JPH09287547A - Operation method of high specific speed reversible pump-turbine - Google Patents

Operation method of high specific speed reversible pump-turbine

Info

Publication number
JPH09287547A
JPH09287547A JP8098608A JP9860896A JPH09287547A JP H09287547 A JPH09287547 A JP H09287547A JP 8098608 A JP8098608 A JP 8098608A JP 9860896 A JP9860896 A JP 9860896A JP H09287547 A JPH09287547 A JP H09287547A
Authority
JP
Japan
Prior art keywords
runner
maximum value
speed
rotating speed
pump turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8098608A
Other languages
Japanese (ja)
Inventor
Hisao Kuwabara
尚夫 桑原
Masataka Harada
昌孝 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8098608A priority Critical patent/JPH09287547A/en
Publication of JPH09287547A publication Critical patent/JPH09287547A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2200/00Mathematical features
    • F05B2200/20Special functions
    • F05B2200/21Root
    • F05B2200/211Square root
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)
  • Control Of Water Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent water thrust from abnormally increasing by closing a guide vane quickly directly after interception and slowly after a first peak value of rotating speed, so that at full load interception, first and second peak values in a specific relation appear in water pressure of a pipe line on the upper stream side respectively before the first peak value of a runner rotating speed and directly after exceeding it. SOLUTION: At full load interception, the opening of a guide vane is controlled so that a first peak value Ha appearing on the pipe line water pressure on the upper stream side before rotating speed of a runner 1 becomes the first maximum rotating speed Np, and a second peak value Hb appearing on the process in which rotating speed of the runner 1 falls after the maximum value Np are in relation of Ha≈Hb or Ha>Hb. For controlling in this way, at first the opening of the guide vane is quickly closed before rotating speed of the runner 1 is raised by load interception and reached to the first maximum rotating speed Np, so as to restrain the rising width itself of rotating speed, and after reaching the first maximum rotating speed Np, it is closed at lower speed than the speed directly after interception, and hence irregular pulsation of S-shaped characteristic is restrained at minimum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】ポンプ水車、特に(水車運転
時の比速度〔m−KWベースの単位〕)と(最高有効落
差〔m〕の平方根)の積が2450以上の高比速度ポン
プ水車に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pump turbine, and more particularly to a high specific speed pump turbine having a product of (specific speed during operation of the turbine [m-KW base unit]) and (square root of maximum effective head [m]) of 2450 or more. .

【0002】[0002]

【従来の技術】揚水発電所では複数台のポンプ水車を使
用して発電システムを構成している場合が多い。この一
例を図5の概略図を参照して説明する。図5において、
上池101に1本の上池側管路102が接続され、さら
に上池側102の分岐部103から第1〜第3の上池側
分岐管路104,105,106が分岐し、その下端に
それぞれ第1〜第3のポンプ水車107,108,10
9が接続されている。各ポンプ水車107〜109から
はそれぞれ下池側管路111,112,113を介して
下池110に接続され、上池101からポンプ水車10
7〜109側に水を供給して水車運転が行われ、下池1
10からポンプ水車107〜109によってポンプ運転
を行って上池101側に水を揚水するようになってい
る。
2. Description of the Related Art In a pumped storage power plant, a power generation system is often constructed by using a plurality of pump turbines. An example of this will be described with reference to the schematic view of FIG. In FIG.
One upper pond side pipeline 102 is connected to the upper pond 101, and further the first to third upper pond side branch pipelines 104, 105, 106 are branched from the branch portion 103 on the upper pond side 102, and the lower ends thereof. First to third pump turbines 107, 108, 10 respectively
9 is connected. The pump turbines 107 to 109 are connected to the lower pond 110 via the lower reservoir side pipelines 111, 112, 113, respectively, and the upper reservoir 101 to the pump turbine 10 are connected.
Water is supplied to the 7 to 109 side to operate the water turbine, and Shimoike 1
Pump water is pumped from 10 by pump turbines 107 to 109 to pump water to the side of the upper pond 101.

【0003】一般的に、ポンプ水車、特に高揚程ポンプ
水車のランナその他の機器は、ポンプ運転時に高揚程を
得る為に、充分な遠心ポンプ作用を発揮することができ
るように設計されている。しかしながら、このように設
計すると、ポンプ水車を水車運転するときに、特に後述
のS字特性と呼ばれる運転上好ましくない特性を回避す
ることができないという問題がある。すなわち、この設
計に採用されるポンプ水車の特性を、所定案内羽根開度
の下における単位落差当り回転数〔N1 〕と単位落差当
り流量〔Q1 〕との関係を表わす特性曲線により示した
場合、この特性曲線は、水車運転領域において、N1
値の増加に伴ってQ1 の値が減少する第1の部分と、N
1 の値の減少に伴ってQ1 の値が減少する第2の部分と
を有するような特性となる。説明の便宜上、本明細書に
おいては、前記第2の部分を、S字特性部分と称する。
更に、S字特性部分におけるポンプ水車の特性を、以
後、S字特性と称する。S字特性部分における水車運転
にあっては、単位落差当りトルク〔T1 〕もまた、単位
落差当り回転数〔N1 〕の減少に伴い、減少する。
Generally, pump turbines, especially runners and other equipment of high-lift pump turbines, are designed to exert a sufficient centrifugal pump action in order to obtain a high lift during pump operation. However, such a design has a problem in that, when the pump turbine is operated by a water turbine, an unfavorable characteristic called S-characteristic, which will be described later, cannot be avoided. That is, the characteristics of the pump turbine used in this design are shown by a characteristic curve showing the relationship between the number of revolutions per unit head [N 1 ] and the flow rate per unit head [Q 1 ] under a predetermined guide vane opening. In this case, this characteristic curve shows that in the turbine operating region, the first part in which the value of Q 1 decreases with the increase of the value of N 1
A second part in which the value of Q 1 decreases with a decrease in the value of 1 . For convenience of explanation, in the present specification, the second portion is referred to as an S-shaped characteristic portion.
Further, the characteristics of the pump turbine in the S-characteristic portion will be referred to as S-characteristics hereinafter. In hydraulic turbine operation in the S-shaped characteristic portion, the torque per unit head [T 1 ] also decreases as the number of revolutions per unit head [N 1 ] decreases.

【0004】通常は、ポンプ水車の水車運転は、上記第
1の部分において行われる。しかしながら、負荷遮断ま
たは負荷減少等により、単位落差当りの回転数〔N1
が急激に大きく増加する場合には、ポンプ水車は前記S
字特性部分において運転されることになる。S字特性部
分における運転が開始されると、ポンプ水車の運転点は
S字特性部分を一端から他端へと辿りつつ、まず単位落
差当りの流量〔Q1 〕と単位落差当りの回転数〔N1
が減少する。その後、今度は振子が振返すようにS字特
性部分を逆方向に辿りつつ、Q1 とN1 は増加する。S
字特性部分におけるこの往復は、案内羽根開度が所定値
以上に留まる限りほぼ永続的に継続し、特別な手段を講
じない限り終了しない。この間、単位落差当りのトルク
〔T1 〕も、減少と増加を繰り返す。
Normally, the turbine operation of the pump turbine is performed in the first part. However, due to load shedding or load reduction, the number of rotations per unit head [N 1 ]
If the pump water rapidly increases,
It will be operated in the character part. When the operation in the S-shaped characteristic portion is started, the operating point of the pump turbine follows the S-shaped characteristic portion from one end to the other end, and first, the flow rate per unit head [Q 1 ] and the number of revolutions per unit head [ N 1 ]
Decrease. Then, this time, Q 1 and N 1 increase while tracing the S-shaped characteristic portion in the opposite direction so that the pendulum turns back. S
This reciprocation in the character portion continues almost permanently as long as the guide vane opening remains above a predetermined value, and does not end unless special measures are taken. During this time, the torque [T 1 ] per unit head also repeats a decrease and an increase.

【0005】ポンプ水車の運転は、できるだけS字特性
部分を避けて行われることが望ましい。なぜならば、S
字特性部分における運転は、ポンプ水車本体におけると
同様に、水圧鉄管やドラフトチューブ内に大きな水圧上
昇と大きな水圧降下を含めて異常な水圧変動をひき起こ
し、その結果として時には水中分離さえ招く可能性があ
ること、しかもS字特性部への突入のタイミングが水路
を共有する他号機の影響等もあり、事前につかみ難いた
めである。上述した負荷遮断は、例えばポンプ水車に結
合される発電機が、遮断器を開かれた場合や変圧器等発
電機と電力系統間にある機器に事故が発生し、発電機が
その負荷を失った場合などに生じる。またウォーターハ
ンマーは、水圧鉄管またはドラフトチューブ、あるいは
その両方が長い場合には、特に激しいことに注意を払う
必要がある。
It is desirable that the pump turbine be operated while avoiding the S-shaped characteristic portion as much as possible. Because S
As in the case of the pump turbine main body, the operation in the character-shaped part causes abnormal water pressure fluctuations including large water pressure rise and water pressure drop in the penstock and draft tube, and as a result, it may even lead to underwater separation. This is because it is difficult to grasp in advance because the timing of plunging into the S-shaped characteristic part is influenced by other units that share the waterway. The above-mentioned load shedding, for example, when the generator connected to the pump turbine opens the circuit breaker or an accident occurs in equipment between the generator such as the transformer and the power system, causing the generator to lose its load. It occurs when you do. Also note that the water hammer is particularly violent if the penstock or draft tube or both are long.

【0006】水車運転領域においてS字特性を有するポ
ンプ水車の特性を、図6(a)および(b)に示す。図
6(a)においては、ポンプ水車の特性が、案内羽根開
度をパラメーターにとり、単位落差当りの回転数
〔N1 〕と単位落差当りの流量〔Q1 〕との関係として
示されている。一方、同図(b)においては、ポンプ水
車の特性が、同じパラメーターにより、単位落差当りの
回転数〔N1 〕と単位落差当りのトルク〔T1 〕との関
係として示されている。N1 ,Q1 およびT1 は次の式
により表現される。
The characteristics of the pump turbine having the S-shaped characteristic in the turbine operating region are shown in FIGS. 6 (a) and 6 (b). In FIG. 6 (a), the characteristics of the pump turbine are shown as a relationship between the number of revolutions per unit head [N 1 ] and the flow rate per unit head [Q 1 ] using the guide vane opening as a parameter. . On the other hand, in the same figure (b), the characteristics of the pump turbine are shown as the relationship between the number of revolutions per unit head [N 1 ] and the torque per unit head [T 1 ] with the same parameters. N 1 , Q 1 and T 1 are expressed by the following equations.

【0007】 N1 =N/√H Q1 =Q/√H T1 =T/H 上式において、符号N,Q,HおよびTは、それぞれポ
ンプ水車の回転数、流量、有効落差およびトルクを示
す。
N 1 = N / √H Q 1 = Q / √H T 1 = T / H In the above equation, the symbols N, Q, H and T are the rotational speed, flow rate, effective head and torque of the pump turbine, respectively. Indicates.

【0008】特性曲線CH1およびCH1’は、所定の
比較的大きな案内羽根開度の下で得られ、特性曲線CH
2およびCH2’は、それよりも小さな案内羽根開度の
下で得られ、特性曲線CH3およびCH3’は更にそれ
よりも小さい案内羽根開度の下で得られる。
The characteristic curves CH1 and CH1 'are obtained under a predetermined relatively large guide vane opening, and the characteristic curve CH1
2 and CH2 'are obtained under a smaller guide vane opening, and the characteristic curves CH3 and CH3' are obtained under a smaller guide vane opening.

【0009】特性曲線CH1のa−d−h部分において
は、Q1 の値はN1 の減少に伴って減少する。上述の様
に、本明細書においては、この曲線部分a−d−hをS
字特性部分と称している。同様に、曲線部分b−e−i
は特性曲線CH2のS字特性部分であり、曲線部分c−
f−jは、特性曲線CH3のS字特性部分である。一見
して明らかなように、特性曲線CH1のS字特性部分a
−d−hは、特性曲線CH2のS字特性部分b−e−i
より長く、特性曲線CH2のS字特性部分b−e−i
は、特性曲線CH3のS字特性部分c−f−jよりも長
い。このことは、案内羽根開度が小さくなるとS字特性
部分の長さが短くなることを意味している。
In the a-d-h part of the characteristic curve CH1, the value of Q 1 decreases as N 1 decreases. As described above, in the present specification, this curve portion a-d-h is referred to as S
It is called the character characteristic part. Similarly, the curved portion b-e-i
Is the S-shaped characteristic portion of the characteristic curve CH2, and the curved portion c-
f-j is the S-shaped characteristic portion of the characteristic curve CH3. As can be seen at a glance, the S-shaped characteristic portion a of the characteristic curve CH1
-D-h is the S-shaped characteristic portion b-e-i of the characteristic curve CH2.
Longer, S-shaped characteristic portion b-e-i of the characteristic curve CH2
Is longer than the S-shaped characteristic portion c-f-j of the characteristic curve CH3. This means that the length of the S-shaped characteristic portion becomes shorter as the guide vane opening becomes smaller.

【0010】図6(a)におけると同様に、図6(b)
においても、曲線部分a’−d’−h’、b’−e’−
i’およびc’−f’−j’は、それぞれ特性曲線CH
1’,CH2’およびCH3’のS字特性部分である。
図6(b)は、図6(a)と密接な関係がある。例え
ば、図6(a)の曲線上のQ1 =Q1x,N1 =N1xを満
たす点xは、図6(b)の特性曲線CH3’上の点x’
に対応している。点x’は、T1 =T1x’,N1 =N
1x’(=N1x)を満たす点である。同様に、図6(a)
における点a,b,c,d,e,f,g,h,iおよび
jはそれぞれ図6(b)における点a’,b’,c’,
d’,e’,f’,g’,h’,i’およびj’に対応
している。
As in FIG. 6 (a), FIG. 6 (b)
Also in the curve portions a'-d'-h ', b'-e'-
i ′ and c′-f′-j ′ are characteristic curves CH, respectively.
It is the S-shaped characteristic portion of 1 ', CH2' and CH3 '.
FIG. 6B has a close relationship with FIG. 6A. For example, the point x on the curve of FIG. 6A that satisfies Q 1 = Q 1 x and N 1 = N 1 x is the point x ′ on the characteristic curve CH 3 ′ of FIG. 6B.
It corresponds to. The point x ′ is T 1 = T 1 x ′, N 1 = N
It is a point that satisfies 1 x '(= N 1 x). Similarly, FIG.
Points a, b, c, d, e, f, g, h, i and j in FIG. 6B are points a ′, b ′, c ′,
It corresponds to d ', e', f ', g', h ', i'and j'.

【0011】曲線nrは、無負荷流量曲線である。曲線
CH1,2,3と曲線nrとの交点α,β,γは、それ
ぞれ、曲線CH1’,2’,3’と直線T1 =0との交
点α’,β’,γ’に対応している。
The curve nr is an unloaded flow rate curve. The intersections α, β, γ between the curves CH1, 2, 3 and the curve nr correspond to the intersections α ′, β ′, γ ′ between the curves CH1 ′, 2 ′, 3 ′ and the straight line T 1 = 0, respectively. ing.

【0012】次に、特性曲線CH1とCH1’を参照し
ながらポンプ水車の水車運転(発電運転)について説明
を行う。上述したように特性曲線CH1とCH1’に対
応する特性は、案内羽根開度を比較的大きな値にした時
に得られる。通常は、ポンプ水車の水車運転は、特性曲
線CH1の上部、すなわち、S字特性部分a−d−hよ
り上部の曲線部分において行われる。しかしながら、例
えばポンプ水車に加わっている負荷が突然失われた場合
は、ポンプ水車の回転数〔N〕が急激に増加するので、
1 の値も急激に増加する。こうして、ポンプ水車のS
字特性部分における運転が始まる。
Next, the turbine operation (power generation operation) of the pump turbine will be described with reference to the characteristic curves CH1 and CH1 '. As described above, the characteristics corresponding to the characteristic curves CH1 and CH1 ′ are obtained when the guide vane opening is set to a relatively large value. Normally, the turbine operation of the pump turbine is performed in the upper portion of the characteristic curve CH1, that is, in the curved portion above the S-shaped characteristic portion a-d-h. However, for example, when the load applied to the pump turbine is suddenly lost, the rotation speed [N] of the pump turbine rapidly increases,
The value of N 1 also increases sharply. Thus, the pump turbine S
The operation in the character part starts.

【0013】S字特性部分における運転の間は、ポンプ
水車の回転数〔N〕の減少によりN1 の値が減少する
と、Q1 の値もまた減少する。Hの値が一定であると仮
定すれば、Q1 の値の減少は、それに対応してポンプ水
車流量〔Q〕が減少することを意味する。現実には、H
の値、すなわち水圧鉄管に結合するポンプ水車入口とド
ラフトチューブに結合するポンプ水車出口との水頭差
は、流量Qの減少と同時に増加する。このようにして、
一旦、N1 の値が減少すると流量Qが減少し、流量Qの
減少はポンプ水車の有効落差Hの増加をもたらす。この
有効落差Hの増加は、更にN1 の減少をもたらし、N1
の減少は更にQ1 の減少をもたらす。このようにして、
一旦S字特性部分における運転が始まると、Q1 とN1
はS字特性部分をQ1 減少方向、すなわち点aから点d
の方向に辿りつつ、加速度的に、しかも連続的に減少す
る。Q1 とN1 は正帰還制御回路におけると同様に、加
速度的に、しかも連続的に減少する。ポンプ水車の運転
点がS字特性部分を点aから点hまで辿り終えると、上
記の現象は、負帰還制御回路におけると同様に次第に緩
和され、その後、反転し、やがてS字特性部分をQ1
加方向、すなわち点hを少し過ぎた点から点aへ辿るこ
とになる。S字特性部分を逆方向に辿るのも矢張り正帰
還制御回路と同様の様式で行われる。
During the operation in the S-shaped characteristic portion, when the value of N 1 decreases due to the decrease of the rotational speed [N] of the pump turbine, the value of Q 1 also decreases. Assuming that the value of H is constant, a decrease in the value of Q 1 means a corresponding decrease in the pump turbine flow rate [Q]. In reality, H
Value, that is, the head difference between the pump turbine inlet connected to the penstock and the pump turbine outlet connected to the draft tube increases at the same time as the flow rate Q decreases. In this way,
Once the value of N 1 decreases, the flow rate Q decreases, and the decrease of the flow rate Q causes the effective head H of the pump turbine to increase. This increase in effective head H further resulted in a reduction of N 1, N 1
The reduction of Q 1 also leads to the reduction of Q 1 . In this way,
Once the operation in the S-shaped portion starts, Q 1 and N 1
Indicates the S-shaped characteristic portion in the direction of decreasing Q 1 , that is, from point a to point d
As it goes in the direction of, the acceleration decreases continuously. Q 1 and N 1 decrease at an accelerating and continuous level, as in the positive feedback control circuit. When the operating point of the pump turbine finishes tracing the S-shaped characteristic portion from the point a to the point h, the above phenomenon is gradually alleviated in the same manner as in the negative feedback control circuit, and thereafter, the phenomenon is reversed and the S-shaped characteristic portion is changed to Q. The direction of increase is 1 , that is, the point h is traced to the point a. Tracing the S-shaped characteristic portion in the reverse direction is also performed in the same manner as the arrow-shaped positive feedback control circuit.

【0014】ポンプ水車がS字特性部分で運転される間
は、上記の往復運動は、ほぼ永続的に繰り返される。前
述のように、このような運転は望ましいものではない。
なぜならば、水力発電所各水路系続に異常な水圧変化を
もたらし、その水圧変化は、激烈なウォーターハンマー
と、時には水中分離現象さえもたらすからである。
While the pump turbine is operating in the S-shaped portion, the above reciprocating motion is repeated almost permanently. As mentioned above, such operation is not desirable.
The reason for this is that an abnormal water pressure change is caused in each channel system of the hydroelectric power plant, and the water pressure change causes a drastic water hammer and sometimes even an underwater separation phenomenon.

【0015】S字特性部分における運転に伴うこのよう
な悪影響は、S字特性部分の長さが短くなれば前述のよ
うに減少するので、例えば、案内羽根開度を小さくし
て、より短いS字特性部分b−e−iを有する特性曲線
2に従ってポンプ水車を運転するならば、S字特性に伴
う悪影響は軽減される。
Since such an adverse effect due to the operation in the S-shaped characteristic portion is reduced as described above when the length of the S-shaped characteristic portion is shortened, for example, the guide vane opening is made smaller to shorten the S-characteristic portion. If the pump turbine is operated in accordance with the characteristic curve 2 having the characteristic portion b-e-i, the adverse effects associated with the S-shaped characteristic are reduced.

【0016】S字特性部分におけるポンプ水車の運転
は、ポンプ水車のトルクTにも悪影響を与える。S字特
性部分においてN1 の値が減少すると、図6(b)に示
すように、T1 の値が減少する。
The operation of the pump turbine in the S-shaped characteristic portion also adversely affects the torque T of the pump turbine. When the value of N 1 decreases in the S-shaped characteristic portion, the value of T 1 decreases as shown in FIG. 6 (b).

【0017】有効落差Hが一定であると仮定すれば、T
1 の減少は、ポンプ水車トルクTの減少を意味する。更
に、ポンプ水車トルクTの減少が、ポンプ水車回転数N
の減少をもたらすことは明白である。ポンプ水車回転数
Nが減少すると、それに対応してN1 が減少し、次にT
1 が更に減少することになる。現実にはこの間に前記し
たように有効落差Hが増加しているのでこの加速傾向は
益々強まる。このようにして、ポンプ水車は、特性曲線
CH1をQ1 減少方向に辿る間、同時に特性曲線CH
1’を点a’から点h’へと辿っていることになる。そ
の辿り方は、正帰還制御回路の場合と同様である。その
後、S字特性部分を辿る方向が逆転すると、特性曲線C
H1’は点h’から点a’の方向へと、辿ることにな
る。このようなトルク変化は、特性上、好ましくないこ
とは明白である。
Assuming that the effective head H is constant, T
A decrease of 1 means a decrease in pump turbine torque T. Further, the decrease in the pump turbine torque T is due to the pump turbine rotation speed N.
It is clear that this leads to a decrease in When the pump turbine speed N decreases, N 1 decreases correspondingly, and then T
1 will be further reduced. In reality, since the effective head H is increasing during this period as described above, this acceleration tendency becomes stronger. In this way, the pump turbine during follow a characteristic curve CH1 to Q 1 decreasing direction, at the same time characteristic curve CH
1'is traced from the point a'to the point h '. The tracing method is the same as in the case of the positive feedback control circuit. After that, when the direction following the S-shaped characteristic portion is reversed, the characteristic curve C
H1 'will be traced from the point h'to the point a'. Obviously, such a torque change is not preferable in terms of characteristics.

【0018】ところで、目下、ポンプ水車については高
速化、大容量化が進行しつつあり、どの揚程においても
高比速度化が進行しており、一般的に(水車運転時の比
速度Ns〔m−KW単位ベース〕)と(最高有効落差
〔m〕の平方根)の積で定義しているK値は次第に上昇
しつつある。図7は、比速度Nsが高い場合(a)と低
い場合(b)のランナ形状の相違を示すランナの要部を
示す断面図である。図でD0 がランナ入口径、Dsealが
ランナシール径をそれぞれ示す。しかし、このように高
比速度化するにつれて、図8に示すように負荷遮断時に
発生する水スラストが増大する傾向にある。特に、前述
の図5に示すように上池側管路102が分岐されてい
て、分岐点103以遠の上池側管路102を他のポンプ
水車と共有する場合に、案内羽根の閉鎖方法が適切でな
いと、複数台同時遮断時の水スラストの増大が深刻にな
る。
By the way, at present, pump turbines are becoming faster and larger in capacity, and the specific speed is being made higher at any pump head. K value defined by the product of (-KW unit basis)) and (square root of maximum effective head [m]) is gradually increasing. FIG. 7 is a cross-sectional view showing the main part of the runner showing the difference in runner shape between the case where the specific speed Ns is high (a) and the case where the specific speed Ns is low (b). In the figure, D 0 is the runner inlet diameter, and Dseal is the runner seal diameter. However, as the specific speed is increased in this way, the water thrust generated at the time of load shedding tends to increase as shown in FIG. In particular, when the upper pond side pipe line 102 is branched as shown in FIG. 5 and the upper pond side pipe line 102 beyond the branch point 103 is shared with other pump turbines, a method for closing the guide vanes is If not appropriate, the increase in water thrust when shutting off multiple units simultaneously becomes serious.

【0019】なお、水車運転時の比速度は下記で定義さ
れる。
The specific speed during operation of the water turbine is defined below.

【0020】Ns=No×(P1/2 /H5/4 ) ただし、Pは定格出力〔KW〕、Noは定格回転速度
〔rpm〕である。
Ns = No × (P 1/2 / H 5/4 ) where P is the rated output [KW] and No is the rated rotation speed [rpm].

【0021】[0021]

【発明が解決しようとする課題】ここで、ポンプ水車と
当該ポンプ水車に発生する下向水スラストの発生要因に
ついて考える。
Now, let us consider the pump turbine and the factors causing the downward water thrust generated in the pump turbine.

【0022】図9はポンプ水車の概略を示す図で、ラン
ナ1は中心部で主軸2に支持されて回転可能にランナ室
カバー3内に収納されている。ランナ室カバー3はラン
ナ2の中央下端でドラフトチューブ4に接続され、ラン
ナ2の外周部で案内弁側と接続されている。ランナ室カ
バー3は上カバー3aと下カバー3bとからなり、ラン
ナ2の上側と上カバー3aとの間にそれぞれランナの上
シール部5と上カバーの上シール構成部6とが設けら
れ、ランナ2の下側と下カバー3bとの間にそれぞれラ
ンナの下シール部7と下カバーの下シール構成部8とが
設けられている。同様にランナ1の外周部と上カバー3
aとの間にはランナ外周上側シール部9が、下カバー3
bとの間にはランナ外周下側シール部10がそれぞれ設
けられている。また、圧力のバランスを取るためにラン
ナ1の上側と前記上カバーの上シール構成部6とランナ
の上シール部5とによって囲まれる上部の空間部11
と、ランナ1の下側(側部側)と前記下カバーの下シー
ル構成部8とランナの下シール部7とによって囲まれる
下部の側部側の空間部12との間を連通する外側バラン
ス管13が設けられ、同様に前記ランナ1の上側と前記
上カバーの上シール構成部6とランナの上シール部5と
によって囲まれる上部の中央側の空間部14とランナ下
部のドラフトーブ4内を連通する内側バランス管15が
設けられている。なお、ランナの中心部と前記空間部1
4とは主軸2に開設された給排気孔16によっても連通
されている。
FIG. 9 is a schematic view of a pump turbine, in which a runner 1 is supported by a main shaft 2 at its center and rotatably housed in a runner chamber cover 3. The runner chamber cover 3 is connected to the draft tube 4 at the center lower end of the runner 2, and is connected to the guide valve side at the outer peripheral portion of the runner 2. The runner chamber cover 3 includes an upper cover 3a and a lower cover 3b. An upper seal portion 5 and an upper seal constituent portion 6 of the runner are provided between the upper side and the upper cover 3a of the runner 2, respectively. A lower seal portion 7 of the runner and a lower seal component portion 8 of the lower cover are provided between the lower side of 2 and the lower cover 3b, respectively. Similarly, the outer periphery of the runner 1 and the upper cover 3
The runner outer peripheral upper side seal portion 9 is provided between the lower cover 3 and
A runner outer peripheral lower side seal portion 10 is provided between each of them and b. Further, in order to balance the pressure, an upper space portion 11 surrounded by the upper side of the runner 1, the upper seal forming portion 6 of the upper cover, and the upper seal portion 5 of the runner.
And an outer balance which communicates between the lower side (side portion side) of the runner 1, the lower side space portion 12 surrounded by the lower seal constituent portion 8 of the lower cover and the lower seal portion 7 of the runner. A pipe 13 is provided, and similarly, a space 14 on the upper center side surrounded by the upper seal component 6 of the upper cover, the upper seal component 5 of the upper cover, and the draft stove 4 of the lower runner is surrounded. An inner balance pipe 15 that communicates is provided. The center of the runner and the space 1
4 is also communicated with the air supply / exhaust holes 16 formed in the main shaft 2.

【0023】大略このように構成されたポンプ水車にお
いては、負荷遮断が行われると、以下のようにして下向
き水スラストが発生する。
In the pump turbine constructed as described above, when the load is cut off, a downward water thrust is generated as follows.

【0024】(a)上流側管路水圧の上昇とランナの回
転速度の上昇とによってランナシール外側背圧(前記空
間部11内の圧力)とランナ側圧(前記空間部12内の
圧力)が同時に上昇する。このとき両者間に圧力差があ
れば、その圧力差分、水スラストが増加する。
(A) The runner seal outer back pressure (the pressure in the space 11) and the runner side pressure (the pressure in the space 12) are simultaneously caused by the increase in the water pressure in the upstream pipeline and the increase in the rotation speed of the runner. To rise. At this time, if there is a pressure difference between the two, the pressure difference and the water thrust increase.

【0025】(b)ドラフト水圧が水撃によって降下す
る。このためランナ下側シール部を隔てて隣接するラン
ナ側室(空間部12)の水圧は、水撃によって降下した
分下る。この結果、上記(a)のバランスが崩れ,その
分スラストが増加する。
(B) The draft water pressure drops due to a water hammer. For this reason, the water pressure in the runner side chambers (spaces 12) that are adjacent to each other across the runner lower side seal portion is reduced by the amount of drop by the water hammer. As a result, the balance in (a) above is lost, and the thrust increases accordingly.

【0026】(c)上記(b)のドラフト水圧はランナ
シールの内側のランナ下面にかかっているのでこの分ス
ラストは増大する。
(C) Since the draft water pressure in (b) above is applied to the lower surface of the runner inside the runner seal, the thrust increases accordingly.

【0027】(d)回転速度上昇によってランナシール
内側背圧が上昇する。したがってスラストは増大する。
なお、負荷遮断直後は回転速度もほとんど上がっていな
いので、上記(b)のドラフト水圧低下が内側バランス
管を介してランナシール内側背圧を下げ、一時的にはス
ラスト低下が起きるが、やがては回転上昇に伴うランナ
シール内側背圧上昇が支配的となりスラスト上昇する。
(D) The back pressure inside the runner seal increases due to the increase in rotation speed. Therefore, the thrust increases.
Since the rotation speed hardly increased immediately after the load was cut off, the draft water pressure drop in (b) above lowers the runner seal inner back pressure via the inner balance pipe, causing a temporary drop in thrust, but eventually. The rise in back pressure inside the runner seal due to the increase in rotation becomes dominant and thrust increases.

【0028】(e)運転点が前述のS字特性、すなわち
1 (横軸)対Q1 (縦軸)完全特性平面上の水車運転
領域に現れる特性で(dQ1 /dN1 )>0の部分に入
り、ランナ内では逆流発生し、ランナの下端では流出水
量が減少し、不安定になるばかりでなくドラフト側から
水を吸い上げたりして激しい水圧脈動が発生する。この
結果、ランナ側圧に激しい脈動が乗る。
(E) The operating point is the above-mentioned S-shaped characteristic, that is, N 1 (horizontal axis) vs. Q 1 (vertical axis) perfect characteristic which appears in the hydraulic turbine operating region on the plane (dQ 1 / dN 1 )> 0 In the runner, a backflow occurs in the runner, and the outflow amount decreases at the lower end of the runner, causing not only instability but also suction of water from the draft side, causing severe water pressure pulsation. As a result, the runner side pressure is subject to severe pulsation.

【0029】(f)当然上記(e)のS字特性内運転の
影響は上池側管路水圧にも現れ、激しい水圧脈動が起
き、上記(a)のスラストに脈動成分が乗る。
(F) Naturally, the influence of the operation in the S-characteristic of the above (e) also appears in the water pressure on the upper reservoir side pipe line, a severe water pressure pulsation occurs, and the pulsating component is added to the thrust of the above (a).

【0030】(g)上記(e)のドラフト水圧脈動は、
上記(c)のスラスト増大を助長する。
(G) The draft hydraulic pulsation in (e) above is
It promotes the thrust increase in (c) above.

【0031】ところでポンプ水車の高比速度化によっ
て、特に、(水車運転時の比速度〔m−KW単位ベー
ス〕)と(最高有効落差〔m〕の平方根)の積で示され
るK値が2450以上になると(ランナシール径/ラン
ナ入口径)が増大するため上記(c)、(d)、(g)
によるスラスト増大が深刻になってくる。
By the way, by increasing the specific speed of the pump turbine, in particular, the K value shown by the product of (specific speed during turbine operation [m-KW unit basis]) and (square root of maximum effective head [m]) is 2450. (Runner seal diameter / runner inlet diameter) increases with the above, so the above (c), (d), (g)
Thrust increase due to the situation becomes serious.

【0032】一方、時間をパラメータとしたときの負荷
遮断時のランナの回転速度と上池側の管路水圧との関
係、および横軸に回転数〔N1 〕を、縦軸軸に流量〔Q
1 〕を取ったときのポンプ水車の運転点の軌跡を図10
(a),(b)にそれぞれ示す。これらの図において、
上池側管路水圧特性には第1および第2の2つのピーク
(極大値)Ha , Hb が表れる。これらのピークHa ,
b は回転速度Na ,Nb に対応するが、これらの回転
速度Na ,Nb は、回転速度のピーク(極大値)Np
前後の速度となっている。すなわち、回転速度が定常運
転時における回転速度No から負荷が遮断され、回転速
度が上昇する過程で、一度上池側管路水圧が極大
(Ha )となり、回転速度がピークNp を過ぎて下降す
る過程で一端下がった水圧が再度極大(Hb )となる。
この場合、極大値Ha の点が運転点の軌跡ではA点に対
応し、極大値Hb の点がB点に対応する。
On the other hand, the relationship between the rotational speed of the runner at the time of load shedding and the water pressure in the pipeline on the upper pond side when time is used as a parameter, and the horizontal axis represents the rotation speed [N 1 ] and the vertical axis represents the flow rate [N 1 ]. Q
Fig. 10 shows the locus of the operating point of the pump turbine when [ 1 ] is taken.
(A) and (b) respectively show. In these figures,
The upper reservoir-side conduit pressure characteristic first and second two peaks (maximum values) H a, H b appears. These peaks H a ,
H b is the rotational speed N a, but corresponds to a N b, these rotational speed N a, N b has a longitudinal velocity of the rotational speed of the peak (maximum value) N p. That is, in the process in which the load is cut off from the rotation speed No in the steady operation and the rotation speed rises, the water pressure on the upper reservoir side pipe reaches the maximum (H a ), and the rotation speed passes the peak N p. The water pressure that once dropped during the descending process becomes the maximum (H b ) again.
In this case, the point having the maximum value H a corresponds to the point A on the locus of the operating point, and the point having the maximum value H b corresponds to the point B.

【0033】他方、S字特性への落ち込みは1台遮断で
も2台遮断でも3台遮断でも台数に関係なくほぼ同一の
1 点で起きる。ところが高比速度水車では案内羽根の
閉め方が適当でないと1台遮断より2台遮断、2台遮断
より3台遮断とスラストが大幅に増大する可能性がある
ことが判ってきた。すなわち、遮断台数の増加による有
効落差の上昇率に比べて、スラストが格段に大きな率で
上昇することが判ってきた。
On the other hand, the drop in the S-shaped characteristic occurs at almost the same N 1 point regardless of the number of units, whether one unit is cut off, two units are cut off, or three units are cut off. However, it has been found that in a high specific speed turbine, if the guide vanes are not properly closed, two units are blocked rather than one, and three units are blocked rather than two, and thrust may increase significantly. In other words, it has been found that the thrust increases at a much higher rate than the rate of increase in the effective head due to the increase in the number of shut-off vehicles.

【0034】なお、特開昭54−40946号公報にお
いては、下池側又は上池側の管路が分岐されていて他の
水車又はポンプ水車に関し、負荷遮断時に発生する上池
側管路水圧最高値を最小にでき(設計水圧を最小にで
き)、かつ、該複数台ポンプ水車が相次いで負荷遮断さ
れる時間差負荷遮断時上池側管路水圧ピーク値が同時遮
断時のそれを越えないような案内羽根の閉鎖方法が開示
されている。この方法は、単機負荷遮断の段階で、負荷
遮断直後の案内羽根急閉鎖中に現れる上池側管路水圧ピ
ーク値が回転速度がピーク値に達し下降に転じた直後に
現れる上池側管路水圧ピーク値とほぼ一致するように案
内羽根を閉鎖するように管理するようにしているが、こ
の公報には、前述のような負荷遮断時の負荷遮断時特有
の異常水スラスト(ランナ押し下げ力)の低減について
は、一切触れられていない。
In Japanese Patent Laid-Open No. 54-40946, the lower pond side or the upper pond side pipeline is branched and the other hydraulic turbines or pump turbines have the highest hydraulic pressure on the upper pond side when the load is cut off. The value can be minimized (design water pressure can be minimized), and the load difference of the multiple pump turbines is cut off one after another so that the peak water pressure on the upper reservoir side pipeline does not exceed that at the time of simultaneous cutoff. A method for closing various guide vanes is disclosed. In this method, in the stage of single unit load shedding, the upper pond side pipe line that appears immediately after the load vanishes immediately after the guide vanes close suddenly appears immediately after the peak water pressure reaches the peak value and the water pressure peaks. The guide vanes are managed so as to be closed so as to approximately match the peak value of water pressure. However, in this publication, the abnormal water thrust (runner pushing force) peculiar to load shedding as described above is applied. No mention is made of the reduction of.

【0035】本発明は、このような従来技術の実情に鑑
みてなされたもので、その目的は、ポンプ水車の高比速
度化に伴う負荷遮断時の水スラストの異常増大を的確に
防止することができる高比速度ポンプ水車の運転方法を
提供することにある。
The present invention has been made in view of the circumstances of the prior art as described above, and an object thereof is to accurately prevent an abnormal increase in water thrust at the time of load shedding due to a higher specific speed of a pump turbine. It is to provide a method of operating a high specific speed pump turbine that can achieve the above.

【0036】[0036]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、上池側管路がポンプ水車端の近くで分岐
されていて、分岐点以遠の上池側管路を他のポンプ水車
と共有し、(水車運転時の比速度〔m−KW単位ベー
ス〕)と(最高有効落差〔m〕の平方根)の積が245
0以上の案内羽根を有する高比速度ポンプ水車の運転方
法において、全負荷遮断時、前記ランナの回転速度Nが
最初のピーク値Np を迎える時点より前に上流側管路水
圧の第1のピークHa が現れ、ランナの回転速度が最初
のピーク値Np を越えた直後に上流側管路水圧の第2の
ピークHb が現れるように、ポンプ水車の案内羽根を遮
断直後は速く閉鎖し、その後、遅くともランナの回転速
度が最初のピークNp に達した後は、前記遮断直後の速
度よりも低速度で閉鎖するようにするとともに、前記第
1のピークHa が第2のピークHb と略等しいか、第1
のピークHa が第2のピークHb よりも大きくなるよう
に案内羽根を閉鎖するようにした。この場合、前記ピー
ク値に水圧脈動波が乗っている場合には脈動波の中心を
ピーク値とする。
In order to achieve the above object, the present invention is directed to a case where the upper pond side pipeline is branched near the pump turbine end, and the upper pond side pipeline beyond the branch point is connected to another pump. It is shared with a water turbine, and the product of (specific speed during operation of the water turbine [m-KW unit basis]) and (square root of maximum effective head [m]) is 245.
In a method of operating a high specific speed pump turbine having 0 or more guide vanes, at the time of full load cutoff, before the time when the rotation speed N of the runner reaches the first peak value N p appeared peak H a is, as the second peak H b of the upstream side conduit water pressure immediately after the rotational speed of the runner exceeds the first peak value N p appears immediately after blocking the guide vanes of the pump turbine is fast closed After that, after the rotation speed of the runner reaches the first peak N p at the latest, the valve is closed at a speed lower than the speed immediately after the shutoff, and the first peak H a is the second peak. Is almost equal to H b , or
The guide vanes are closed so that the peak H a of the above is larger than the second peak H b . In this case, when the water pressure pulsation wave is on the peak value, the center of the pulsation wave is set as the peak value.

【0037】[0037]

【発明の実施の形態】以下、本発明の一実施形態につい
て図面を参照して説明する。なお、ポンプ水車や発電所
のシステムは、前述の従来例と同等であるので、以下の
説明において、前述の従来例と同等な各部には同一の参
照符号を付し、重複する説明は省略する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. Since the system of the pump turbine and the power plant is the same as the above-mentioned conventional example, in the following description, the same reference numerals are given to the same parts as those in the above-mentioned conventional example, and the duplicated description will be omitted. .

【0038】図1は本発明の実施形態に係る負荷遮断時
の時間をパラメータにとった上池側管路水圧の変化の状
態を示す図、図2は負荷遮断時の案内羽根開度とポンプ
水車の運転点軌跡を示す図、図3はポンプ水車の運転方
法によるランナの回転速度と上池側管路水圧とを比較し
た図、図4は案内羽根の他の制御例を示す図である。
FIG. 1 is a diagram showing the state of changes in the water pressure on the upper reservoir side pipeline with the time when the load is cut off as a parameter according to the embodiment of the present invention, and FIG. 2 is the guide vane opening and the pump when the load is cut off. The figure which shows the operating point locus of a water turbine, FIG. 3 is the figure which compared the rotation speed of the runner by the driving method of a pump water turbine, and the water pressure on the upper pond side pipeline, FIG. 4 is a figure which shows the other control example of a guide blade. .

【0039】本実施形態に係るポンプ水車の運転方法
は、負荷を遮断したときに図1および図3(a)に示す
ように、ランナ1の回転数が最初の極大の回転数Np
なる前に上池側管路水圧の最初に現れる極大値(第1の
ピーク値)Ha と、ランナ1の回転数が極大Np となっ
た後、回転数が落ちて行く過程で次に現れる極大値(第
2のピーク値)Hb の関係が、 Ha ≒Hb もしくは、 Ha >Hb となるように案内羽根の開度を制御するようにしたもの
である。
In the method of operating the pump turbine according to this embodiment, when the load is cut off, as shown in FIGS. 1 and 3 (a), the rotational speed of the runner 1 reaches the initial maximum rotational speed N p . and first appears maximum value (first peak value) H a of the upper reservoir-side conduit water pressure before, after becoming a speed maximum N p of the runner 1, the next occurrence in the course of the rotational speed goes down The opening of the guide vane is controlled so that the maximum value (second peak value) H b has a relationship of H a ≈H b or H a > H b .

【0040】このように制御するためには、図2に示す
ように、定常運転Dconst から負荷遮断が行われたと
き、まず、負荷遮断によるランナ1の回転速度が上昇し
てピークNp に達する前にできるだけ案内羽根開度を閉
め込んでおいて、回転速度上昇幅自身を最小限に抑え込
み、次に、S字特性による不規則脈動を最小限に抑え込
むようにする。
In order to control in this way, as shown in FIG. 2, when the load is cut off from the steady operation Dconst, first, the rotation speed of the runner 1 due to the load cut increases to reach the peak N p . First, the guide vane opening is closed as much as possible to minimize the rotation speed increase range itself, and then to minimize the irregular pulsation due to the S-shaped characteristic.

【0041】すなわち、S字特性は、前述のように案内
羽根開度が小さければ小さいほど小さくなり、その影響
も小さくなるので、ポンプ水車の運転点が負荷遮断後S
字特性に突入する前に、迎えるS字特性を最小限にして
おく。その対策としては、繰り返すがポンプ水車の運転
点がS字特性に突入する前に十分案内羽根を閉め込んで
おくことしかない。具体的には、図2のC1 の特性より
もさらにC2 の特性のようにして案内羽根を閉鎖し、運
転点の軌跡を少しでも原点に近づけることである。その
ためには、前記定常運転点Dconst からD1 と急速に案
内羽根を閉じ、ランナの回転数が最初のピークNp に達
した後に、D1 →D2 へと前記Dconst→D1 よりも低
速で案内羽根を閉じる。その際、Dconst →D1 →D2
よりも、Dconst →D3 →D4 のように制御する方がよ
り好ましい。
That is, the S-characteristic becomes smaller as the guide vane opening becomes smaller as described above, and its influence also becomes smaller, so that the operating point of the pump turbine is S after the load is cut off.
Before rushing into the S-characteristics, the incoming S-characteristics are minimized. As a countermeasure against this, again, the guide vanes must be sufficiently closed before the operating point of the pump turbine reaches the S-shaped characteristic. Specifically, the guide vanes are closed like the characteristic of C 2 as compared with the characteristic of C 1 of FIG. 2 so that the locus of the operating point is brought closer to the origin as much as possible. For that purpose, the guide vanes are rapidly closed from the steady operation point Dconst to D 1, and after the number of revolutions of the runner reaches the first peak N p , the speed becomes D 1 → D 2 lower than the Dconst → D 1. To close the guide vanes. At that time, Dconst → D 1 → D 2
It is more preferable to control as Dconst → D 3 → D 4 than to control.

【0042】そのときの運転点の記載は図2(b)のよ
うになる。すなわち、C1 の特性では、定常運転点Dco
nst からDconst →D1 →D2 と辿る運転軌跡となり、
2の特性では、定常運転点Dconst からDconst →D
3 →D4 と辿る運転軌跡となる。このようにすることに
よって図3(b)のような特性ではなく、図3(a)の
ような特性で運転することが可能になる。これは、上池
側管路水圧の第1のピーク値Ha は案内羽根開度の制御
でコントロール可能であるが、第2のピーク値Hb は案
内羽根開度自体では制御不能であるためで、これによっ
て、負荷遮断時のポンプ水車の圧力変動をコントロール
可能な範囲に抑え込むことができる。
The description of the operating point at that time is as shown in FIG. 2 (b). That is, in the characteristic of C 1 , the steady operating point Dco
The driving locus follows from nst to Dconst → D 1 → D 2 .
In the characteristic of C 2 , from the steady operating point Dconst to Dconst → D
The driving locus will be 3 → D 4 . By doing so, it becomes possible to operate with the characteristic as shown in FIG. 3A instead of the characteristic as shown in FIG. This is because the first peak value H a of the upper reservoir side water pressure can be controlled by controlling the guide blade opening, but the second peak value H b cannot be controlled by the guide blade opening itself. Thus, it is possible to suppress the pressure fluctuation of the pump turbine when the load is cut off within a controllable range.

【0043】なお、図2(a)は案内羽根の閉鎖速度の
切り替えを行う開度、すなわち、腰折開度だけ調整した
例であるが図4の点線のように腰折開度は変えず閉鎖速
度を変えて、結果的に図3の(a)のようにHa >Hb
になるように制御してもよい。このようにすると同時遮
断する台数増加によるスラスト増加を大幅に抑えること
ができる。
Note that FIG. 2A shows an example in which only the opening for switching the closing speed of the guide vanes, that is, the hip fold opening is adjusted, but the hip fold opening is not changed as indicated by the dotted line in FIG. By changing the closing speed, as a result, as shown in FIG. 3A, H a > H b
You may control so that it becomes. In this way, it is possible to significantly suppress an increase in thrust due to an increase in the number of units that are simultaneously shut off.

【0044】[0044]

【発明の効果】これまでの説明で明らかなように、本発
明によれば、高比速度水車特有の複数台同時遮断時の水
スラストの異常増大を確実に抑えることができる。これ
によって、高比速度化すなわち高回転速度化でますます
負担が増大しているスラスト軸受の設計が楽になり、負
荷遮断実施の運転上の問題の発生を回避することがで
き、ポンプ水車の高速化、大容量化をさらに促進するこ
とが可能となる。
As is apparent from the above description, according to the present invention, it is possible to reliably suppress an abnormal increase in water thrust at the time of simultaneous shutoff of a plurality of units, which is peculiar to a high specific speed turbine. This facilitates the design of thrust bearings, which are becoming increasingly burdened with higher specific speeds, i.e., higher rotational speeds, avoiding the operational problems of load shedding, and increasing the speed of pump turbines. It is possible to further increase the capacity and capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態に係る高比速度ポンプ水車の
負荷遮断時の上池側管路水圧の波形例を示す図である。
FIG. 1 is a diagram showing an example of a waveform of a water pressure in the upper pond side pipeline when the load of the high specific speed pump turbine according to the embodiment of the present invention is cut off.

【図2】本発明の実施形態に係る高比速度ポンプ水車の
案内羽根の開度と運転点軌跡の関係を示す図である。
FIG. 2 is a diagram showing a relationship between an opening of a guide blade and an operating point locus of the high specific speed pump turbine according to the embodiment of the present invention.

【図3】ポンプ水車の運転方法によるランナの回転速度
と上池側管路水圧とを比較した図である。
FIG. 3 is a diagram comparing the rotational speed of the runner and the water pressure on the upper reservoir side pipe according to the operating method of the pump turbine.

【図4】案内羽根の他の制御例を示す図である。FIG. 4 is a diagram showing another example of control of guide vanes.

【図5】本発明の対象とする上池側管路を共有する複数
台ポンプ水車を有する揚水発電所の概略構成を示す図で
ある。
FIG. 5 is a diagram showing a schematic configuration of a pumped storage power plant having a plurality of pump turbines that share the upper pond side pipeline, which is the subject of the present invention.

【図6】ポンプ水車のS字特性を説明するための特性図
である。
FIG. 6 is a characteristic diagram for explaining an S-shaped characteristic of a pump turbine.

【図7】比速度の相違によるランナ形状の相違を比較し
て示す図である。
FIG. 7 is a diagram comparing and comparing differences in runner shapes due to differences in specific speed.

【図8】高比速度化によるランナシール径増大と水スラ
スト増大の関係を示す図である。
FIG. 8 is a diagram showing a relationship between an increase in runner seal diameter and an increase in water thrust due to a higher specific speed.

【図9】ポンプ水車のランナ周りの構造を示す概略図で
ある。
FIG. 9 is a schematic view showing a structure around a runner of a pump turbine.

【図10】負荷遮断時のポンプ水車の運転点軌跡を説明
するための図である。
FIG. 10 is a diagram for explaining an operating point locus of the pump turbine at the time of load shedding.

【符号の説明】[Explanation of symbols]

1 ランナ 2 主軸 3 ケーシング 3a 上カバー 3b 下カバー 4 ドラフトチューブ 5 ランナの上シール部 6 上カバーの上シール構成部 7 ランナの下シール部 8 下カバーの下シール構成部 9 ランナ外周シール(上) 10 ランナ外周シール(下) 11,12 空間部 101 上池 102 上池側管路(共有部) 103 上池側管路分岐部 104,105,106 上池側分岐管路 107,108,109 ポンプ水車 100 下池 111,112,113 下池側管路 1 Runner 2 Spindle 3 Casing 3a Upper cover 3b Lower cover 4 Draft tube 5 Runner upper seal part 6 Upper cover upper seal component 7 Lower runner seal part 8 Lower cover lower seal component 9 Runner outer peripheral seal (upper) 10 runner outer peripheral seal (bottom) 11, 12 space part 101 upper pond 102 upper pond side pipeline (common part) 103 upper pond side branch line 104, 105, 106 upper pond side branch line 107, 108, 109 pump Turbine 100 Shimoike 111,112,113 Shimoike side pipeline

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 上池側管路がポンプ水車端の近くで分岐
されていて、分岐点以遠の上池側管路を他のポンプ水車
と共有し、(水車運転時の比速度〔m−KWベースの単
位〕)と(最高有効落差〔m〕の平方根)の積が245
0以上の案内羽根を有する高比速度ポンプ水車の運転方
法において、 全負荷遮断時、ランナの回転速度が最初の極大値に至る
前に上流側管路水圧の第1の(最初の)極大値が現れ、
ランナの回転速度が前記最初の極大値から低下する過程
で上流側管路水圧の第2の極大値が現れ、前記第1の極
大値が前記第2の極大値と略等しいか、前記第1の極大
値が第2の極大値よりも大きくなるように、前記ランナ
に水を導く案内羽根を負荷遮断直後は速い速度で、その
後、ランナの回転速度が前記最初の極大値を迎える時点
より後では、前記負荷遮断直後よりも遅い速度で前記案
内羽根を閉鎖することを特徴とする高比速度ポンプ水車
の運転方法。
1. The upper pond side pipeline is branched near the end of the pump turbine, and the upper pond side pipeline beyond the branch point is shared with other pump turbines (specific speed [m- The product of (KW-based unit]) and (square root of maximum effective head [m]) is 245.
In the operating method of a high specific speed pump turbine with 0 or more guide vanes, at full load cutoff, the first (first) maximum value of the upstream side pipe water pressure is reached before the rotational speed of the runner reaches the first maximum value. Appears,
A second maximum value of the upstream pipe water pressure appears in the process of the rotation speed of the runner decreasing from the first maximum value, and the first maximum value is substantially equal to the second maximum value or the first maximum value. So that the maximum value of is larger than the second maximum value, the guide vanes that guide the water to the runner are at a high speed immediately after the load is cut off, and after that, after the time when the rotation speed of the runner reaches the first maximum value. Then, the method for operating a high specific speed pump turbine, wherein the guide vanes are closed at a speed slower than immediately after the load is cut off.
【請求項2】 前記第1および/または第2の極大値に
水圧脈動波が重畳している場合には、前記脈動波の中心
をそれぞれ極大値と見なすことを特徴とする請求項1記
載の高比速度ポンプ水車の運転方法。
2. When the hydraulic pulsation wave is superposed on the first and / or the second maximum values, the centers of the pulsation waves are regarded as the maximum values, respectively. How to operate a high specific speed pump turbine.
JP8098608A 1996-04-19 1996-04-19 Operation method of high specific speed reversible pump-turbine Pending JPH09287547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8098608A JPH09287547A (en) 1996-04-19 1996-04-19 Operation method of high specific speed reversible pump-turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8098608A JPH09287547A (en) 1996-04-19 1996-04-19 Operation method of high specific speed reversible pump-turbine

Publications (1)

Publication Number Publication Date
JPH09287547A true JPH09287547A (en) 1997-11-04

Family

ID=14224317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8098608A Pending JPH09287547A (en) 1996-04-19 1996-04-19 Operation method of high specific speed reversible pump-turbine

Country Status (1)

Country Link
JP (1) JPH09287547A (en)

Similar Documents

Publication Publication Date Title
KR890000264B1 (en) Method of starting a variable-speed pump turbine or a variable speed pump
US3658436A (en) Water turbine operation method and system
JP2022001741A (en) Activation method of francis turbine and francis turbine
JPH09287547A (en) Operation method of high specific speed reversible pump-turbine
Deniz et al. Improvements of Flow Control With Fluid Injection for the Suppression of Flow Instabilities in Pump-Turbines
US4346304A (en) Method of controlling operation of Francis type pump turbines
JP2006258095A (en) Water turbine, water turbine power generating device and method for operating water turbine power generating device
JPH0893626A (en) Idling device of hydraulic machinery
JPH1026072A (en) Horizontal pelton water turbine
JPS6032978A (en) Operation control method of multi-stage hydraulic machine
JP2001234843A (en) Water turbine moving blade
JPH05195941A (en) Water turbine draft tube structure
JPS6388278A (en) Water column separation suppressing method
JPH0144905B2 (en)
JPS63302184A (en) Operation control method for variable pump water turbine
JPS6155631B2 (en)
JPH10103212A (en) Kaplan turbine
JP2001342939A (en) Pump turbine
JP2001132610A (en) Pump turbine
JPS5923087A (en) Method for controlling operation of once-through water turbine
JPS6230303B2 (en)
JPS5912177A (en) Increase and decrease method of revolving speed of valve water wheel
JPH1137034A (en) Reversible pump turbine
JPH10103211A (en) Air supply device of hydraulic machinery
JPH10205427A (en) Hydraulic machine and operation control method thereof