JPH09287418A - Composite power generator - Google Patents

Composite power generator

Info

Publication number
JPH09287418A
JPH09287418A JP8098658A JP9865896A JPH09287418A JP H09287418 A JPH09287418 A JP H09287418A JP 8098658 A JP8098658 A JP 8098658A JP 9865896 A JP9865896 A JP 9865896A JP H09287418 A JPH09287418 A JP H09287418A
Authority
JP
Japan
Prior art keywords
waste heat
heat boiler
steam
turbine
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8098658A
Other languages
Japanese (ja)
Inventor
Takeshi Suzuki
鈴木  剛
Kenichi Nagata
健一 永田
Ryoichi Tanaka
良一 田中
Tsutomu Yasuda
力 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Nippon Furnace Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Nippon Furnace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Nippon Furnace Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP8098658A priority Critical patent/JPH09287418A/en
Publication of JPH09287418A publication Critical patent/JPH09287418A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Air Supply (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve generating power efficiency of a steam turbine by arranging a high cycle regenerative combustion burner on the upstream side of a waste heat boiler utilizing steam generated in the waste heat boiler serving discharging gas of a turbine for power generation as energy for generating steam to the power generation of the steam turbine. SOLUTION: A gas turbine 1 is connected to a waste heat boiler 3 though a damper 2. Power is generated by a gas turbine 1 by operating a power generator 4, excessive heat steam obtained by the waste heat boiler 3 is supplied to the steam turbine, the other power generator is driven so as to generate power. A duct 22 for allowing a duct 21 positioned on the downstream side and a duct 9 positioned on the upstream side of a high cycle regenerative combustion burner 10 to communicate with each other is arranged on the waste heat boiler 3. In the duct 22, an exhaust gas circulating fan 23 is arranged on the way thereof, and a damper 24 is arranged between the exhaust gas circulating fan 23 and the duct 9. It is thus possible to improve power generation efficiency of the steam turbine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービンと蒸
気タービンとによって発電機を、それぞれ、駆動するよ
うにした複合発電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined power generation device in which a generator is driven by a gas turbine and a steam turbine, respectively.

【0002】[0002]

【従来の技術】一般に、ガスタービンは、排出ガスの温
度が高いので(500〜600℃)、その下流側に設け
た廃熱ボイラによって廃熱を回収し、得られた蒸気で蒸
気タービンを駆動したり、蒸気として単独使用してい
る。しかし、ガスタービンの機種が決まると、排出ガス
量が決まる一方、廃熱ボイラで発生する蒸気量も一義的
に決まってしまう。更に、廃熱ボイラの蒸気で蒸気ター
ビンを動かして発電する所謂複合発電は、ガスタービン
の機種により出力及び容量が決まってしまう。
2. Description of the Related Art Generally, a gas turbine has a high exhaust gas temperature (500 to 600 ° C.), so that waste heat is recovered by a waste heat boiler provided on the downstream side of the gas turbine and the steam thus obtained drives a steam turbine. Or use it alone as steam. However, when the type of gas turbine is determined, the amount of exhaust gas is determined, and the amount of steam generated in the waste heat boiler is also uniquely determined. Further, in so-called combined power generation, in which a steam turbine is driven by the steam of the waste heat boiler to generate power, the output and capacity are determined depending on the model of the gas turbine.

【0003】一方、保有している自家発電設備によって
得られる電力より、もう少し電力が欲しい場合、別途に
発電設備を建設すると、建設費が嵩む。また、ガスター
ビンと廃熱ボイラの間にダクトバーナーを設けて増熱す
ることが考えられるが、ガスタービンの排出ガス中の酸
素濃度が低いので、助燃によって昇温できる範囲には、
自ずと限度がある。
On the other hand, if a little more electric power is required than the electric power generated by the private power generation equipment owned, the construction cost will increase if the power generation equipment is constructed separately. Further, it is conceivable to provide a duct burner between the gas turbine and the waste heat boiler to increase the heat, but since the oxygen concentration in the exhaust gas of the gas turbine is low, the range that can be raised by auxiliary combustion is:
There are limits naturally.

【0004】[0004]

【発明が解決しようとする課題】本発明は、係る従来の
問題に鑑みてなされたものであり、その目的とするとこ
ろは、複合発電設備を大幅に改造又は設計変更すること
なく、蒸気タービンの発電効率をアップすることができ
る複合発電装置を提供することにある。更に、他の目的
は、複合発電装置の効率向上及びガスタービンを停止し
た後も蒸気タービンによる発電を続行することができる
複合発電装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above conventional problems, and an object of the present invention is to provide a steam turbine without significantly modifying or designing the combined cycle power generation facility. An object of the present invention is to provide a combined power generation device that can improve power generation efficiency. Further, another object of the present invention is to improve the efficiency of the combined power generation device and to provide a combined power generation device capable of continuing power generation by the steam turbine even after the gas turbine is stopped.

【0005】[0005]

【課題を解決するための手段】即ち、本発明の複合発電
装置は、発電用ガスタービンと、該ガスタービンの排出
ガスを蒸気発生のエネルギー源にする廃熱ボイラと、該
廃熱ボイラの発生蒸気を発電に利用する蒸気タービン
と、前記廃熱ボイラの上流側に設置したハイサイクル蓄
熱型燃焼バーナーとからなっている。
That is, the combined power generation device of the present invention is a gas turbine for power generation, a waste heat boiler that uses the exhaust gas of the gas turbine as an energy source for steam generation, and the generation of the waste heat boiler. It consists of a steam turbine that uses steam for power generation, and a high-cycle regenerative combustion burner that is installed upstream of the waste heat boiler.

【0006】このハイサイクル蓄熱型燃焼バーナーを使
用したボイラは、廃熱ボイラ発生蒸気温度を通常の汽力
発電と同様な100ata 、500℃程度の蒸気条件を得
ることが可能で、蒸気タービン側の効率を高くできる。
一方、ガスタービンを停止させた時でも(定期点検
時)、廃熱ボイラの排ガスを循環させながらハイサイク
ル蓄熱型燃焼バーナーによる助燃を行って蒸気タービン
の運転を続行させることが可能である。この場合、循環
ガスの酸素濃度は、全く問われないばかりでなく、NO
xの発生も極めて少ない。
The boiler using this high cycle heat storage type combustion burner can obtain the steam temperature of the waste heat boiler generated steam of about 100ata and 500 ° C similar to that of the ordinary steam power generation, and the efficiency on the steam turbine side. Can be raised.
On the other hand, even when the gas turbine is stopped (at the time of regular inspection), it is possible to continue the operation of the steam turbine by circulating the exhaust gas of the waste heat boiler and supporting the combustion by the high cycle heat storage type combustion burner. In this case, the oxygen concentration of the circulating gas does not matter at all, and NO
The occurrence of x is extremely small.

【0007】[0007]

【発明の実施の形態】以下、図面を参照しながら本発明
の実施の形態について説明する。図1は、本発明に係る
複合発電装置の概略図であり、ガスタービン1は、ダン
パー2を介して廃熱ボイラ3に接続している。そして、
ガスタービン1によって発電機4を回わして発電を行う
一方、廃熱ボイラ3によっで得られた過熱蒸気を図示し
ない蒸気タービンに供給して別の発電機(不図示)を駆
動して発電を行うようになっている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram of a combined power generation system according to the present invention, in which a gas turbine 1 is connected to a waste heat boiler 3 via a damper 2. And
While the gas turbine 1 rotates the generator 4 to generate power, the superheated steam obtained by the waste heat boiler 3 is supplied to a steam turbine (not shown) to drive another generator (not shown) to generate power. Is supposed to do.

【0008】廃熱ボイラ3は、その入口側に位置するダ
クト9にハイサイクル蓄熱型燃焼バーナー10を備えて
いる。ハイサイクル蓄熱型燃焼バーナー10は、図2に
示すように、蓄熱器11及び燃焼バーナー12を有する
第1系統の燃焼器13と、蓄熱器14及び燃焼バーナー
15を有する第2系統の燃焼器16と、この第1系統の
燃焼器13及び第2系統の燃焼器16に燃焼用空気Aを
供給する空気配管17と、空気配管17の端部に設けら
れた4方バルブ18と、4方バルブ18と第1系統の燃
焼器13及び第2系統の燃焼器16とを夫々連通する連
通管19,20から構成されている。そして、第1系統
の燃焼器13と第2系統の燃焼器16は、互いに、対向
するように、上記ダクト9に設けられている。ダクト9
は、耐火材又は水冷壁によって構築されている。
The waste heat boiler 3 is equipped with a high cycle heat storage type combustion burner 10 in a duct 9 located on the inlet side thereof. As shown in FIG. 2, the high cycle heat storage type combustion burner 10 includes a first system combustor 13 having a regenerator 11 and a combustion burner 12, and a second system combustor 16 having a regenerator 14 and a combustion burner 15. And an air pipe 17 for supplying the combustion air A to the combustor 13 of the first system and the combustor 16 of the second system, a four-way valve 18 provided at an end of the air pipe 17, and a four-way valve 18 and the combustor 13 of the first system and the combustor 16 of the second system, respectively. The first system combustor 13 and the second system combustor 16 are provided in the duct 9 so as to face each other. Duct 9
Are constructed of refractory or water-cooled walls.

【0009】更に、廃熱ボイラ3に、その下流側に位置
するダクト21とハイサイクル蓄熱型燃焼バーナー10
の上流側に位置する上記ダクト9とを連通するダクト2
2を設ける。このダクト22は、その途中に排ガス循環
ファン23を有すると共に、排ガス循環ファン23と上
記ダクト9との間にダンパー24を備えている。上記廃
熱ボイラ3は、エコノマイザー5、蒸発器6、蒸気分離
器7及び過熱器8を有している。
Further, in the waste heat boiler 3, a duct 21 located downstream of the waste heat boiler 3 and a high cycle heat storage type combustion burner 10 are provided.
2 communicating with the duct 9 located upstream of the
2 is provided. The duct 22 has an exhaust gas circulation fan 23 in the middle thereof, and a damper 24 between the exhaust gas circulation fan 23 and the duct 9. The waste heat boiler 3 has an economizer 5, an evaporator 6, a steam separator 7 and a superheater 8.

【0010】次に、作用について説明する。ハイサイク
ル蓄熱型燃焼バーナー10において、第1系統の燃焼器
13の燃焼バーナー12に供給された燃料、例えば、天
然ガスF1 は、空気配管17、4方バルブ18及び連通
管19を経て第1系統の燃焼器13に流入して蓄熱器1
1で高温に加熱された燃焼用空気Aと混合して燃焼す
る。この高温(1300℃)の燃焼ガスGは、ダクト9
内において、ガスタービン1から排出される排出ガスG
1 を加熱し、加熱されたガスタービン排ガスG2 が、廃
熱ボイラ3に供給される。
Next, the operation will be described. In the high-cycle heat storage type combustion burner 10, the fuel supplied to the combustion burner 12 of the combustor 13 of the first system, for example, natural gas F 1 , passes through the air pipe 17, the four-way valve 18 and the communication pipe 19, Inflow to the combustor 13 of the system and the heat storage device 1
The combustion air A heated to a high temperature in 1 is mixed and burned. This high temperature (1300 ° C.) combustion gas G is generated by the duct 9
Exhaust gas G discharged from the gas turbine 1 inside
1 is heated, and the heated gas turbine exhaust gas G 2 is supplied to the waste heat boiler 3.

【0011】そして、ガスタービン1から排出された排
出ガスG1 の一部及び上記燃焼ガスGの一部は、第2系
統の燃焼器16内に流入し、その蓄熱器14に熱を付与
して、例えば、150℃の低温排ガスG′となって連通
管20、4方バルブ18を経て系外に排出される。一
方、第2系統の燃焼器16が稼働するときは、4方バル
ブ18が切り換えられ、燃焼バーナー15に供給された
天然ガスF1 は、空気配管17、4方バルブ18及び連
通管20を経て第2系統の燃焼器16に流入し、ガスタ
ービン排ガスG1 及び第1系統の燃焼器13の燃焼ガス
Gを蓄積した蓄熱器14で高温、例えば、800℃まで
加熱された燃焼用空気Aと混合して燃焼する。この高温
の燃焼ガスは、ダクト9内において、ガスタービン1か
ら排出される排出ガスG1 を加熱し、加熱されたガスタ
ービン排ガスG2 が、廃熱ボイラ3に供給される。
Then, a part of the exhaust gas G 1 discharged from the gas turbine 1 and a part of the combustion gas G flow into the combustor 16 of the second system and apply heat to the regenerator 14. Then, for example, a low temperature exhaust gas G ′ of 150 ° C. is discharged to the outside of the system through the communication pipe 20 and the 4-way valve 18. On the other hand, when the combustor 16 of the second system operates, the four-way valve 18 is switched, and the natural gas F 1 supplied to the combustion burner 15 passes through the air pipe 17, the four-way valve 18 and the communication pipe 20. Combustion air A that is heated to a high temperature, for example, 800 ° C. in the heat storage unit 14 that has flown into the combustor 16 of the second system and has accumulated the gas turbine exhaust gas G 1 and the combustion gas G of the combustor 13 of the first system. Mix and burn. The high-temperature combustion gas heats the exhaust gas G 1 discharged from the gas turbine 1 in the duct 9, and the heated gas turbine exhaust gas G 2 is supplied to the waste heat boiler 3.

【0012】そして、ガスタービン1から排出された排
出ガスG1 の一部及び上記燃焼ガスの一部は、第1系統
の燃焼器13内に流入し、その蓄熱器11を加熱した
後、連通管19、4方バルブ18を経て系外に排出され
る。以下、インターバル、例えば、20〜30秒間隔で
第1系統の燃焼器13と第2系統の燃焼器16との燃焼
が相互に切り換えられ、ハイサイクル蓄熱型燃焼バーナ
ー10によって加熱された排ガスG2 が廃熱ボイラ3に
供給される。
Then, a part of the exhaust gas G 1 discharged from the gas turbine 1 and a part of the combustion gas flow into the combustor 13 of the first system to heat the regenerator 11 and then communicate with each other. It is discharged to the outside of the system through the pipe 19 and the 4-way valve 18. After that, the combustion of the combustor 13 of the first system and the combustor 16 of the second system are switched to each other at intervals, for example, at intervals of 20 to 30 seconds, and the exhaust gas G 2 heated by the high-cycle regenerative combustion burner 10 Is supplied to the waste heat boiler 3.

【0013】従って、ガスタービン排ガスの温度が上昇
する分、廃熱ボイラ3の発生蒸気条件を大規模なボイラ
伝熱面を有することなく改善することができる。一方、
ガスタービン1の停止時に廃熱ボイラ入口ダンパー2を
閉じて排ガスを循環ダクト22を使って循環させ、ハイ
サイクル蓄熱型燃焼バーナー10にて高温雰囲気を作り
蒸気タービンの運転を継続させることもできる。
Therefore, since the temperature of the exhaust gas of the gas turbine rises, the steam condition of the waste heat boiler 3 can be improved without having a large-scale boiler heat transfer surface. on the other hand,
It is also possible to close the waste heat boiler inlet damper 2 when the gas turbine 1 is stopped and circulate the exhaust gas using the circulation duct 22, create a high temperature atmosphere in the high cycle heat storage type combustion burner 10 and continue the operation of the steam turbine.

【0014】なお、ガスタービン1の運転時に蒸気ター
ビンの出力アップを図る必要がある時は、ガス温度を一
定に維持するようにダンパー24の開度を調整しながら
排ガスを循環させることも可能である。上記ハイサイク
ル蓄熱型燃焼バーナー10を用いると、図3のように、
取り得る蒸気条件を改善することができると同時に、ボ
イラ排ガス温度も低くすることができ、従来、2段乃至
3段圧力式に圧力を多段にしなくても十分熱回収を達成
する事が可能となる。尚、ΔTは、排ガス温度と蒸気温
度が最も近接するピンチ点で同一とする。
When it is necessary to increase the output of the steam turbine during operation of the gas turbine 1, it is possible to circulate the exhaust gas while adjusting the opening degree of the damper 24 so as to keep the gas temperature constant. is there. When the high cycle heat storage type combustion burner 10 is used, as shown in FIG.
The steam conditions that can be taken can be improved, and at the same time, the boiler exhaust gas temperature can be lowered, and it is possible to achieve sufficient heat recovery without using multiple pressure levels in the conventional two- or three-stage pressure system. Become. Note that ΔT is the same at the pinch point where the exhaust gas temperature and the steam temperature are closest to each other.

【0015】[0015]

【実施例】図1に示す本発明の複合発電装置において、
蒸気タービンを100ata 、500℃(排気圧0.25
ata)、廃熱ボイラの入口ガス温度を1300℃(ハイサ
イクル蓄熱型燃焼バーナー付)に設定すると、サイクル
効率は35.1%、ボイラ効率78 .2%となり、蒸気
タービンの発電効率は、27.4%になる。
EXAMPLE In the combined power generation apparatus of the present invention shown in FIG.
Steam turbine 100ata, 500 ℃ (Exhaust pressure 0.25
ata), if the inlet gas temperature of the waste heat boiler is set to 1300 ° C. (with a high cycle heat storage type combustion burner), the cycle efficiency is 35.1% and the boiler efficiency is 78. 2%, and the power generation efficiency of the steam turbine is 27.4%.

【0016】一方、ダクトバーナー使用の場合、即ち、
蒸気タービンを50ata 、450℃(排気圧0. 25at
a)、廃熱ボイラの入口ガス温度を800℃(ダクトバー
ナー付)に設定すると、サイクル効率は31.7%、ボ
イラ効率74.0%となり、蒸気タービンの発電効率
は、23.5%であった。
On the other hand, when using a duct burner, that is,
Steam turbine at 50ata, 450 ℃ (Exhaust pressure 0.25at
a), If the inlet gas temperature of the waste heat boiler is set to 800 ° C (with a duct burner), the cycle efficiency is 31.7%, the boiler efficiency is 74.0%, and the steam turbine power generation efficiency is 23.5%. there were.

【0017】[0017]

【発明の効果】上記のように、本発明に、発電用ガスタ
ービンと、該ガスタービンの排ガスを蒸気発生のエネル
ギー源にする廃熱ボイラと、該廃熱ボイラの発生蒸気を
発電に利用する蒸気タービンと、前記廃熱ボイラの上流
側に設置させたハイサイクル蓄熱型燃焼バーナーとから
構成されているので、複合発電装置を大幅に改造又は設
計変更することなく、蒸気タービンの発電効率をアップ
させることができる。
As described above, according to the present invention, a gas turbine for power generation, a waste heat boiler using exhaust gas of the gas turbine as an energy source for steam generation, and steam generated by the waste heat boiler are used for power generation. It consists of a steam turbine and a high-cycle heat storage type combustion burner installed on the upstream side of the waste heat boiler, so the power generation efficiency of the steam turbine can be improved without major modification or design change of the combined cycle power generator. Can be made.

【0018】また、本発明にあっては、循環ダクトを併
設し、廃熱ボイラの後流側から排ガスの一部をハイサイ
クル蓄熱型燃焼バーナーの上流側に戻して循環させるこ
とにより複合発電装置の効率を更に向上させることがで
きる。また、こうすることにより、ガスタービンを停止
させた時も蒸気タービンによる発電を継続することがで
きる。
Further, in the present invention, a combined power generator is provided by additionally providing a circulation duct and returning a part of the exhaust gas from the downstream side of the waste heat boiler to the upstream side of the high cycle heat storage type combustion burner for circulation. The efficiency of can be further improved. Further, by doing so, the power generation by the steam turbine can be continued even when the gas turbine is stopped.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る複合発電装置の概略図である。FIG. 1 is a schematic view of a combined power generation device according to the present invention.

【図2】本発明に係る複合発電装置の要部拡大詳細図で
ある。
FIG. 2 is an enlarged detailed view of a main part of the combined power generation device according to the present invention.

【図3】廃熱ボイラ熱流線図である。FIG. 3 is a heat flow diagram of a waste heat boiler.

【符号の説明】[Explanation of symbols]

1 ガスタービン 3 廃熱ボイラ 10 ハイサイクルの蓄熱型燃焼バーナー 1 Gas turbine 3 Waste heat boiler 10 High-cycle heat storage type combustion burner

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 良一 神奈川県横浜市鶴見区尻手2丁目1番53号 日本ファーネス工業株式会社内 (72)発明者 保田 力 神奈川県横浜市鶴見区尻手2丁目1番53号 日本ファーネス工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ryoichi Tanaka 2-53-1, Shirute, Tsurumi-ku, Yokohama-shi, Kanagawa Japan Furnace Industry Co., Ltd. No. 53 within Japan Furnace Industry Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 発電用ガスタービンと、該ガスタービン
の排出ガスを蒸気発生のエネルギー源にする廃熱ボイラ
と、該廃熱ボイラの発生蒸気を発電に利用する蒸気ター
ビンと、前記廃熱ボイラの上流側に設置されたハイサイ
クル蓄熱型燃焼バーナーとからなる複合発電装置。
1. A gas turbine for power generation, a waste heat boiler that uses exhaust gas of the gas turbine as an energy source for steam generation, a steam turbine that uses steam generated by the waste heat boiler for power generation, and the waste heat boiler. Combined genset consisting of a high-cycle heat storage type combustion burner installed on the upstream side of the
【請求項2】 廃熱ボイラに、該廃熱ボイラから排出さ
れる排ガスの一部をハイサイクル蓄熱型燃焼バーナーを
越えて、その上流側に戻すダクトを併設させた請求項1
記載の複合発電装置。
2. The waste heat boiler is provided with a duct for returning a part of the exhaust gas discharged from the waste heat boiler to the upstream side of the high cycle heat storage type combustion burner.
The combined power generator described.
【請求項3】 ハイサイクル蓄熱型燃焼バーナーを、蓄
熱器及び燃焼バーナーを有する第1,第2の2系統の燃
焼器と、第1,第2の2系統の燃焼器に燃焼用空気を供
給する空気配管と、該空気配管の端部に設けた4方バル
ブと、該4方バルブと前記第1,第2の2系統の燃焼器
に夫々連通する連通管から構成し、且つ、前記第1系統
の燃焼器と第2系統の燃焼器とが互いに対向するように
廃熱ボイラの入口ダクトに設けた請求項1又は2記載の
複合発電装置。
3. A high-cycle heat storage type combustion burner, wherein combustion air is supplied to a first and second two-system combustor having a heat storage unit and a combustion burner, and a first and second two-system combustor. The air pipe, a four-way valve provided at the end of the air pipe, and a communication pipe communicating with the four-way valve and the combustors of the first and second systems, respectively, and The combined power generator according to claim 1, wherein the combustor of one system and the combustor of the second system are provided in the inlet duct of the waste heat boiler so as to face each other.
JP8098658A 1996-04-19 1996-04-19 Composite power generator Withdrawn JPH09287418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8098658A JPH09287418A (en) 1996-04-19 1996-04-19 Composite power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8098658A JPH09287418A (en) 1996-04-19 1996-04-19 Composite power generator

Publications (1)

Publication Number Publication Date
JPH09287418A true JPH09287418A (en) 1997-11-04

Family

ID=14225622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8098658A Withdrawn JPH09287418A (en) 1996-04-19 1996-04-19 Composite power generator

Country Status (1)

Country Link
JP (1) JPH09287418A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1344977A1 (en) * 2002-03-12 2003-09-17 L'AIR LIQUIDE, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Method of operating a heat recovery boiler
KR100845270B1 (en) * 2007-04-17 2008-07-09 주식회사 포스코 Auxiliary combustion system of gas turbine combined power plant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1344977A1 (en) * 2002-03-12 2003-09-17 L'AIR LIQUIDE, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Method of operating a heat recovery boiler
FR2837263A1 (en) * 2002-03-12 2003-09-19 Air Liquide PROCESS FOR IMPLEMENTATION OF A HEAT RECOVERY BOILER
US6820432B2 (en) 2002-03-12 2004-11-23 L'air Liquide, S.A. Method of operating a heat recovery boiler
KR100845270B1 (en) * 2007-04-17 2008-07-09 주식회사 포스코 Auxiliary combustion system of gas turbine combined power plant

Similar Documents

Publication Publication Date Title
JPH10205355A (en) Combustion gas turbine device and method for operating it
JPH02286835A (en) Power plant
JP2565437B2 (en) Gas turbine device equipped with tube nest combustion type combustor
JP3526026B2 (en) Waste heat recovery method for gas turbine power generation system
JP2000054855A (en) External heating type gas turbine
JPH09287418A (en) Composite power generator
JPH06212910A (en) Electric power generating plant
JP2006266085A (en) Regenerative cycle type gas turbine power generation system
JP3137147B2 (en) Control method for turbine compressor device for fuel cell facility
JPH09137704A (en) Steam turbine power generating installation
JP6847682B2 (en) How to operate a waste power plant and a waste power plant
JP2006266086A (en) Regenerative cycle type gas turbine power generation system
RU2124134C1 (en) Combination steam-gas power plant and method of its operation
JP2004308949A (en) Waste heat recovery system
JP4119851B2 (en) Cogeneration system
CN220541063U (en) Quick response boiler for thermal power peak regulation
CN113587133B (en) Dual-function boiler and method of coal-fired magnetic fluid S-CO2 combined cycle power generation system
JP2019065786A (en) Air gas turbine device in reverse brayton cycle, and control method therefor
JP2001090510A (en) Power generating system having external heating type micro gas turbine
JPH0693810A (en) Combined power generating system
JPH0586900A (en) Gas turbine cogeneration system
JP2585328B2 (en) Operating method of combined plant and apparatus therefor
JPS6128726A (en) Power generating method by exclusively b-gas firing gas turbine
JPH1037802A (en) Heat recovery method for exhaust gas of prime mover
RU98102090A (en) COMBINED STEAM-GAS ENERGY INSTALLATION AND METHOD OF ITS OPERATION

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030805