentioned composition by drawing out a mold.

【0018】この方法を図面に基づき説明する。図1及
び図2において、長辺鋳型1と短辺鋳型2からなる連続
鋳造用鋳型3内には下端解放型の浸漬ノズル4を図示し
ないタンディッシュに接続させた状態として配置させて
あり、また、鋳型3の外側には溶鋼注入位置である前記
浸漬ノズル4の下端の注入口6より上部において鋳型3
内に静磁場を付与する静磁界(N極)5と静磁界5a
(S極)を前記長辺鋳型1の幅方向、つまり鋳片7の幅
方向全幅にわたるように配置してある。鋳造に際して
は、浸漬ノズル4により鋳型3内へは上記内層成分を有
する溶鋼11を注入し、同時に浸漬ノズル4の気体吹き
込み口8から気体を吹き込む。
This method will be described with reference to the drawings. 1 and 2, in a continuous casting mold 3 composed of a long side mold 1 and a short side mold 2, a lower end open type immersion nozzle 4 is arranged in a state of being connected to a tundish (not shown). Outside the mold 3, the mold 3 is located above the injection port 6 at the lower end of the immersion nozzle 4 where the molten steel is injected.
Magnetic field (N pole) 5 and static magnetic field 5a for applying a static magnetic field inside
The (S pole) is arranged so as to cover the entire width of the long side mold 1, that is, the entire width of the slab 7. At the time of casting, molten steel 11 having the above-described inner layer component is injected into mold 3 by immersion nozzle 4, and gas is blown from gas inlet 8 of immersion nozzle 4 at the same time.

【0019】一方、溶鋼11の注入位置となる浸漬ノズ
ル4の下端の注入口6より上部では、長辺鋳型1の幅方
向全幅にわたるように配置された前記静磁界5,5aよ
り鋳型3内へ注入された溶鋼中へ静磁場を付与し、この
静磁場で溶鋼の上昇流を減速しつつ表層とすべき前記溶
鋼11に追加すべき元素(Ni)をワイヤー9で添加し
てこの鋳型3内の上部の溶鋼を上述の表層成分を含有す
る合金となす。そして、これを連続鋳造して鋳片7とし
て下方に引き抜き、図3に示すごとく表層10aのみに
前述の表層成分が添加され、内層11aが前記内層成分
である複層鋳片7を鋳造する。
On the other hand, above the injection port 6 at the lower end of the immersion nozzle 4 where the molten steel 11 is to be injected, the static magnetic fields 5, 5a arranged so as to extend over the entire width of the long side mold 1 into the mold 3. An element (Ni) to be added to the molten steel 11 to be a surface layer is added by a wire 9 while applying a static magnetic field to the injected molten steel, and the upward flow of the molten steel is decelerated by the static magnetic field. The upper molten steel is made of an alloy containing the above surface layer components. Then, this is continuously cast and drawn downward as a slab 7, and as shown in FIG. 3, the above-described surface layer component is added only to the surface layer 10a, and the multilayer slab 7 in which the inner layer 11a is the inner layer component is cast.

【0020】しかして、浸漬ノズル4から鋳型3内へ注
入される溶鋼11は、気体とともに浸漬ノズル4の注入
口6から垂直(下方)方向へ注入されると、鋳型3内で
矢示するような反転上昇流12となって上方へ移動し、
ここで注入口6より上部にある静磁界5,5aにより静
磁場が付与される。このように静磁場が付与されると溶
鋼11の反転した上昇流は急激に減速されることになる
が、減速されて静磁界5,5aの上部へ溶鋼11が移動
し、ここで溶鋼11に追加すべき元素9が添加されて合
金溶鋼10となる。
Thus, when the molten steel 11 injected into the mold 3 from the immersion nozzle 4 is injected vertically (downward) from the injection port 6 of the immersion nozzle 4 together with gas, as indicated by an arrow in the mold 3. It moves upward as a reversal rising flow 12,
Here, a static magnetic field is applied by the static magnetic fields 5 and 5a above the injection port 6. When the static magnetic field is applied as described above, the inverted upward flow of the molten steel 11 is rapidly decelerated, but the speed is reduced and the molten steel 11 moves to the upper part of the static magnetic fields 5, 5a. The element 9 to be added is added to form the molten alloy steel 10.

【0021】一方、溶鋼11とともに浸漬ノズル4の注
入口6から垂直方向へ注入された気体は、気泡13とな
って微細分散し溶鋼中の全域を上昇し、添加した注入口
6より上部では添加された元素9を撹拌して均一化され
た合金溶鋼10を形成する。そして、鋳型3から鋳片7
として下方へ引き抜くことにより静磁界5,5aより上
部の合金溶鋼10はその表面が冷却されて凝固し、静磁
界5,5aの下方へ引く抜かれて移動したとき、追加の
元素が添加されていない溶鋼11の凝固による鋼を内層
11aとし、表面のみは引き抜き移動とともに合金溶鋼
10の凝固層が序々に拡大した合金鋼の表層10aを形
成した複層鋳片7となる。
On the other hand, the gas injected in the vertical direction from the inlet 6 of the immersion nozzle 4 together with the molten steel 11 becomes finely dispersed as bubbles 13 and rises in the entire area of the molten steel. The obtained element 9 is stirred to form a uniform molten alloy steel 10. Then, from the mold 3 to the slab 7
When the alloy molten steel 10 above the static magnetic field 5, 5a is cooled down and solidified by being drawn downward, no additional element is added when the alloy steel 10 is drawn and moved below the static magnetic field 5, 5a. The steel obtained by solidification of the molten steel 11 is used as the inner layer 11a, and only the surface becomes the multilayer slab 7 in which the surface layer 10a of the alloy steel in which the solidified layer of the alloy molten steel 10 gradually expands with the drawing movement.

【0022】このように、溶鋼11を浸漬ノズル4の注
入口6から垂直下向きに気体とともに注入することで、
溶鋼11の注入流は下方へ達した後、気体の浮力により
反転し上昇流12となって上昇するが、このときの流速
が上昇にともない静磁界5、5aの近傍では緩やかにな
るうえに浸漬ノズル4の注入口6より上部ではこの静磁
界5,5aによる静磁場の付与により急速に上昇流を抑
えられ、従って、この静磁界5,5aより上部にある合
金鋼10は大きく撹乱されることがないうえに、鋳型3
内の下部の溶鋼11にも静磁場の遮断作用と、溶鋼自身
の上昇流12によって合金溶鋼10が混入することもな
く、確実に安定して合金鋼10aが鋼の内層11aの表
面に形成された複層鋳片7を得ることができる。ただ
し、浸漬ノズルの注入口は、図1の1孔式でも、複数孔
式(2孔以上)でも構わない。なお、表層10aの層厚
さは、鋳造速度つまり引き抜き速度と静磁場の設置位置
により正確に制御することができる。
As described above, by injecting the molten steel 11 from the injection port 6 of the immersion nozzle 4 with the gas vertically downward,
After the injection flow of the molten steel 11 reaches downward, it reverses due to the buoyancy of the gas and rises as an ascending flow 12, but the flow velocity at this time becomes gentle near the static magnetic fields 5 and 5 a with the increase, and further immerses. Above the injection port 6 of the nozzle 4, the upward flow is rapidly suppressed by the application of the static magnetic field by the static magnetic fields 5, 5a. Therefore, the alloy steel 10 above the static magnetic fields 5, 5a is greatly disturbed. There is no mold 3
The alloy steel 10a is reliably and stably formed on the surface of the inner layer 11a of the steel without the alloy molten steel 10 being mixed into the molten steel 11 in the lower part of the inside by the static magnetic field blocking action and the rising flow 12 of the molten steel itself. The obtained multilayer slab 7 can be obtained. However, the injection port of the immersion nozzle may be the one-hole type shown in FIG. 1 or a multi-hole type (two or more holes). The thickness of the surface layer 10a can be accurately controlled by the casting speed, that is, the drawing speed, and the installation position of the static magnetic field.

【0023】本発明においては、表層の厚さは片面あた
り全厚tの0.015〜0.15tとする。この理由
は、表層厚さが片面あたり0.015t未満では、熱延
前の加熱の段階でのSiスケール生成を抑制するのに必
要なNi量が十分確保されないので、0.015tを下
限とする。また、0.15tを超えると、高い合金成分
を含んだ層の割合が高くなり、鋼板全体の強度が高くな
って加工性を損なうようになるので0.15tを上限と
する。
In the present invention, the thickness of the surface layer is set to 0.015 to 0.15 t of the total thickness t on one side. The reason is that if the surface layer thickness is less than 0.015 t per side, the Ni amount required to suppress the generation of Si scale at the stage of heating before hot rolling is not sufficiently secured, so the lower limit is 0.015 t. . On the other hand, if it exceeds 0.15 t, the ratio of the layer containing a high alloying component becomes high, and the strength of the entire steel sheet becomes high, thereby impairing the workability. Therefore, the upper limit is 0.15 t.

【0024】具体的には、鋳型内に静磁場を設置する場
合、引き抜き速度0.3〜2.0m/分で表層厚10〜
30mmに制御することができ、引き抜き速度が低速にな
るほど表層厚は厚くなり、また、高速になるほど表層厚
は薄くなる。すなわち、低速であればそれだけ合金溶鋼
10の表面が鋳型3との接触時間が長くなり、従って、
冷却される時間が長くなることになって凝固層となる表
面層10aの厚みが厚くなり、逆に高速になればそれだ
け合金溶鋼10の表面が鋳型3での接触時間が短くなり
冷却される時間が短くなり、凝固層となる表面層10a
の厚みは薄くなるからである。
Specifically, when a static magnetic field is set in a mold, the surface layer thickness is 10 to 2.0 m / min.
The thickness can be controlled to 30 mm. The lower the drawing speed, the thicker the surface layer, and the higher the speed, the thinner the surface layer. That is, the lower the speed, the longer the contact time of the surface of the molten alloy steel 10 with the mold 3, and therefore,
As the cooling time becomes longer, the thickness of the surface layer 10a serving as a solidified layer becomes thicker, and conversely, the higher the speed, the shorter the contact time of the surface of the alloy molten steel 10 with the mold 3 and the longer the cooling time. Is shortened, and the surface layer 10a becomes a solidified layer.
Is thinner.

【0025】内層と表面層との境界における成分の混合
によって本発明鋼板の性質が変化することはないので、
表層と内層の成分の混合は許される。
The properties of the steel sheet of the present invention are not changed by mixing the components at the boundary between the inner layer and the surface layer.
Mixing of components of the surface layer and the inner layer is permitted.

【0026】以上のようにして得られたスラブを鋼板製
造の常法に従い鋼板となす。まず、該スラブを連続鋳造
後直接または一度適当な温度まで冷却したのち加熱炉で
加熱する。加熱は、熱間圧延が可能な900℃から12
50℃程度とするのが望ましい。鋼板の用途によって
は、該スラブの温度が1000℃以上の場合には、加熱
を省略しても構わない。加熱後に行う熱間圧延(加熱し
ない場合も含め)は、Ar1 変態点以上の仕上温度で熱
延する。通常はこのまま熱延鋼板とするが、さらに高い
疲労強度を得るために仕上熱延後以下の方法で冷却す
る。仕上温度が高い場合には、仕上熱延後、1秒〜50
秒間の空冷を行いオーステナイト中へのCの濃化を促進
するか、あるいは、仕上温度がAr1 変態点に近い場合
には、直ちに冷却を開始することができる。冷却開始温
度は(Ar1 変態点−30℃)以上の温度域からとす
る。これは、この温度よりも低い温度からでは、フェラ
イトの生成が多くなり、マルテンサイトの生成が不十分
となるからである。冷却速度は15℃/sec以上200℃
/secとする。15℃/sec未満ではマルテンサイトの生成
が不十分となり、また200℃/secを超えると冷却設備
膨大となり製造コストが著しく上昇するためである。冷
却の終了温度は200℃以下とする。200℃を超える
とマルテンサイトの生成が不十分となるためである。こ
の後、酸洗等により脱スケールを施し、製品とする。
The slab thus obtained is formed into a steel sheet according to a conventional method for manufacturing a steel sheet. First, after continuous casting, the slab is cooled directly or once to an appropriate temperature, and then heated in a heating furnace. Heating is performed at 900 ° C to 12 ° C where hot rolling is possible.
It is desirable that the temperature be about 50 ° C. Depending on the use of the steel sheet, when the temperature of the slab is 1000 ° C. or higher, heating may be omitted. Hot rolling (including non-heating) performed after heating is hot-rolled at a finishing temperature equal to or higher than the Ar 1 transformation point. Normally, the hot rolled steel sheet is used as it is, but after finishing hot rolling, it is cooled by the following method in order to obtain higher fatigue strength. When the finishing temperature is high, after finishing hot rolling, 1 second to 50 seconds
Air cooling is performed for 2 seconds to promote the enrichment of C in austenite, or when the finishing temperature is close to the Ar 1 transformation point, cooling can be started immediately. The cooling start temperature is from a temperature range of (Ar 1 transformation point −30 ° C.) or higher. This is because, at a temperature lower than this temperature, the generation of ferrite increases and the generation of martensite becomes insufficient. Cooling rate is 15 ℃ / sec or more and 200 ℃
/ sec. If the temperature is lower than 15 ° C./sec, the formation of martensite will be insufficient, and if the temperature exceeds 200 ° C./sec, the cooling equipment will be enormous and the production cost will increase significantly. The ending temperature of the cooling is 200 ° C. or less. If the temperature exceeds 200 ° C., the formation of martensite becomes insufficient. Thereafter, descaling is performed by pickling or the like to obtain a product.

【0027】[0027]

【実施例】【Example】

(実施例1)内層成分として、表1に掲げる成分の溶鋼
を準備した。
(Example 1) As an inner layer component, molten steel having the components listed in Table 1 was prepared.

【0028】[0028]

【表1】 [Table 1]

【0029】ついで、以下の方法で鋳造した。 (1)鋳型サイズ:245mm(短辺)×1200mm(長
辺),鋳型高さ900mm (2)静磁界位置(コイル中心位置):溶鋼表面430
mm下 (3)浸漬ノズル注入口位置:静磁界位置から50mm下 (4)浸漬ノズル注入口径:φ90mm
Then, casting was performed by the following method. (1) Mold size: 245 mm (short side) x 1200 mm (long side), mold height 900 mm (2) Static magnetic field position (coil center position): molten steel surface 430
(3) Immersion nozzle inlet position: 50 mm below the static magnetic field position (4) Immersion nozzle inlet diameter: φ90 mm

【0030】このような連続鋳造装置に、表1に示す成
分を含有する溶鋼を浸漬ノズルから3.0リットル/分
のArガスとともに鋳型内に注入し、一方、静磁界から
上部の溶鋼中へNiの鉄合金を内包するワイヤーを添加
するとともに、5000ガウスの静磁場を付与しながら
引き抜き速度1.3m/分で鋳造した。該ワイヤーの添
加速度を制御することにより、表層部のNi含有量が
0.5%、表層部の厚みが20mmの均一に生成した表層
部を有する複層鋳片を得た。
Into such a continuous casting apparatus, molten steel containing the components shown in Table 1 is injected from a submerged nozzle into a mold together with 3.0 liter / min of Ar gas, while a static magnetic field is injected into the upper molten steel. A wire containing a Ni iron alloy was added, and casting was performed at a drawing speed of 1.3 m / min while applying a static magnetic field of 5000 Gauss. By controlling the rate of addition of the wire, a multilayer slab having a uniformly formed surface layer having a Ni content of the surface layer of 0.5% and a thickness of the surface layer of 20 mm was obtained.

【0031】ついで、該鋳片を1250℃に加熱し、そ
の後840℃で熱延を行い、8秒間空冷の後760℃か
ら200℃以下まで25℃/secの冷却速度で冷却し、巻
き取って板厚3.2mmの熱延鋼板とした。該鋼板を酸洗
してスケールを除去した。
Next, the slab is heated to 1250 ° C., then hot-rolled at 840 ° C., air-cooled for 8 seconds, cooled from 760 ° C. to 200 ° C. or less at a cooling rate of 25 ° C./sec, and wound up. A hot-rolled steel sheet having a thickness of 3.2 mm was used. The steel sheet was pickled to remove scale.

【0032】以上の方法により、表層に0.26mmのN
iを多く含む層を有し、内層の金属組織が15%のマル
テンサイトと残部フェライトからなる2相組織である鋼
板を得た。また該鋼板の表面には斑状のSiスケールは
観察されなかった。該鋼板の平面曲げ疲労試験を実施し
たところ、1千万回の疲労試験においても破壊が発生し
ない最大の応力を母材の引張強度で割った値すなわち疲
労限度比は0.53を示し、優れた疲労特性を示すこと
が確認できた。
By the above method, 0.26 mm of N
A steel sheet having a layer containing a large amount of i and having a two-phase structure in which the metal structure of the inner layer is composed of 15% martensite and the balance of ferrite was obtained. No spot-like Si scale was observed on the surface of the steel sheet. When a plane bending fatigue test was performed on the steel sheet, a value obtained by dividing the maximum stress that would not cause fracture even in a fatigue test of 10 million times by the tensile strength of the base material, that is, the fatigue limit ratio was 0.53, which was excellent. It was confirmed that the steel showed a high fatigue characteristic.

【0033】(実施例2)内層成分として、表2に掲げ
る成分の溶鋼を準備した。
Example 2 Molten steel having the components listed in Table 2 was prepared as the inner layer components.

【0034】[0034]

【表2】 [Table 2]

【0035】ついで、実施例1と同様の条件方法で鋳造
した。このような連続鋳造装置に、表2に示す成分を含
有する溶鋼を浸漬ノズルから3.0リットル/分のAr
ガスとともに鋳型内に注入し、一方、静磁界から上部の
溶鋼中へNiの鉄合金を内包するワイヤーを添加すると
ともに、5000ガウスの静磁場を付与しながら引き抜
き速度1.3〜2.0m/分で鋳造した。該ワイヤーの
添加速度を制御することにより、表層部のNi含有量
が、0.06〜1.56%、表層部の厚みが3.9〜3
1mmの均一に生成した表層部を有する複層鋳片を得た。
Then, casting was performed under the same conditions as in Example 1. Into such a continuous casting apparatus, molten steel containing the components shown in Table 2 was injected from an immersion nozzle to a flow rate of 3.0 liter / min.
The gas is injected into the mold together with the gas. On the other hand, a wire containing the iron alloy of Ni is added from the static magnetic field into the upper molten steel, and a drawing speed of 1.3 to 2.0 m / is applied while applying a static magnetic field of 5000 Gauss. Cast in minutes. By controlling the rate of addition of the wire, the Ni content in the surface layer is 0.06 to 1.56%, and the thickness of the surface layer is 3.9 to 3%.
A multilayer slab having a uniformly formed surface layer of 1 mm was obtained.

【0036】ついで、該鋳片を1050〜1250℃に
加熱し、その後840〜910℃で熱延を行い、3〜1
0秒間の空冷の後、20〜100℃/secの冷却速度で2
50℃以下まで冷却し、巻き取って板厚2.9〜5.6
mmの熱延鋼板とした。該鋼板を酸洗してスケールを除去
した。また、比較例として表層にNiを添加しなかった
鋼板(表3中のNo.12〜16)を製造した。
Next, the slab was heated to 1050 to 1250 ° C., and then hot-rolled at 840 to 910 ° C.
After air cooling for 0 seconds, a cooling rate of 20 to 100 ° C / sec.
Cool down to 50 ° C or less, roll up and plate thickness 2.9-5.6
mm hot-rolled steel sheet. The steel sheet was pickled to remove scale. Further, as comparative examples, steel sheets without Ni added to the surface layer (Nos. 12 to 16 in Table 3) were manufactured.

【0037】これらの鋼板の疲労特性を評価した。疲労
特性は、両振り平面曲げ疲労試験により、107回の疲
労限の強度を求め、この値と静的引張により測定した引
張強さとの比でもって評価した。また、酸洗後の表面外
観を観察した。表面の斑状のSiスケールの痕跡が有る
か無いかによって表面性状を評価した。
The fatigue properties of these steel sheets were evaluated. The fatigue properties were evaluated by a swing plane bending fatigue test, in which a fatigue limit of 107 times was determined, and the ratio between this value and the tensile strength measured by static tension was evaluated. Further, the surface appearance after pickling was observed. The surface properties were evaluated based on whether or not there were traces of mottled Si scale on the surface.

【0038】評価結果を表3に示す。この表から本発明
鋼は比較例と比べて、Siスケールの痕跡がなく、また
疲労限度比が0.5以上あり、優れた疲労特性を示すこ
とがわかる。
Table 3 shows the evaluation results. From this table, it can be seen that the steel of the present invention has no trace of Si scale, has a fatigue limit ratio of 0.5 or more, and exhibits excellent fatigue characteristics, as compared with the comparative example.

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【発明の効果】本発明によれば、表層にSiスケールを
無害化するNiを多く含有させるため、Siスケールの
発生がなく、鋼板内部は疲労特性と延性に優れた鋼板と
なるため、表面性状性と疲労特性に優れた鋼板を得るこ
とができる。また、該鋼板の製造方法において、表層厚
さの制御が、鋳片の引き抜き速度と静磁場設置位置で的
確にできるので安定した表層厚さを有する表面性状性と
疲労特性に優れた鋼板を提供することができる。
According to the present invention, since the surface layer contains a large amount of Ni for detoxifying the Si scale, there is no generation of Si scale, and the inside of the steel sheet becomes a steel sheet having excellent fatigue characteristics and ductility. It is possible to obtain a steel sheet having excellent properties and fatigue properties. Further, in the method for producing the steel sheet, the surface layer thickness can be controlled accurately at the slab drawing speed and the static magnetic field installation position, so that a steel sheet having a stable surface layer and excellent in surface properties and fatigue properties is provided. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の工程を説明する側面図である。FIG. 1 is a side view illustrating a process of the present invention.

【図2】本発明の工程を説明する平面図である。FIG. 2 is a plan view illustrating a process of the present invention.

【図3】本発明により鋳造された複層鋳片の断面図であ
る。
FIG. 3 is a cross-sectional view of a multilayer slab cast according to the present invention.

【符号の説明】[Explanation of symbols]

3 :鋳型 4 :浸漬ノズル 5 :静磁界(N極) 5a:静磁界(S極) 6 :浸漬ノズルの注入口 8 :気体吹き込み口 9 :追加する元素を含むワイヤー 10a:表層(表層成分を有する溶鋼の凝固層) 11 :溶鋼 11a:内層(溶鋼の凝固層) 3: Mold 4: Immersion nozzle 5: Static magnetic field (N-pole) 5a: Static magnetic field (S-pole) 6: Immersion nozzle injection port 8: Gas blowing port 9: Wire containing additional element 10a: Surface layer (surface layer component 11: Molten steel 11a: Inner layer (solidified layer of molten steel)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 表層と内層において成分の異なる複層鋼
板において、内層成分として、重量%で、 C :0.02〜0.15%、 Si:0.20〜3.00%、 Mn:0.60〜3.00%、 P :0.002〜0.030%、 S :0.001〜0.050%、 Al:0.002〜0.100%、 N :0.0002〜0.0100%、 残部:Fe及び不可避的不純物 を含有し、板厚をtとすると、表裏面から片面あたり
0.015t〜0.15tの部分の表層成分として、前
記内層成分に加えて、Ni:0.060〜2.00%を
含有せしめたことを特徴とする表面性状と疲労特性に優
れた複層鋼板。
1. In a double-layered steel sheet having different components in the surface layer and the inner layer, C: 0.02 to 0.15%, Si: 0.20 to 3.00%, and Mn: 0 by weight as inner layer components. 0.60 to 3.00%, P: 0.002 to 0.030%, S: 0.001 to 0.050%, Al: 0.002 to 0.100%, N: 0.0002 to 0.0100 %, The balance: Fe and unavoidable impurities, and assuming that the plate thickness is t, Ni: 0.1% in addition to the inner layer component as a surface layer component of 0.015 t to 0.15 t per surface from the front and back surfaces. A multi-layer steel sheet having excellent surface properties and fatigue characteristics, characterized in that the steel sheet contains 060 to 2.00%.
【請求項2】 表層と内層において成分の異なる複層鋼
板において、内層成分として、重量%で、 C :0.02〜0.15%、 Si:0.20〜3.00%、 Mn:0.60〜3.00%、 P :0.002〜0.030%、 S :0.001〜0.050%、 Al:0.002〜0.100%、 N :0.0002〜0.0100%、 残部:Fe及び不可避的不純物 を含有し、板厚をtとすると、表裏面から片面あたり
0.015t〜0.15tの部分の表層成分として、前
記内層成分に加えて、 Ni:0.060〜2.00% を含有せしめ、かつ内層の金属組織が主としてフェライ
トとマルテンサイトの2相からなることを特徴とする表
面性状と疲労特性に優れた複層鋼板。
2. In a double-layered steel sheet having different components in the surface layer and the inner layer, C: 0.02 to 0.15%, Si: 0.20 to 3.00%, and Mn: 0 by weight as inner layer components. 0.60 to 3.00%, P: 0.002 to 0.030%, S: 0.001 to 0.050%, Al: 0.002 to 0.100%, N: 0.0002 to 0.0100 %, Balance: Fe and unavoidable impurities, and assuming that the plate thickness is t, in addition to the inner layer component, Ni: 0. A multi-layered steel sheet containing 060 to 2.00% and having an inner layer metal structure mainly composed of two phases of ferrite and martensite, and having excellent surface properties and fatigue properties.
【請求項3】 連続鋳造用の鋳型へ、請求項1記載の内
層成分を有する溶鋼を気体とともに垂直下向きまたは斜
め下向きに注入し、この溶鋼注入位置より上部で鋳型内
の幅方向全幅に静磁場を付与して該溶鋼の上昇流を減速
し、該磁場の付与位置より上部にある該溶鋼へNiを添
加して、前記注入気体の撹拌により上部の溶鋼を請求項
1記載の表層成分となるようにし、鋳型引き抜きによ
り、請求項1記載の成分構成を有するスラブとなし、つ
いで、該スラブに熱延を施し、内層に請求項1記載の成
分を有し、板厚をtとすると、表裏面から0.015t
〜0.15tの表層成分が請求項1記載の表層成分を有
する熱延鋼板となすことを特徴とする表面性状と疲労特
性に優れた複層鋼板の製造方法。
3. A molten steel having an inner layer component according to claim 1 is injected into a mold for continuous casting in a vertically downward or obliquely downward direction together with a gas, and a static magnetic field is applied to the entire width in the mold above the molten steel injection position. To reduce the upward flow of the molten steel, add Ni to the molten steel above the position where the magnetic field is applied, and agitate the injected gas to turn the upper molten steel into a surface layer component according to claim 1. As a result, a slab having the component constitution according to claim 1 is formed by mold drawing, and then, the slab is subjected to hot rolling, the inner layer has the component according to claim 1, and the sheet thickness is t. 0.015t from the back
A method for producing a multi-layered steel sheet having excellent surface properties and fatigue properties, characterized in that a hot-rolled steel sheet having a surface layer component of up to 0.15 t has the surface layer component according to claim 1.
【請求項4】 連続鋳造用の鋳型へ、請求項1記載の内
層成分を有する溶鋼を気体とともに垂直下向きまたは斜
め下向きに注入し、この溶鋼注入位置より上部で鋳型内
の幅方向全幅に静磁場を付与して該溶鋼の上昇流を減速
し、該磁場の付与位置より上部にある該溶鋼へNiを添
加して、前記注入気体の撹拌により上部の溶鋼を請求項
1記載の表層成分となるようにし、鋳型引き抜きによ
り、請求項1記載の成分構成を有するスラブとなし、つ
いで、Ar1 変態点以上の仕上温度で熱延を施し、空冷
を経るか、または終了後直ちに(Ar変態点−30
℃)以上の温度域から15℃/sec以上200℃/sec以下
の冷却速度で200℃以下まで冷却し、内層に請求項1
記載の成分を有し、板厚をtとすると、表裏面から0.
015t〜0.15tの表層成分が請求項1記載の表層
成分を含有し、内層の金属組織が主としてフェライトと
マルテンサイトの2相からなる熱延鋼板となすことを特
徴とする表面性状と疲労特性に優れた複層鋼板の製造方
法。
4. A molten steel having an inner layer component according to claim 1 is injected into a mold for continuous casting in a vertically downward or obliquely downward direction together with a gas, and a static magnetic field is applied to the entire width in the mold above the molten steel injection position. To reduce the upward flow of the molten steel, add Ni to the molten steel above the position where the magnetic field is applied, and agitate the injected gas to turn the upper molten steel into a surface layer component according to claim 1. A slab having the component constitution according to claim 1 is formed by drawing the mold, and then hot-rolled at a finishing temperature not lower than the Ar 1 transformation point and air-cooled or immediately after completion (at the Ar 1 transformation point). -30
2) cooling at a cooling rate of 15 ° C./sec or more and 200 ° C./sec or less from a temperature range of not less than 200 ° C. to an inner layer.
It has the components described, and when the plate thickness is t, 0.
Surface properties and fatigue properties characterized in that the surface layer component of 015t to 0.15t contains the surface layer component of claim 1, and the metal structure of the inner layer is a hot-rolled steel sheet mainly composed of two phases of ferrite and martensite. Method for manufacturing multi-layer steel sheets with excellent performance.
JP1170097A 1997-01-24 1997-01-24 Multilayer steel plate excellent in surface characteristic and fatigue characteristic, and its production Withdrawn JPH10204583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1170097A JPH10204583A (en) 1997-01-24 1997-01-24 Multilayer steel plate excellent in surface characteristic and fatigue characteristic, and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1170097A JPH10204583A (en) 1997-01-24 1997-01-24 Multilayer steel plate excellent in surface characteristic and fatigue characteristic, and its production

Publications (1)

Publication Number Publication Date
JPH10204583A true JPH10204583A (en) 1998-08-04

Family

ID=11785324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1170097A Withdrawn JPH10204583A (en) 1997-01-24 1997-01-24 Multilayer steel plate excellent in surface characteristic and fatigue characteristic, and its production

Country Status (1)

Country Link
JP (1) JPH10204583A (en)

Similar Documents

Publication Publication Date Title
JP5131844B2 (en) Hot-rolled steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot-pressed steel sheet member
JP2013545890A (en) Steel blank hot forming method and hot formed parts
JP2000290730A (en) Production of high strength hot dip galvanized steel sheet excellent in balance of strength and ductility
JP6525123B1 (en) HOT STAMP MOLDED ARTICLES AND STEEL PLATE FOR HOT STAMPS
JPH0913147A (en) High strength galvannealed steel plate excellent in formability and plating adhesion and its production
JP5741413B2 (en) Alloyed hot-dip galvanized steel strip and method for producing the same
JP5741412B2 (en) Alloyed hot-dip galvanized steel strip and method for producing the same
JP2012136773A (en) High strength hot-rolled steel plate excellent in low temperature toughness and hole expansibility and method of producing the same
JP3728287B2 (en) Method for producing alloyed galvanized steel sheet
JP4299377B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with increased heat treatment performance after forming
JPWO2017017961A1 (en) Cold-rolled steel sheet, plated steel sheet, and production method thereof
JPH10204583A (en) Multilayer steel plate excellent in surface characteristic and fatigue characteristic, and its production
JPH09291335A (en) Duplex-layer steel plate, excellent in surface characteristic and fatigue characteristic, and its production
JPH08283898A (en) Multi-layered steel sheet excellent in corrosion resistance, weldability, and fatigue characteristic and its production
JPH08283897A (en) Multi-layered steel sheet excellent in workability and fatigue characteristic and its production
JP2000178655A (en) Steel sheet excellent in surface property and its production
JP4781563B2 (en) High strength hot-rolled steel sheet with excellent bake hardenability and method for producing the same
JP3861640B2 (en) Cold-rolled steel sheet and manufacturing method thereof
JPH08127839A (en) Multiply-layered steel sheet excellent in corrosion resistance and workability and production thereof
JPH08277436A (en) Double-layered steel sheet excellent in fatigue characteristic and its production
JPH08283903A (en) Multi-layered steel sheet excellent in brazing crack resistance and its production
JP2857762B2 (en) Manufacturing method of continuous cast enameled steel sheet with excellent nail skip resistance
JPH08127841A (en) Multiply-layered steel sheet excellent in deep drawability, dent resistance and fatigue property and production thereof
JPH08127840A (en) Multiply-layered steel layer for deep drawing excellent in corrosion resistance and production thereof
JPH11264022A (en) Production of steel sheet excellent in surface property

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040406