JPH1137034A - Reversible pump turbine - Google Patents

Reversible pump turbine

Info

Publication number
JPH1137034A
JPH1137034A JP9191029A JP19102997A JPH1137034A JP H1137034 A JPH1137034 A JP H1137034A JP 9191029 A JP9191029 A JP 9191029A JP 19102997 A JP19102997 A JP 19102997A JP H1137034 A JPH1137034 A JP H1137034A
Authority
JP
Japan
Prior art keywords
pressure air
water level
suction pipe
pipe
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9191029A
Other languages
Japanese (ja)
Other versions
JP3868584B2 (en
Inventor
Hiroshi Komiya
宮 浩 小
Hidetada Arai
井 秀 忠 新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19102997A priority Critical patent/JP3868584B2/en
Publication of JPH1137034A publication Critical patent/JPH1137034A/en
Application granted granted Critical
Publication of JP3868584B2 publication Critical patent/JP3868584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)
  • Control Of Water Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To control the push-down water surface level of a reversible pump turbine under a phase modifying operation within an aptitude domain even in the case where during the phase modifying operation of one of reversible pump turbines to hold a discharge pipeline in common, a load shutdown occurs in another reversible pump turbine. SOLUTION: In a reversible pump turbine where high pressure air is supplied into a draft tube 6 to make the idle running operation of a runner in air possible, a high pressure air supplying pipe 7 and a high pressure air discharging pipe 13 are connected to the draft tube 6. In the draft tube 6, a free water surface low limit point 9c is set up at a water level position lower than a high pressure air supplying stop point, and when a water level in the draft tube is lower than the free water surface low limit point 9c, the high pressure air in the draft tube 6 is discharged through the high pressure air discharge pipe 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸出し管内に高圧
空気を注入してその高圧空気により吸出し管内に自由水
面を作り、ランナを空転運転し得るようにしたポンプ水
車に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pump-turbine in which high-pressure air is injected into a suction pipe, a free water surface is formed in the suction pipe by the high-pressure air, and the runner can run idle.

【0002】[0002]

【従来の技術】最近のポンプ水車などの水力機械は経済
性を指向して高落差化しており、このような高落差の水
力機械の吸出し高さ或は押込み深さは、キャビテーショ
ン防止等の観点から相対的に高くなっており、その結果
吸出し管内の水圧力は高いものになっている。
2. Description of the Related Art In recent years, hydraulic machines such as pump-turbines have been designed to have a high head with a view to economy, and the suction height or the pushing depth of such a high-head hydraulic machine is determined from the viewpoint of preventing cavitation. , And as a result, the water pressure in the suction pipe is high.

【0003】ところで、このようなポンプ水車において
は、電力系統の安定化や電力需要の変化に迅速に対応す
るため、ポンプ水車のランナを長時間にわたって空転さ
せる調相運転が行われることが多い。
[0003] Incidentally, in such a pump turbine, in order to stabilize the power system and quickly respond to a change in power demand, a phase adjustment operation in which the runner of the pump turbine runs idle for a long time is often performed.

【0004】図4は、上記調相運転について説明するた
めのポンプ水車を模式的に示す縦断面図である。
FIG. 4 is a longitudinal sectional view schematically showing a pump-turbine for explaining the above-mentioned phase adjustment operation.

【0005】図4において、符号1はポンプ水車のラン
ナ室であって、そのランナ室1内には主軸2の下端に設
けられたランナ3が回転可能に配設されている。上記ラ
ンナ室1の外周にはスパイラルケーシング4が設けられ
ており、そのランナ室1とスパイラルケーシング4とを
連通する流路にガイドベーン5が周方向に配列されてい
る。そして、上記ランナ室1の下端部に吸出し管6が連
設されている。
In FIG. 4, reference numeral 1 denotes a runner chamber of a pump turbine, in which a runner 3 provided at the lower end of a main shaft 2 is rotatably disposed. A spiral casing 4 is provided on the outer periphery of the runner chamber 1, and guide vanes 5 are arranged in a circumferential direction in a flow path connecting the runner chamber 1 and the spiral casing 4. A suction pipe 6 is connected to the lower end of the runner chamber 1.

【0006】上記吸出し管6には高圧空気注入管7が接
続されるとともに、水面レベル検出用の水位検出管8が
接続され、その水位検出管8には吸出し管6内に設定さ
れた上下2つの水面レベル9a,9bに対応する水位セ
ンサ10a,10bが取り付けられている。
[0006] A high-pressure air injection pipe 7 is connected to the suction pipe 6, and a water level detection pipe 8 for detecting the water level is connected to the water level detection pipe 8. Water level sensors 10a, 10b corresponding to the two water surface levels 9a, 9b are attached.

【0007】ところで、このようなポンプ水車では、調
相運転時に電力負荷を軽減するため、ガイドベーン5を
全閉した後、吸出し管6内へ高圧空気注入管7を介して
高圧空気を注入してランナ室1内の水を吸出し管6内に
排水し、水面9をランナ3の下端部3aよりも所定距離
だけ押し下げ、ランナ3を高圧空気中で回転させること
により駆動トルクの軽減を図っている。
In such a pump-turbine, high-pressure air is injected into the suction pipe 6 through the high-pressure air injection pipe 7 after the guide vanes 5 are fully closed in order to reduce the power load during the phase adjustment operation. The water in the runner chamber 1 is drained into the suction pipe 6, the water surface 9 is pushed down by a predetermined distance from the lower end 3a of the runner 3, and the runner 3 is rotated in high-pressure air to reduce the driving torque. I have.

【0008】ところが、このような調相運転時にあって
は、ランナ3と水面との間の空間の空気は、ランナ3の
回転による遠心風圧の作用によって回転方向にかき回さ
れ、図4に示すように、水面9には大きな波立ちや揺動
が発生する。特に吸出し管6内の圧力が高い場合には顕
著となる。
However, during such a phase adjustment operation, the air in the space between the runner 3 and the water surface is swirled in the direction of rotation by the action of the centrifugal wind pressure caused by the rotation of the runner 3, as shown in FIG. In addition, large undulations and swings occur on the water surface 9. This is particularly noticeable when the pressure in the suction pipe 6 is high.

【0009】このような状態では、水面9の下に空気が
巻き込まれ水中に多量の気泡が浮遊することとなり、そ
のうち一部分は常時吸出し管6のエルボ部6aを介して
吸出し管6の下流側に向って漏れ出し、結果的に吸出し
管6内の水面9が徐々に上昇する。そして、水面9が設
定された水面レベル9aに達したら、水位センサ10a
がこれを検出して高圧空気注入管7の制御弁7aを作動
させて高圧空気を吸出し管6内に導入し水面9を押し下
げる。水面9が設定された水面レベル9bまで下降した
ら、水位センサ10bがこれを検出して高圧空気の供給
を停止する。このようにして、水面9はランナ3の下端
部3aより常に所定距離だけ押し下げられた状態に保持
され、長時間の調相運転では上記操作が繰り返される。
In such a state, air is entrained below the water surface 9 and a large amount of air bubbles float in the water, and a part of the air bubbles is always supplied to the downstream side of the suction pipe 6 via the elbow portion 6a of the suction pipe 6. As a result, the water surface 9 in the suction pipe 6 gradually rises. When the water level 9 reaches the set water level 9a, the water level sensor 10a
Detects this and operates the control valve 7a of the high-pressure air injection pipe 7 to introduce high-pressure air into the suction pipe 6 to push down the water surface 9. When the water surface 9 drops to the set water surface level 9b, the water level sensor 10b detects this and stops supplying high-pressure air. In this way, the water surface 9 is always kept depressed by a predetermined distance from the lower end 3a of the runner 3, and the above operation is repeated in a long-time phase adjustment operation.

【0010】[0010]

【発明が解決しようとする課題】ところが、このような
調相運転を行うポンプ水車P1 が、図5に示すように、
他のポンプ水車P2 と同じ水圧鉄管11と放水管路12
を共有した発電所の場合には、当該ポンプ水車の調相運
転中に他のポンプ水車に負荷遮断が起ったときに、負荷
遮断とほぼ同時に放水管路12の圧力が短時間であるが
低下する。そしてこの水圧低下に応じて、前記ランナ3
と吸出し管6内の水面9との間の空間に充填されていた
高圧空気が膨張し、水圧と空気圧がバランスするまで水
面9が急激に低下することがある。
[0005] However, as shown in FIG.
The penstock 11 and the discharge line 12 which are the same as the other pump turbines P2
In the case of the power plant sharing the above, when the load shedding of the other pump turbine occurs during the phase adjustment operation of the pump turbine, the pressure of the water discharge pipe 12 is short at almost the same time as the load shedding. descend. Then, in response to the decrease in water pressure, the runner 3
The high-pressure air filled in the space between the water and the water surface 9 in the suction pipe 6 expands, and the water surface 9 may drop rapidly until the water pressure and the air pressure are balanced.

【0011】しかし、水位検出管8に取り付けられてい
る水位センサ10a,10bは、吸出し管6内の前述の
如き水面の動きに対処するため水面9a,9bに対応し
て設けられているので、上記水面の急激な低下には対処
できない等の問題がある。
However, since the water level sensors 10a and 10b attached to the water level detection pipe 8 are provided corresponding to the water surfaces 9a and 9b in order to cope with the above-described movement of the water surface in the suction pipe 6, There is a problem that it is not possible to cope with the sudden drop of the water surface.

【0012】すなわち、水面9が水面レベル9bを越え
て大幅に低下した場合には、水面上の空間内の高圧空気
が一気に吸出し管6の下流側6bに向って漏出し、この
結果吸出し管6のエルボ6a内へ吸出し管6の下流側か
ら水が急激に流入し、水面が急上昇する。このとき、図
6に示すように流入水の一部が、流入時の勢いとさらに
吸出し管6内の空気の旋回流の作用によってランナ3ま
で達することがあり、気中で空転運転しているランナ3
に、空気に比べて密度が大きい水が衝突することにより
軸入力の変動や振動が発生し、安定した調相運転にとっ
て好ましくない影響を及ぼす。
That is, when the water surface 9 drops significantly above the water surface level 9b, the high-pressure air in the space above the water surface leaks at a stretch toward the downstream side 6b of the suction pipe 6, and as a result, the suction pipe 6 Water rapidly flows into the elbow 6a from the downstream side of the suction pipe 6, and the water level rises rapidly. At this time, as shown in FIG. 6, a part of the inflow water may reach the runner 3 due to the force at the time of inflow and the action of the swirling flow of the air in the suction pipe 6. Runner 3
In addition, the collision of water having a higher density than air causes fluctuations and vibrations of the shaft input, which has an unfavorable effect on stable phase adjustment operation.

【0013】本発明は、このような点に鑑み、放水管路
を共有するポンプ水車のうち一台が調相運転中に他方の
ポンプ水車に負荷遮断が発生したようなときでも、調相
運転中のポンプ水車の押し下げ水面レベルを適性範囲内
に制御することができるポンプ水車を得ることを目的と
する。
[0013] In view of the above, the present invention provides a phase-shifting operation even when one of the pump-turbines sharing a water discharge pipe performs a phase-shifting operation and the other pump-turbine experiences load shedding. It is an object of the present invention to obtain a pump turbine capable of controlling the water level of a pumping turbine inside a water pump within an appropriate range.

【0014】[0014]

【課題を解決するための手段】本発明は、ランナ室の下
端部に接続された吸出し管内に高圧空気を注入し、その
吸出し管内に自由水面を作りランナを気中で空転運転し
得るようにしたポンプ水車において、上記吸出し管に、
その吸出し管内に高圧空気を注入する高圧空気注入管と
ともに吸出し管内の高圧空気を排出する高圧空気排気管
を接続するとともに、上記吸出し管内の自由水面レベル
に設定された高圧空気注入停止点よりさらに下方水位位
置に自由水面下限点を設定し、吸出し管内の水位が上記
自由水面下限点以下になったとき、上記高圧空気排気管
に設けられている排気弁を開くようにしたことを特徴と
する。
SUMMARY OF THE INVENTION According to the present invention, high-pressure air is injected into a suction pipe connected to a lower end of a runner chamber, and a free water surface is formed in the suction pipe so that the runner can run idle in air. In the pump water turbine,
A high-pressure air exhaust pipe for discharging high-pressure air in the suction pipe is connected together with a high-pressure air injection pipe for injecting high-pressure air into the suction pipe, and further below a high-pressure air injection stop point set at a free water level in the suction pipe. A lower limit of the free water level is set at the water level, and when the water level in the suction pipe falls below the lower limit of the free water level, an exhaust valve provided on the high-pressure air exhaust pipe is opened.

【0015】[0015]

【発明の実施の形態】以下、添付図面を参照して本発明
の実施の形態について説明する。なお、図中図4と同一
部分には同一符号を付しその詳細な説明を省略する。
Embodiments of the present invention will be described below with reference to the accompanying drawings. In the figure, the same parts as those in FIG. 4 are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0016】図1において、吸出し管6には制御弁7a
を有する高圧空気注入管7とともに、吸出し管6内の高
圧空気を排出する排気弁13aを有する高圧空気排気管
13が接続されている。また水面レベル検出用の水位検
出管8には、ランナ側に近いレベルの高圧空気を再注入
する水面レベル9a用、それより下方の高圧空気注入を
停止する水面レベル9b用、及びそれよりさらに下方の
高圧空気を排気する水面レベル9c用の3個の水位セン
サ10a,10b,10cが設けられ、吸出し管6内の
押し下げ水面レベルを段階的に検出するようにしてあ
る。そして、吸出し管6内の水面が水面レベル9cにな
り、それが水位センサ10cによって検出されると排気
弁13aが開かれるようにしてある。しかして、このよ
うなポンプ水車においてランナ3を気中で空転運転させ
るいわゆる調相運転を行う場合には、ガイドベーン5を
全閉した後、高圧空気注入管7によって吸出し管6内に
高圧空気を供給して、ランナ室1内の水を吸出し管6内
に排水して水面9をランナ3の下端部3aよりも所定距
離だけ押し下げる。この場合、通常は効率的な高圧空気
の供給を行うため、吸出し管6内の水面に対して水面レ
ベル6a及び水面レベル6bが設定される。すなわち、
最初に水面押し下げを行うとき、または調相運転に入っ
てから漏気による補給気を行い、給気を停止する水面レ
ベルとして水面レベル6bが設定され、漏気により水面
レベルが上昇し、ランナに近付き過ぎないように補給気
する水面レベルとして水面レベル6aが設定される。
In FIG. 1, a control valve 7a is connected to a suction pipe 6.
And a high-pressure air exhaust pipe 13 having an exhaust valve 13a for discharging high-pressure air in the suction pipe 6 is connected to the high-pressure air injection pipe 7 having The water level detecting pipe 8 for detecting the water level is provided for the water level 9a for re-injecting the high pressure air at a level close to the runner side, for the water level 9b for stopping the injection of the high pressure air below it, and further below. There are provided three water level sensors 10a, 10b, 10c for a water surface level 9c for exhausting the high pressure air, so as to detect the depressed water surface level in the suction pipe 6 in a stepwise manner. Then, the water level in the suction pipe 6 reaches the water level 9c, and when this is detected by the water level sensor 10c, the exhaust valve 13a is opened. When such a pump-turbine performs a so-called phase-shifting operation in which the runner 3 runs idle in the air, the guide vane 5 is fully closed, and the high-pressure air is introduced into the suction pipe 6 by the high-pressure air injection pipe 7. To drain the water in the runner chamber 1 into the suction pipe 6 to push down the water surface 9 by a predetermined distance from the lower end 3 a of the runner 3. In this case, the water surface level 6a and the water surface level 6b are usually set to the water surface in the suction pipe 6 in order to efficiently supply the high-pressure air. That is,
When lowering the water level for the first time, or after entering the phase adjustment operation, supply air by leak is performed, and the water level 6b is set as the water level at which the air supply is stopped. The water surface level 6a is set as a water surface level at which replenishment is performed so as not to approach too much.

【0017】ところで、上記水面レベル6bに対応する
水位センサ10bは、吸出し管6内の水面が水面レベル
6bを上から下方向へ通過した時に高圧空気の注入を停
止するために用いられている。したがって、実際の押し
下げ水面が水面レベル6bの下方にある場合、どの程度
下方なのかは不明である。調相運転を単独のポンプ水車
で行う通常の場合、これでも特に問題は生じない。なぜ
なら、水面レベル6a及び6bは、図2の押し下げ水面
と漏気量及び軸入力との関係を模式的に表した線図に示
すように、軸入力及び漏気量が両方共より少なくなるよ
うな範囲であって、かつランナ下端部3aにより近いレ
ベルに設定されている。このため、漏気量が急増し始め
る水面レベルLC (図2)に対しては十分な余裕があ
る。
The water level sensor 10b corresponding to the water surface level 6b is used to stop the injection of high-pressure air when the water surface in the suction pipe 6 passes from the water surface level 6b downward. Therefore, when the actual depressed water level is below the water level 6b, it is unclear how low the level is. In the normal case where the phase-shifting operation is performed by a single pump-turbine, no particular problem occurs. This is because the water surface levels 6a and 6b are set so that both the shaft input and the leak amount are smaller as shown in the diagram schematically showing the relationship between the depressed water surface and the leak amount and the shaft input in FIG. And a level closer to the runner lower end 3a. For this reason, there is ample room for the water level LC (FIG. 2) at which the amount of leakage starts to increase rapidly.

【0018】しかしながら、前述のように一条の管路で
連結されている複数のポンプ水車が、同時に調相運転と
通常の発電運転を行うことが考えられる場合には、調相
運転を行うポンプ水車の吸出し管6内の押し下げ水面レ
ベルの変化は、通常の発電運転を行うポンプ水車に負荷
遮断が起った場合、非常に大きくなることが予想され
る。この場合、図2に示した水面レベルLc さえも越え
て水面レベルが低下することが考えられ、多量の高圧空
気が吸出し管6の下流側へ漏気すると同時に吸出し管6
の下流側から水がエルボ側6aへ急激に流れ込み水面が
乱れる可能性がある。
However, as described above, when it is conceivable that a plurality of pump-turbines connected by a single conduit perform the phase-shifting operation and the normal power generation operation at the same time, the pump-turbine that performs the phase-shifting operation It is expected that the change in the depressed water level in the suction pipe 6 will be extremely large when the load is cut off in the pump turbine that performs the normal power generation operation. In this case, it is conceivable that the water surface level is lowered even beyond the water surface level Lc shown in FIG. 2, and a large amount of high pressure air leaks to the downstream side of the suction pipe 6 and at the same time, the suction pipe 6
There is a possibility that water will suddenly flow from the downstream side to the elbow side 6a and the water surface will be disturbed.

【0019】ところが、本発明においては、吸出し管6
内の水面9が水面レベル6cまで降下すると、水位検出
管8に取り付けられた水位センサ10cによってそれが
検出され、高圧空気排気管13の排気弁13aが開けら
れ、吸出し管6内の高圧空気の一部が外部に急に排気さ
れる。したがって降下していた水面は逆に上昇に転じ、
次いで水面9が水面レベル9bに達したら高圧空気排気
管13の排気弁13aが閉じられる。このようにして水
面9は、規定押し下げ水面レベルの水面レベル9aと9
b間に収められる。
However, in the present invention, the suction pipe 6
When the water level 9 in the inside falls to the water level 6c, it is detected by a water level sensor 10c attached to the water level detection pipe 8, the exhaust valve 13a of the high pressure air exhaust pipe 13 is opened, and the high pressure air in the suction pipe 6 is removed. Some are suddenly exhausted to the outside. Therefore, the surface of the water that was descending turned up
Next, when the water surface 9 reaches the water surface level 9b, the exhaust valve 13a of the high-pressure air exhaust pipe 13 is closed. In this way, the water surface 9 is brought to the water surface levels 9a and 9
b.

【0020】図3は、本発明の他の実施の形態を示す図
であり、吸出し管6には排気弁13aを有する高圧空気
排気管13が接続されるとともに吸出し管6内の圧力を
検出する圧力センサ14が設けられている。その他は図
4に示すものと同一である。そこで、上記吸出し管6に
取り付けられた圧力センサ14の調相運転中の圧力−電
気信号は、基本的には放水管路が繋がった下池のダム水
位と他のポンプ水車の運転状態に支配され、吸出し管6
内の水面9のレベルには関係なく、したがって一定値を
示すか、または時間的に緩やかな変化を行うにすぎな
い。しかし、他のポンプ水車に負荷遮断が起きた場合
は、通常運転とは異なり数秒から数十秒という短時間の
間に放水管路の圧力が変化する。そして、この圧力変化
は調相運転を行っているポンプ水車の吸出し管6に伝わ
り、水面9が急激に変化することとなる。
FIG. 3 is a view showing another embodiment of the present invention. A high-pressure air exhaust pipe 13 having an exhaust valve 13a is connected to the suction pipe 6 and the pressure in the suction pipe 6 is detected. A pressure sensor 14 is provided. Others are the same as those shown in FIG. Therefore, the pressure-electric signal during the phase adjustment operation of the pressure sensor 14 attached to the suction pipe 6 is basically governed by the dam water level of the lower pond to which the water discharge pipe is connected and the operation state of the other pump turbines. , Draft tube 6
Irrespective of the level of the water surface 9 in the interior, it therefore shows a constant value or only makes a gradual change in time. However, when load rejection occurs in another pump turbine, the pressure in the water discharge pipe changes within a short time of several seconds to several tens of seconds, unlike normal operation. Then, this pressure change is transmitted to the suction pipe 6 of the pump turbine performing the phase adjustment operation, and the water surface 9 changes rapidly.

【0021】ここで、問題になるのは前述したように負
荷遮断時の圧力低下の影響である。したがって、調相運
転を行うポンプ水車の圧力センサ14の信号の時間当た
りの圧力低下率をモニターしておき、これが予定された
値、例えば5mHg /秒という値を超えた場合には負荷遮
断が起きたということで、高圧空気排気管13の排気弁
13aが開けられ、吸出し管6内の空気が排出され、吸
出し管6内の水面の異常低下が防止される。
The problem here is the effect of the pressure drop when the load is cut off, as described above. Therefore, the rate of pressure drop per hour of the signal of the pressure sensor 14 of the pump turbine performing the phase-shifting operation is monitored, and when this exceeds a predetermined value, for example, a value of 5 mHg / sec, load rejection occurs. Therefore, the exhaust valve 13a of the high-pressure air exhaust pipe 13 is opened, the air in the suction pipe 6 is exhausted, and the water level in the suction pipe 6 is prevented from being abnormally lowered.

【0022】また、上記実施の形態においては、第3の
水面レベル9cを検出する水位センサ10c及び圧力セ
ンサ14のいずれか一方を設けたものを示したが、その
両者を設け両方を用いて他のポンプ水車の負荷遮断に対
処して吸出し管6内の水面9の異常低下を防止するよう
にしてもよい。
Further, in the above embodiment, one of the water level sensor 10c and the pressure sensor 14 for detecting the third water surface level 9c is provided, but both of them are provided and both are used. Abnormal drop of the water surface 9 in the suction pipe 6 may be prevented by coping with the load interruption of the pump turbine.

【0023】すなわち、負荷遮断に伴う吸出し管6内の
圧力低下を水圧センサ14で検出したら高圧空気排気管
13の排気弁13aを開けて吸出し管6内の空気を排気
するとともに、排気に伴なって水面9が上昇し水面レベ
ル9cが水位センサ10cによって検出されたときに上
記排気弁13aを閉じるようにしてもよい。
That is, when the water pressure sensor 14 detects a pressure drop in the suction pipe 6 due to the load interruption, the exhaust valve 13a of the high-pressure air exhaust pipe 13 is opened to exhaust the air in the suction pipe 6 and to release the air. When the water level 9 rises and the water level 9c is detected by the water level sensor 10c, the exhaust valve 13a may be closed.

【0024】この場合、第1及び第2の実施の形態のよ
うに吸出し管6内の水面が水面レベル9bに達したとき
高圧空気排気管13の排気弁13aを閉じるのに比べ
て、吸出し管6内の空間の容積が大きくなり、負荷遮断
から一定時間経過後の水圧回復に伴なって水面9が上昇
する場合、同一水面レベルでの上記水面上の空間の空気
圧力が大きくなるため、水面の上昇速度が遅くなる。し
たがって、水面9が水位センサ10aで検出される水面
レベル9aに達し、高圧空気注入管7から高圧空気を吸
出し管6内に注入する時点における水面の上方へのオー
バーシュートが小さくなり、軸入力の増加を低減でき、
より安定した制御が可能となる。
In this case, as compared with closing the exhaust valve 13a of the high-pressure air exhaust pipe 13 when the water level in the suction pipe 6 reaches the water surface level 9b as in the first and second embodiments, the suction pipe is 6, when the water surface 9 rises with the recovery of the water pressure after a certain period of time from the load rejection, the air pressure in the space above the water surface at the same water surface level increases. Slows down. Therefore, when the water surface 9 reaches the water surface level 9a detected by the water level sensor 10a and the high-pressure air is injected from the high-pressure air injection pipe 7 into the suction pipe 6, the overshoot above the water surface is reduced, and the shaft input is reduced. Increase can be reduced,
More stable control becomes possible.

【0025】[0025]

【発明の効果】以上説明したように、本発明においては
吸出し管に高圧空気排気管を接続し、吸出し管内の水面
が高圧空気流入停止点より下がった場合に上記高圧空気
排出管に設けられている排気弁を開くようにしたので、
調相運転を行っているポンプ水車と通常の発電運転を行
っているポンプ水車が管路で繋っているものにおいて、
発電運転を行っているポンプ水車に負荷遮断等が起った
場合に調相運転を行っているポンプ水車の吸出し管内の
水面が所定水面以下になろうとすると、高圧空気排気管
を介して吸出し管内の高圧空気が排出され、吸出し管内
の押し下げ水面の異常低下が防止される。したがって、
調相運転を行っているポンプ水車に急激な漏気に伴う軸
入力変動や振動の発生が防止され、安定した調相運転を
行うことができる。
As described above, in the present invention, the high pressure air exhaust pipe is connected to the suction pipe, and the high pressure air exhaust pipe is connected to the high pressure air discharge pipe when the water level in the suction pipe falls below the high pressure air inflow stop point. I opened the exhaust valve
In the case where the pump turbine performing the phase-shift operation and the pump turbine performing the normal power generation operation are connected by a pipeline,
If the water level in the suction pipe of the pump turbine that is in phase operation is going to be lower than the predetermined water level when the load is cut off or the like in the pump turbine that is performing the power generation operation, the pump turbine through the high pressure air exhaust pipe will be used. High-pressure air is discharged to prevent the water level in the suction pipe from being lowered. Therefore,
Shaft input fluctuations and vibrations caused by abrupt leaks in the pump turbine performing the phase adjustment operation are prevented, and stable phase adjustment operation can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のポンプ水車の概略構成を示す縦断面
図。
FIG. 1 is a longitudinal sectional view showing a schematic configuration of a pump-turbine of the present invention.

【図2】空転運転時の押し下げ水面レベルと漏気量及び
軸入力との関係を示す図。
FIG. 2 is a diagram showing a relationship between a pushing water surface level, an amount of air leakage, and an axis input during an idling operation.

【図3】本発明のポンプ水車の他の実施の形態を示す縦
断面図。
FIG. 3 is a longitudinal sectional view showing another embodiment of the pump-turbine of the present invention.

【図4】従来のポンプ水車の概略構成を示す縦断面図。FIG. 4 is a longitudinal sectional view showing a schematic configuration of a conventional pump-turbine.

【図5】管路を共有する複数のポンプ水車を有する発電
所を模式的に示す図。
FIG. 5 is a diagram schematically showing a power plant having a plurality of pump turbines sharing a pipeline.

【図6】空転運転を行っているポンプ水車の吸出し管内
の水圧が異常低下した場合における吸出し管内の状態を
示す図。
FIG. 6 is a diagram showing a state inside the suction pipe when the water pressure in the suction pipe of the pump turbine performing the idling operation is abnormally decreased.

【符号の説明】[Explanation of symbols]

1 ランナ室 2 主軸 3 ランナ 4 スパイラルケーシング 5 ガイドベーン 6 吸出し管 7 高圧空気注入管 8 水位検出管 9a、9b、9c 水面レベル 10a、10b、10c 水位センサ 13 高圧空気排気管 13a 排気弁 14 圧力センサ DESCRIPTION OF SYMBOLS 1 Runner chamber 2 Main shaft 3 Runner 4 Spiral casing 5 Guide vane 6 Suction pipe 7 High pressure air injection pipe 8 Water level detection pipe 9a, 9b, 9c Water level 10a, 10b, 10c Water level sensor 13 High pressure air exhaust pipe 13a Exhaust valve 14 Pressure sensor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ランナ室の下端部に接続された吸出し管内
に高圧空気を注入し、その吸出し管内に自由水面を作り
ランナを気中で空転運転し得るようにしたポンプ水車に
おいて、上記吸出し管に、その吸出し管内に高圧空気を
注入する高圧空気注入管とともに吸出し管内の高圧空気
を排出する高圧空気排気管を接続するとともに、上記吸
出し管内の自由水面レベルに設定された高圧空気注入停
止点よりさらに下方水位位置に自由水面下限点を設定
し、吸出し管内の水位が上記自由水面下限点以下になっ
たとき、上記高圧空気排気管に設けられている排気弁を
開くようにしたことを特徴とする、ポンプ水車。
1. A pump-turbine wherein high-pressure air is injected into a suction pipe connected to a lower end of a runner chamber, and a free water surface is formed in the suction pipe so that the runner can run idle in air. And a high-pressure air exhaust pipe for discharging high-pressure air in the suction pipe together with a high-pressure air injection pipe for injecting high-pressure air into the suction pipe, and a high-pressure air injection stop point set to a free water level in the suction pipe. Further, a lower limit of the free water level is set at the lower water level position, and when the water level in the suction pipe falls below the free water lower limit, the exhaust valve provided on the high-pressure air exhaust pipe is opened. To do, a pump turbine.
【請求項2】吸出し管には、自由水面下限点の水位を検
出する水位センサが設けられ、その水位センサによる検
出信号によって高圧空気排気管に設けられている排気弁
が開方向に制御されることを特徴とする、請求項1記載
のポンプ水車。
2. A suction pipe is provided with a water level sensor for detecting a water level at a lower limit of a free water level, and an exhaust valve provided on the high-pressure air exhaust pipe is controlled in an opening direction by a detection signal from the water level sensor. The pump-turbine according to claim 1, characterized in that:
【請求項3】吸出し管にはその吸出し管内の圧力を検出
するための圧力センサが設けられ、その圧力センサによ
る検出信号によって高圧空気排気管に設けられている排
気弁が開方向に制御されることを特徴とする、請求項1
記載のポンプ水車。
3. A pressure sensor for detecting pressure in the suction pipe is provided on the suction pipe, and an exhaust valve provided on the high-pressure air exhaust pipe is controlled in an opening direction by a detection signal from the pressure sensor. 2. The method of claim 1, wherein
The described pump turbine.
【請求項4】吸出し管には、高圧空気注入停止点よりさ
らに下方の所定水位を検出する水位センサが設けられる
とともに、自由水面下限点の水位に対応する吸出し管内
の圧力を検出する圧力センサが設けられ、上記圧力セン
サによる検出信号によって高圧空気排気管に設けられて
いる排気弁が開方向に制御されるとともに、上記水位セ
ンサによる検出信号によって排気弁が閉鎖されることを
特徴とする、請求項1記載のポンプ水車。
4. A suction pipe is provided with a water level sensor for detecting a predetermined water level further below a high-pressure air injection stop point, and a pressure sensor for detecting a pressure in the suction pipe corresponding to a water level at a lower limit of a free water level. The exhaust valve provided on the high-pressure air exhaust pipe is controlled in an opening direction by a detection signal from the pressure sensor, and the exhaust valve is closed by a detection signal from the water level sensor. Item 4. The pump-turbine according to Item 1.
JP19102997A 1997-07-16 1997-07-16 Pump turbine Expired - Fee Related JP3868584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19102997A JP3868584B2 (en) 1997-07-16 1997-07-16 Pump turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19102997A JP3868584B2 (en) 1997-07-16 1997-07-16 Pump turbine

Publications (2)

Publication Number Publication Date
JPH1137034A true JPH1137034A (en) 1999-02-09
JP3868584B2 JP3868584B2 (en) 2007-01-17

Family

ID=16267721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19102997A Expired - Fee Related JP3868584B2 (en) 1997-07-16 1997-07-16 Pump turbine

Country Status (1)

Country Link
JP (1) JP3868584B2 (en)

Also Published As

Publication number Publication date
JP3868584B2 (en) 2007-01-17

Similar Documents

Publication Publication Date Title
US3658436A (en) Water turbine operation method and system
KR870001830B1 (en) Operation method of hydraulic turbine or reserble pump turbine
JPH1137034A (en) Reversible pump turbine
JPS6042357B2 (en) How to operate a water turbine or pump turbine
JP4719027B2 (en) Casing drainage mechanism of hydraulic machine and operation method of hydraulic machine
JP4141780B2 (en) Pump turbine and its operation control method
JP2001165024A (en) Francis hydraulic machinery
JP6884683B2 (en) Hydraulic machinery thrust control system and hydraulic machinery
JPH11324883A (en) Horizontal shaft hydraulic machine and operating method thereof
JP3497574B2 (en) Hydraulic machinery
JP3977510B2 (en) Method and method for predicting pressure in suction pipe of hydraulic machine and method for selecting suction height
JPH09209902A (en) Hydraulic machine and operation method thereof
JPS6135381B2 (en)
JP4006149B2 (en) Pump turbine
JPH08159076A (en) Phase modifying operation method for hydraulic machinery
JP3495089B2 (en) Hydraulic machinery
JPH10205427A (en) Hydraulic machine and operation control method thereof
JPH04166679A (en) Water level depressing device of hydraulic power machine
JP2008248787A (en) Method for operating hydraulic turbine
JP2011122511A (en) Main shaft water sealing apparatus
JPS59126082A (en) Push-down water level control device for hydraulic machine
JPH10141202A (en) Control method and device for pump hydraulic turbine
JPS621109B2 (en)
JPH10266941A (en) Kaplan turbine and shutdown method thereof
JPH09287547A (en) Operation method of high specific speed reversible pump-turbine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees