JPH09286659A - Ceramic diaphragm and its manufacture - Google Patents

Ceramic diaphragm and its manufacture

Info

Publication number
JPH09286659A
JPH09286659A JP8127831A JP12783196A JPH09286659A JP H09286659 A JPH09286659 A JP H09286659A JP 8127831 A JP8127831 A JP 8127831A JP 12783196 A JP12783196 A JP 12783196A JP H09286659 A JPH09286659 A JP H09286659A
Authority
JP
Japan
Prior art keywords
diaphragm
ceramic
thin plate
cross
ceramic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8127831A
Other languages
Japanese (ja)
Inventor
Hironobu Ishikawa
敬展 石川
Tetsuji Yogo
哲爾 余語
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP8127831A priority Critical patent/JPH09286659A/en
Publication of JPH09286659A publication Critical patent/JPH09286659A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Reciprocating Pumps (AREA)
  • Diaphragms And Bellows (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the diaphragm capable of surely showing a large amount of deflection although it is made of a ceramic material and also to provide an appropriate manufacture of the diaphragm. SOLUTION: This diaphragm 1 has a <=0.75mm thickness and an almost concentric-circular pattern in the plan view and also, the cross section that passes through the center 2 of the diaphragm 1 and is perpendicular to the diaphragm plane, has a wavy shape of a prescribed pitch P and a prescribed amplitude S. In this manufacture, a fired almost circular ceramic thin sheet having a <=0.75mm thickness is interposed between the forming surfaces of a pair of forming molds each provided with an almost concentric-circular forming surface nearly corresponding to the both surfaces of the objective ceramic diaphragm 1 and subjected to superplastic deformation by pressing the ceramic thin sheet at a temp. within the region in which the ceramic thin film shows a superplastic phenomenon, to form the cross section of the ceramic thin sheet into a wavy shape.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、セラミック製ダイ
アフラムに関し、詳しくは、圧力センサー素子やダイア
フラムポンプ等に使用されるセラミック製ダイアフラム
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic diaphragm, and more particularly to a ceramic diaphragm used for a pressure sensor element, a diaphragm pump and the like.

【0002】[0002]

【従来の技術】この種のダイアフラムのうち、腐食性の
流体に使用されるものには、ステンレス製やタンタル合
金製等のものが使用される。しかし、ステンレス製のも
のは安価であるが耐蝕性が必ずしも十分でなく、また、
タンタル合金は耐蝕性に極めて優れるが高価である。こ
うした中、耐蝕性に優れ、かつタンタル合金に比べると
比較的廉価なセラミック製ダイアフラムが一部で実用化
されている。
2. Description of the Related Art Among diaphragms of this type, those used for corrosive fluids include those made of stainless steel or tantalum alloy. However, stainless steel is cheap, but its corrosion resistance is not always sufficient.
Tantalum alloy has excellent corrosion resistance, but is expensive. Under these circumstances, some ceramic diaphragms, which have excellent corrosion resistance and are relatively inexpensive as compared with tantalum alloys, have been put into practical use.

【0003】[0003]

【発明が解決しようとする課題】しかし、セラミックは
金属よりヤング率が大きく、圧力に対する撓み変形が少
ないため、金属製ダイアフラムに比較すると圧力応答性
に劣る。そして、この撓み変形量を大きく確保するため
には、ダイアフラム自体の肉厚を薄くするか、その径を
大きくしないといけない。一方、このように肉厚を薄く
すれば、耐圧性能の低下を招く。また径を大きくすれ
ば、圧力センサー等のダイアフラムが装着される装置そ
のものの大型化を招いてしまう。
However, since ceramic has a larger Young's modulus than metal and less flexural deformation with respect to pressure, it is inferior in pressure responsiveness to a metal diaphragm. Then, in order to secure a large amount of this flexural deformation, it is necessary to reduce the thickness of the diaphragm itself or increase its diameter. On the other hand, if the wall thickness is reduced as described above, the pressure resistance performance is deteriorated. Further, if the diameter is increased, the size of the device itself to which the diaphragm such as the pressure sensor is attached is increased.

【0004】本発明は、このような点に鑑みて案出した
ものであって、その目的とするところは、セラミック製
ダイアフラムでありながら、撓み変形量を大きく確保で
きるダイアフラム及びその好適な製法を提供することに
ある。
The present invention has been devised in view of the above point, and an object thereof is to provide a diaphragm which is a ceramic diaphragm but can secure a large amount of flexural deformation, and a suitable manufacturing method thereof. To provide.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、本発明に係るセラミック製ダイアフラムは、平面
視、略同心円形状を呈すると共にその中心を通りかつ面
に垂直な断面が波形をなすように形成されていることに
ある。略同心円形状を呈すると共にその中心を通りかつ
面に垂直な断面が波形をなすように形成されていると
は、平面視、略同心円形状の波紋形状に形成されている
ことを意味する。なお、「波形」には、円弧状、三角形
状若しくは台形状若しくはこれらに類する形状の繰り返
しからなる波形曲線又はそれに類する形が含まれる。ま
た、波形の振幅及びピッチは、それぞれ、中心から外側
に向かって一定でもよいし、漸増或いは漸減するもので
もよい。
In order to achieve the above object, a ceramic diaphragm according to the present invention has a substantially concentric circular shape in plan view, and a cross section passing through the center and perpendicular to the surface is corrugated. Is formed in the. Having a substantially concentric circular shape and having a corrugated cross section that passes through the center and is perpendicular to the plane means that it is formed in a substantially concentric circular ripple shape in plan view. The "waveform" includes a waveform curve formed by repeating a circular arc shape, a triangular shape, a trapezoidal shape, or a shape similar thereto, or a shape similar thereto. The amplitude and pitch of the waveform may be constant from the center toward the outside, or may be gradually increased or gradually decreased.

【0006】なお、セラミックはアルミナ(Al2 O3
)、ジルコニア(ZrO2 )、アルミナ−ジルコニア
複合体(Al2 O3 +ZrO2 )、窒化けい素(Si3
N4 )等が例示される。なお、前記ダイアフラムはその
肉厚が0.05〜0.75mmが適切である。セラミッ
クの材質にかかわらず、その製法として好適な次記する
超塑性変形による成形はこの範囲まで可能であるが、肉
厚が1.0mm以上となると困難となるためである。
The ceramic is alumina (Al2 O3
), Zirconia (ZrO2), alumina-zirconia composite (Al2 O3 + ZrO2), silicon nitride (Si3
N4) and the like are exemplified. The diaphragm is suitable to have a wall thickness of 0.05 to 0.75 mm. This is because regardless of the material of the ceramic, it is possible to form by the following superplastic deformation, which is suitable as a manufacturing method, up to this range, but it becomes difficult when the wall thickness is 1.0 mm or more.

【0007】本発明に係るセラミック製ダイアフラム
は、略同心円形状を呈すると共にその中心を通りかつ面
に垂直な断面が波形をなすように形成されていることか
ら、従来の平板(平坦な薄板)のものと比較し、撓み変
形量が大きくなることから、圧力応答特性に優れたセラ
ミック製ダイアフラムとなすことができる。
The ceramic diaphragm according to the present invention has a substantially concentric circular shape and is formed such that a cross section passing through the center and perpendicular to the surface has a corrugated shape. Since the amount of flexural deformation is larger than that of a ceramic diaphragm, a ceramic diaphragm having excellent pressure response characteristics can be obtained.

【0008】そして上記ダイアフラムは、すなわち略同
心円形状を呈すると共にその中心を通りかつ面に垂直な
断面が波形をなすように形成されたセラミック製ダイア
フラムの好適な製法は、焼成(焼結)された肉厚0.7
5mm以下の略円形のセラミック薄板を、前記セラミッ
ク製ダイアフラムの両面に略対応する略同心円形状の成
形面を各々備えた2つの成形型の該成形面の間に挟み込
み、そのセラミック薄板が超塑性現象を示す温度域で加
圧して超塑性変形させることにより前記断面を波形に成
形するとよい。
The preferred manufacturing method of the diaphragm is a ceramic diaphragm having a substantially concentric circular shape and a cross section passing through the center of the diaphragm and perpendicular to the surface is corrugated. The ceramic diaphragm is fired (sintered). Wall thickness 0.7
A substantially circular ceramic thin plate having a diameter of 5 mm or less is sandwiched between the molding surfaces of two molding dies each having substantially concentric molding surfaces substantially corresponding to both surfaces of the ceramic diaphragm, and the ceramic thin plate is a superplastic phenomenon. The cross section may be formed into a corrugated shape by applying pressure in a temperature range indicated by (1) to cause superplastic deformation.

【0009】この方法によれば、セラミック製ダイアフ
ラムの両面に略対応する略同心円形状の成形面を各々備
えた2つの成形型の該成形型面の間に挟み込み込まれた
セラミック薄板は、両成形型面相互間で加圧されること
によりその成形型面に倣った形すなわち成形型面に対応
する形状に超塑性変形される。ここに超塑性変形は、所
定の温度域で変形抵抗が低くなり、比較的低い応力でセ
ラミックが粒界に滑りを生じることにより破壊すること
なく巨大な伸びを生ずることをいう。焼成された略円形
のセラミック薄板は、肉厚0.75mm以下のものとす
るのが、ダイアフラムとしての撓みの確保及び超塑性変
形加工の点からも好ましい。
According to this method, the ceramic thin plate sandwiched between the molding die surfaces of the two molding dies each having substantially concentric molding surfaces substantially corresponding to both surfaces of the ceramic diaphragm is formed by both moldings. When pressure is applied between the mold surfaces, it is superplastically deformed into a shape following the molding surface, that is, a shape corresponding to the molding surface. Here, the superplastic deformation means that the deformation resistance becomes low in a predetermined temperature range, and the ceramic causes slippage at the grain boundary with a relatively low stress to cause a huge elongation without breaking. It is preferable that the fired substantially circular ceramic thin plate has a wall thickness of 0.75 mm or less from the viewpoint of ensuring the bending of the diaphragm and superplastic deformation.

【0010】超塑性変形を示す温度域は、破壊すること
なく塑性変形が可能となる温度でありセラミックにより
異なるので、それぞれに応じて設定すればよい。ただ
し、超塑性変形は結晶粒径が小さいほど高温における粒
界すべりが容易となる。また超塑性変形は、温度が低い
ほど成形加工速度が遅くなって実用的でない一方、焼結
温度では著しい粒成長があり、粒子が粗大化するので粒
界すべりによる超塑性が生じないため、焼結温度より低
温に保持する。
The temperature range in which superplastic deformation is exhibited is a temperature at which plastic deformation is possible without breaking and is different depending on the ceramic, so it may be set according to each. However, in superplastic deformation, the smaller the crystal grain size, the easier the grain boundary slip at high temperature. Further, superplastic deformation is not practical because the forming speed becomes slower as the temperature is lower, but there is significant grain growth at the sintering temperature and the grains become coarser, so superplasticity due to grain boundary slip does not occur, so that Keep below the setting temperature.

【0011】超塑性変形を示す温度域及び成形するのに
好ましい温度域は、各材質ごと異なるが次のようであ
る。すなわち、ジルコニアの場合には1000〜150
0℃程度であるが好ましくは1200〜1400℃程
度、アルミナの場合には1200〜1600℃程度であ
るが好ましくは1300〜1500℃程度、アルミナ−
ジルコニア複合体の場合には1200〜1500℃程度
であるが好ましくは1200〜1400℃程度、窒化け
い素の場合には1200〜1700℃程度であるが好ま
しくは1400〜1600℃程度である。ただし、本製
法が適用できるセラミックはこれらに限られず、超塑性
変形を示す温度域において応力を与えることで超塑性変
形を示す材料に適用できる。
The temperature range that exhibits superplastic deformation and the temperature range that is preferable for molding differ depending on each material, but are as follows. That is, in the case of zirconia, it is 1000 to 150.
It is about 0 ° C., preferably about 1200 to 1400 ° C., and in the case of alumina, about 1200 to 1600 ° C., but preferably about 1300 to 1500 ° C., alumina-
In the case of a zirconia composite, it is about 1200 to 1500 ° C., preferably about 1200 to 1400 ° C., and in the case of silicon nitride, it is about 1200 to 1700 ° C., but preferably about 1400 to 1600 ° C. However, the ceramics to which the present manufacturing method can be applied are not limited to these, and can be applied to a material exhibiting superplastic deformation by applying stress in a temperature range exhibiting superplastic deformation.

【0012】加圧力は、加圧時の温度、成形型面の平面
視における投影面積の大きさ、焼成されたセラミック薄
板の材質、肉厚及び波形の振幅やピッチによって異なる
が、5〜50kgf/cm2 程度とするのが好ましい。
なお、変形若しくは歪み速度は温度が高いほど大きくな
るが、焼成されたセラミック薄板の破壊ないし著しい強
度の低下を招かない範囲でそれぞれ設定すればよい。な
お、成形型は、成形されるセラミック製ダイアフラムの
両面に略対応する略同心円形状の成形面を各々備えてい
るものを用いるが、成形面における振幅は超塑性変形に
より得られるダイアフラムの振幅よりも5〜100%程
度大きめとし、その大きめとした分、成形型の加圧行程
を調整して所望とする振幅を得るようにするとよい。な
お成形型の材質は、セラミック(アルミナ、ジルコニ
ア、アルミナ−ジルコニア、窒化けい素など)等の耐熱
材料や耐熱合金などから、セラミック薄板と反応しない
よう、成形温度に応じて適切な材料を選択すればよい。
The pressing force varies depending on the temperature at the time of pressurization, the size of the projected area of the molding die surface in plan view, the material of the fired ceramic thin plate, the wall thickness and the amplitude and pitch of the waveform, but 5 to 50 kgf / It is preferably about cm 2 .
The deformation or strain rate increases as the temperature rises, but it may be set within a range that does not cause destruction of the fired ceramic thin plate or a significant decrease in strength. As the mold, a mold having substantially concentric molding surfaces substantially corresponding to both surfaces of the ceramic diaphragm to be molded is used, but the amplitude on the molding surface is larger than the amplitude of the diaphragm obtained by superplastic deformation. It is advisable to increase the pressure by about 5 to 100%, and to adjust the pressurizing stroke of the molding die to obtain the desired amplitude. The material of the mold is selected from heat-resistant materials such as ceramics (alumina, zirconia, alumina-zirconia, silicon nitride, etc.) and heat-resistant alloys, etc. according to the molding temperature so as not to react with the ceramic thin plate. Good.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を図1
ないし図3を参照して詳細に説明する。図中、1は本例
のダイアフラムであって、所定の直径で、肉厚0.05
〜0.75mmをなすセラミック薄板(焼結体)からな
り、平面視、同心円形状を呈すると共に、その円の中心
2を通る面に垂直な断面が所定の半径Rをもつ断面波形
をなしている。この波形部3の振幅S及びピッチPは、
それぞれ、中心2から外側に向かって一定に設定されて
いる。なお、外周縁部4は平坦に形成されており、装置
への装着が容易とされている。この断面形状は、本形態
では円弧状の波形のものを例示する。ただし、この断面
形状は、図4に示したような略三角形状の波形13や図
5に示したような略台形の波形23状などとしてもよ
い。
FIG. 1 is a block diagram showing an embodiment of the present invention.
This will be described in detail with reference to FIG. In the figure, 1 is a diaphragm of this example, which has a predetermined diameter and a wall thickness of 0.05.
It is made of a ceramic thin plate (sintered body) with a diameter of up to 0.75 mm, has a concentric circular shape in plan view, and the cross section perpendicular to the plane passing through the center 2 of the circle has a corrugated cross section with a predetermined radius R . The amplitude S and the pitch P of the waveform portion 3 are
Each is set to be constant from the center 2 toward the outside. The outer peripheral edge portion 4 is formed to be flat, so that it can be easily attached to the device. In this embodiment, the cross-sectional shape is an arcuate waveform. However, the cross-sectional shape may be a substantially triangular waveform 13 as shown in FIG. 4 or a substantially trapezoidal waveform 23 as shown in FIG.

【0014】このようなダイアフラム1は、厚めのセラ
ミック成型体を焼成し、その後研削ないし研磨すること
により所望とする形状に加工することでも製造すること
ができる。また、未焼成のセラミック成形体の段階で、
略同心円形状を呈すると共にその中心2を通りかつ面に
垂直な断面が波形に形成さたダイアフラム形状とし、そ
の後、焼成することによっても製造できるが、次に、そ
の好適な製法を詳細に説明する。
Such a diaphragm 1 can also be manufactured by firing a thick ceramic molded body, and then grinding or polishing the ceramic molded body into a desired shape. Also, at the stage of unfired ceramic molded body,
It can be also manufactured by forming a diaphragm shape having a substantially concentric shape and having a corrugated cross section that passes through the center 2 and is perpendicular to the surface, and then fire it. Next, the preferred manufacturing method will be described in detail. .

【0015】まず、バインダー等の所定の添加剤を含む
ジルコニアセラミック原料粉体を混合した後、ドクター
ブレード法などにより、肉厚0.05〜0.75mm以
下の所定肉厚の円形のセラミックシートに成形し、脱脂
後、所定温度にて焼成し、セラミック薄板(平均粒径
0.5μm)を製造する。未焼結のセラミック薄板は、
セラミック粉末をシート成形で製造すればよいが、ここ
に薄板は平板である必要はかならずしもない。
First, a zirconia ceramic raw material powder containing a predetermined additive such as a binder is mixed, and then a circular ceramic sheet having a predetermined wall thickness of 0.05 to 0.75 mm is formed by a doctor blade method or the like. After molding, degreasing, and firing at a predetermined temperature, a ceramic thin plate (average particle size 0.5 μm) is manufactured. The unsintered ceramic sheet is
The ceramic powder may be produced by sheet molding, but it is not always necessary that the thin plate is a flat plate.

【0016】次に、このようにして、成形、焼成された
セラミック薄板11を、図6、7に示したような、所望
とするセラミック製ダイアフラム1の両面5、6に略対
応する略同心円形状の成形面101a,102aを各々
備えた2つの成形型101,102の該成形面101
a,102aの間に挟み込む。すなわち、セラミック薄
板11を、ダイアフラム1の下面5と同様の所定の同芯
円形状であって、その中心を通りかつ成形面101aに
垂直な断面が波形に形成されているセラミック製下型1
01の上に同芯状にしておき、このセラミック薄板11
の上に、ダイアフラムの上面6と同様の所定の同芯円形
状であって、その中心を通りかつ成形面102aに垂直
な断面が波形に形成されているセラミック製の上型10
2を重ねる形で配置する。ただし、本例での成形型10
1,102はアルミナセラミック製とされ、成形面10
1a,102aにおける波形のピッチはダイアフラム1
のそれと同じであるが、振幅はダイアフラム1の設定振
幅Sよりも50%程度大きめとされている。また、ダイ
アフラム1の波形をなす半径Rに対応する成形型面10
1a,102aの半径Raは、前記半径Rの100%程
度の大きさとされている。
Next, the ceramic thin plate 11 thus formed and fired is formed into a substantially concentric shape substantially corresponding to both surfaces 5 and 6 of the desired ceramic diaphragm 1 as shown in FIGS. Molding surfaces 101 of two molding dies 101 and 102 respectively having molding surfaces 101a and 102a of
It is sandwiched between a and 102a. That is, the ceramic thin plate 11 has a predetermined concentric circular shape similar to the lower surface 5 of the diaphragm 1 and has a corrugated cross section that passes through the center and is perpendicular to the molding surface 101a.
This is a ceramic thin plate 11
A ceramic upper die 10 having a predetermined concentric circular shape similar to the upper surface 6 of the diaphragm and having a corrugated cross section passing through the center and perpendicular to the molding surface 102a.
Arrange the two in a stack. However, the molding die 10 in this example
1, 102 are made of alumina ceramic, and the molding surface 10
The pitch of the waveform in 1a and 102a is the diaphragm 1
However, the amplitude is about 50% larger than the set amplitude S of the diaphragm 1. In addition, the molding die surface 10 corresponding to the radius R of the diaphragm 1 forming the waveform.
The radius Ra of 1a and 102a is about 100% of the radius R.

【0017】しかして、このように配置されたセラミッ
ク薄板11を、超塑性変形を示す温度域であって本例で
は、1200〜1300℃程度に保持し、その下で、所
定の歪み速度で所定時間、成形型101,102を上下
に加圧してセラミック薄板11を所定振幅Sとなるまで
超塑性変形させる。かくして、焼成されたセラミック薄
板11は、超塑性変形により所定形状に成形され、所望
とするセラミック製ダイアフラム1となる。
Thus, the ceramic thin plate 11 arranged in this manner is maintained at a temperature range showing superplastic deformation in this example, about 1200 to 1300 ° C., and below that, a predetermined strain rate is set. For a period of time, the molding dies 101 and 102 are pressed up and down to cause the ceramic thin plate 11 to undergo superplastic deformation until a predetermined amplitude S is reached. Thus, the fired ceramic thin plate 11 is formed into a predetermined shape by superplastic deformation, and becomes the desired ceramic diaphragm 1.

【0018】このようにして得られたダイアフラム1
は、加工効率の悪い切削や研磨工程を要しないのでコス
トが低くできる。また研磨取代もないので材料歩留まり
も高い。さらに、切削や研磨加工による場合には、肉厚
が1mm以下のように薄い板では困難さがあるが、超塑
性変形による本製法においてはむしろ薄いものほど成形
し易い。また、焼成後のセラミック薄板11を成形する
ものであるから、焼成と同時に加工する場合のような大
きな収縮もなく、寸法精度の低下を招くことも少ない。
Diaphragm 1 thus obtained
Can reduce the cost because it does not require a cutting or polishing step with poor processing efficiency. Moreover, since there is no polishing stock removal, the material yield is high. Further, in the case of cutting or polishing, it is difficult to use a thin plate having a wall thickness of 1 mm or less, but in the present manufacturing method by superplastic deformation, a thinner plate is easier to form. Further, since the ceramic thin plate 11 is formed after firing, there is no large shrinkage as in the case of processing at the same time as firing, and the dimensional accuracy is less likely to be reduced.

【0019】また、成形型101,102は前記のよう
なセラミック製のものを用いるとよい。鉄製のものでは
使い捨てとなることや、セラミックとの熱膨張率に大き
な違いがあるがセラミックは耐熱性が高く、耐久性に優
れることから、使用回数を多くできるので、型のコスト
の低減が図られる。また、鉄製のものと異なり熱膨張率
がセラミック薄板11と近似するためである。
Further, the molds 101 and 102 are preferably made of the above-mentioned ceramics. Although iron is disposable, it has a large difference in thermal expansion coefficient from ceramics, but ceramics have high heat resistance and excellent durability, so they can be used many times, reducing the cost of molds. To be This is also because, unlike those made of iron, the coefficient of thermal expansion approximates that of the ceramic thin plate 11.

【0020】[0020]

【実施例】上記製法において、所定の添加剤を含みジル
コニア粉体を主成分とする原料粉体をシート状に形成
し、これを焼成して直径60mm、肉厚0.1mmのセ
ラミック薄板(焼結体)11を用意し、このものを同心
円形状で断面波形の成形面を持つ図6の成形型101,
102に挟み込み、1300〜1600℃、加圧力10
kg/cm2 の条件下で3時間、加圧して平面視、ほぼ
同心円形状を呈すると共にその中心を通りかつ面に垂直
な断面が波形曲線をなす形成されたセラミック製ダイア
フラムを製造した。なお、形成されたダイアフラム1の
波形は、ピッチ(P)が11mm、絞り深さである振幅
(S)は1.4mm、図3中の波形の山又は谷の半径R
は6mmである。
EXAMPLE In the above manufacturing method, a raw material powder containing a predetermined additive and containing zirconia powder as a main component is formed into a sheet shape, which is fired to obtain a ceramic thin plate having a diameter of 60 mm and a wall thickness of 0.1 mm. 6) having a concentric circular molding surface having a corrugated cross-section.
Sandwiched between 102, 1300 to 1600 ℃, pressure 10
By applying pressure for 3 hours under the condition of kg / cm 2 , a ceramic diaphragm having a substantially concentric circular shape in plan view and having a wavy curved section passing through its center and perpendicular to the surface was manufactured. The waveform of the formed diaphragm 1 has a pitch (P) of 11 mm, an amplitude (S) which is a drawing depth of 1.4 mm, and a radius R of a peak or a valley of the waveform in FIG.
Is 6 mm.

【0021】そして、こうして製造されたダイアフラム
1について、図8に示したステンレス製ケース51内
に、周縁4を固定して装着し、所定の差圧(P1−P
2)を付加して各差圧力における最大撓み量(ダイアフ
ラム中心の撓み)を非接触式レーザー変位計によって測
定した。結果は、表1に示した通りである。なお、比較
例は、図示はしないが同一肉厚の平坦なセラミック製ダ
イアフラムである。
With respect to the diaphragm 1 thus manufactured, the peripheral edge 4 is fixedly mounted in the stainless steel case 51 shown in FIG. 8, and a predetermined differential pressure (P1-P
2) was added and the maximum deflection amount (deflection at the center of the diaphragm) at each differential pressure was measured by a non-contact laser displacement meter. The results are as shown in Table 1. Although not shown, the comparative example is a flat ceramic diaphragm having the same thickness.

【表1】 [Table 1]

【0022】この表1から明らかなように20kPa〜
100kPaにおいては、本例のダイアフラム1は、比
較例に比べ、略2倍の最大撓み量が確保されており、圧
力応答性に著しく優れていることが分かる。
As is clear from Table 1, 20 kPa-
It can be seen that at 100 kPa, the diaphragm 1 of the present example has a maximum bending amount that is about twice as large as that of the comparative example, and is extremely excellent in pressure responsiveness.

【0023】次に、断面波形の形状については、前例同
様、ピッチ(P)を11mm、振幅(S)を1.4m
m、半径Rを6mmとする一方、肉厚を0.05mm、
0.5mm、及び0.75mmとしたセラミック製ダイ
アフラムを前例と同様にしてつくり、それぞれ100k
Paの圧力をかけた場合の最大撓み量を確認した。結果
は表2に示した通りである。なお、セラミック薄板(焼
結体)を超塑性する場合の圧力は、肉厚が0.05mm
の場合は0.1mmの場合と同様、10kgf/c
2 、肉厚が0.5mmの場合は、70kgf/c
2 、そして肉厚が0.75mmの場合は、100kg
f/cm2 であった。比較例は、平坦なセラミック製ダ
イアフラムである。因みに、肉厚が1.0mmの場合は
超塑性変形途中で破壊して製作できなかった。
Next, regarding the shape of the cross-sectional waveform, the pitch (P) is 11 mm and the amplitude (S) is 1.4 m, as in the previous example.
m, radius R is 6 mm, while wall thickness is 0.05 mm,
Ceramic diaphragms of 0.5 mm and 0.75 mm were made in the same manner as the previous example, and each was 100 k
The maximum amount of deflection when a pressure of Pa was applied was confirmed. The results are as shown in Table 2. In addition, the pressure when superplasticizing a ceramic thin plate (sintered body) has a wall thickness of 0.05 mm.
In case of 0.1 mm, 10 kgf / c
m 2 and wall thickness of 0.5 mm, 70 kgf / c
m 2 and 100 kg when the wall thickness is 0.75 mm
f / cm 2 . The comparative example is a flat ceramic diaphragm. Incidentally, when the wall thickness was 1.0 mm, it could not be manufactured because it was destroyed during superplastic deformation.

【表2】 [Table 2]

【0024】この結果から明らかなように、実施例(肉
厚0.1〜0.75mm)では、比較例に比べていずれ
も2〜25倍の最大撓み量が確保されている。このよう
に、本例のダイアフラムにおいては、平坦なものに比べ
その圧力応答性に顕著な優位性がある。また、肉厚が
0.05mmの場合、実施例では3.7mmの最大撓み
が得られたが、比較例では加圧途中で破損してしまっ
た。このことは、とりもなおさず本発明のダイアフラム
の圧力応答性の良さを実証するものである。
As is clear from this result, in each of the examples (thickness 0.1 to 0.75 mm), the maximum amount of deflection that is 2 to 25 times that of the comparative example is secured. As described above, the diaphragm of this example has a remarkable superiority in the pressure responsiveness as compared with the flat diaphragm. Further, when the wall thickness was 0.05 mm, the maximum deflection of 3.7 mm was obtained in the example, but in the comparative example, it was broken during the pressurization. This proves the good pressure response of the diaphragm of the present invention.

【0025】さらに、セラミック製ダイアフラムの肉厚
が0.1mmのもので、ピッチを11mm一定とし、振
幅Sを前記の1.4mmから、0.44mm、1.1m
mと小さくした試料を作り、ステンレス製ケース51内
に装着して100kPaの差圧でその最大撓み量を比較
した。結果は、表3に示した通りである。
Further, the thickness of the ceramic diaphragm is 0.1 mm, the pitch is constant at 11 mm, and the amplitude S is 0.44 mm, 1.1 m from 1.4 mm mentioned above.
A sample having a smaller value of m was prepared, mounted in a stainless steel case 51, and the maximum deflection amount was compared with a differential pressure of 100 kPa. The results are as shown in Table 3.

【表3】 [Table 3]

【0026】この結果から、最大撓みは振幅が0.44
mm(振幅/ピッチの比が0.04)では振幅なしの比
較例に比べて15%の増大であるが、振幅が1.1(振
幅/ピッチが0.1)以上となると、振幅なしの比較例
に比べ最大80%以上撓むことがわかる。このことよ
り、振幅を大きくした方が圧力応答性に優れることが分
かる。
From this result, the maximum deflection has an amplitude of 0.44.
When mm (amplitude / pitch ratio is 0.04), the increase is 15% compared to the comparative example without amplitude, but when the amplitude is 1.1 (amplitude / pitch is 0.1) or more, there is no amplitude. It can be seen that the maximum bending is 80% or more as compared with the comparative example. From this, it can be seen that the larger the amplitude is, the better the pressure response is.

【0027】さらに、肉厚0.1mmのものについて、
振幅及びピッチを変えたダイアフラムをつくり、100
kPaの圧力を掛けた場合の撓みを確認した。結果は表
4に示した通りである。
Further, for the thickness of 0.1 mm,
Create a diaphragm with different amplitude and pitch, 100
Deflection was confirmed when a pressure of kPa was applied. The results are as shown in Table 4.

【表4】 [Table 4]

【0028】この表よりすると、試験した範囲では振幅
及びピッチともに大きめの方が、撓みやすい(応答性が
良い)ことが分かる。なお、本発明に係るセラミック製
ダイアフラムの肉厚、振幅、ピッチは、ダイアフラムの
用途等に応じて、適宜に設定すればよい。
From this table, it can be seen that the larger the amplitude and the larger the pitch in the tested range, the easier the bending (the better the response). The thickness, amplitude, and pitch of the ceramic diaphragm according to the present invention may be appropriately set according to the application of the diaphragm and the like.

【0029】[0029]

【発明の効果】本発明によれば、以上の説明から明らか
なように、耐蝕性に優れると共に撓み変形量を大きく確
保できる圧力応答性の高いセラミック製ダイアフラムと
なすことができる。また、上記製法によれば、加工効率
の悪い研削ないし研磨加工を要することなく、所望とす
る断面形状を持つセラミック製ダイアフラムを得ること
ができる。また研磨取代が不要となるから材料歩留まり
も高い。
As is apparent from the above description, according to the present invention, it is possible to provide a ceramic diaphragm having excellent corrosion resistance and high pressure responsiveness capable of ensuring a large amount of flexural deformation. Further, according to the above-mentioned manufacturing method, it is possible to obtain a ceramic diaphragm having a desired cross-sectional shape without requiring grinding or polishing which has poor processing efficiency. In addition, since a polishing stock removal is unnecessary, the material yield is high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るダイアフラムの実施形態を示す平
面概念図。
FIG. 1 is a conceptual plan view showing an embodiment of a diaphragm according to the present invention.

【図2】図1の中央縦断面図。FIG. 2 is a central longitudinal sectional view of FIG.

【図3】図2の部分拡大図。FIG. 3 is a partially enlarged view of FIG. 2;

【図4】本発明に係るダイアフラムの波形の別の実施形
態を示す部分拡大図。
FIG. 4 is a partially enlarged view showing another embodiment of the waveform of the diaphragm according to the present invention.

【図5】本発明に係るダイアフラムの波形の別の実施形
態を示す部分拡大図。
FIG. 5 is a partially enlarged view showing another embodiment of the waveform of the diaphragm according to the present invention.

【図6】本発明に係るダイアフラムを超塑性変形により
成形する方法を説明する図。
FIG. 6 is a diagram illustrating a method of forming the diaphragm according to the present invention by superplastic deformation.

【図7】図6の部分拡大図。7 is a partially enlarged view of FIG.

【図8】本発明に係るダイアフラムを装置に装着した状
態を説明する断面図。
FIG. 8 is a sectional view illustrating a state in which the diaphragm according to the present invention is attached to the device.

【符号の説明】[Explanation of symbols]

1 セラミック製ダイアフラム 2 中心 3 波形部 4 周縁 5,6 セラミック製ダイアフラムの面 11 超塑性変形前のセラミック薄板(焼結体) 101,102 成形型 101a,102a 成形面 S 振幅 P ピッチ 1 Ceramic Diaphragm 2 Center 3 Corrugated Part 4 Periphery 5,6 Ceramic Diaphragm Surface 11 Ceramic Thin Plate (Sintered Body) 101, 102 Mold before Superplastic Deformation 101, 102a Molding Surface S Amplitude P Pitch

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 平面視、略同心円形状を呈すると共にそ
の中心を通りかつ面に垂直な断面が波形をなすように形
成されていることを特徴とするセラミック製ダイアフラ
ム。
1. A ceramic diaphragm, which has a substantially concentric circular shape in plan view and is formed so that a cross section passing through the center thereof and perpendicular to the surface has a corrugated shape.
【請求項2】 肉厚が0.75mm以下の薄板であるこ
とを特徴とする請求項1記載のセラミック製ダイアフラ
ム。
2. The ceramic diaphragm according to claim 1, which is a thin plate having a wall thickness of 0.75 mm or less.
【請求項3】 平面視、略同心円形状を呈すると共にそ
の中心を通りかつ面に垂直な断面が波形をなすセラミッ
ク製ダイアフラムを製造する方法であって、焼成された
肉厚0.75mm以下の略円形のセラミック薄板を、前
記セラミック製ダイアフラムの両面に略対応する略同心
円形状の成形面を各々備えた2つの成形型の該成形面の
間に挟み込み、そのセラミック薄板が超塑性現象を示す
温度域で加圧して超塑性変形させることにより前記断面
を波形に成形することを特徴とするセラミック製ダイア
フラムの製造方法。
3. A method for producing a ceramic diaphragm which has a substantially concentric circular shape in plan view and has a corrugated cross section passing through the center and perpendicular to the surface, and which has a calcined wall thickness of 0.75 mm or less. A circular ceramic thin plate is sandwiched between the molding surfaces of two molding dies each having substantially concentric molding surfaces substantially corresponding to both surfaces of the ceramic diaphragm, and the ceramic thin plate exhibits a superplastic phenomenon in a temperature range. A method for manufacturing a ceramic diaphragm, characterized in that the cross-section is formed into a corrugated shape by pressurizing with pressure and superplastic deformation.
JP8127831A 1996-04-22 1996-04-22 Ceramic diaphragm and its manufacture Pending JPH09286659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8127831A JPH09286659A (en) 1996-04-22 1996-04-22 Ceramic diaphragm and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8127831A JPH09286659A (en) 1996-04-22 1996-04-22 Ceramic diaphragm and its manufacture

Publications (1)

Publication Number Publication Date
JPH09286659A true JPH09286659A (en) 1997-11-04

Family

ID=14969750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8127831A Pending JPH09286659A (en) 1996-04-22 1996-04-22 Ceramic diaphragm and its manufacture

Country Status (1)

Country Link
JP (1) JPH09286659A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022465A3 (en) * 1999-01-19 2000-12-27 LEWA Herbert Ott GmbH + Co. Hydraulically driven diaphragm pump
JP2003014569A (en) * 2001-06-28 2003-01-15 Kyocera Corp Package for pressure detector
JP2008050222A (en) * 2006-08-25 2008-03-06 Ngk Insulators Ltd Ceramic thin plate member
JP2009221901A (en) * 2008-03-14 2009-10-01 Toyota Central R&D Labs Inc Diaphragm for metering pump
JP2015004462A (en) * 2013-06-19 2015-01-08 日本特殊陶業株式会社 Glow plug with combustion pressure sensor
JP2016118188A (en) * 2014-12-24 2016-06-30 国立大学法人東北大学 Liquid feeding apparatus and liquid feeding system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022465A3 (en) * 1999-01-19 2000-12-27 LEWA Herbert Ott GmbH + Co. Hydraulically driven diaphragm pump
JP2003014569A (en) * 2001-06-28 2003-01-15 Kyocera Corp Package for pressure detector
JP2008050222A (en) * 2006-08-25 2008-03-06 Ngk Insulators Ltd Ceramic thin plate member
JP2009221901A (en) * 2008-03-14 2009-10-01 Toyota Central R&D Labs Inc Diaphragm for metering pump
JP2015004462A (en) * 2013-06-19 2015-01-08 日本特殊陶業株式会社 Glow plug with combustion pressure sensor
JP2016118188A (en) * 2014-12-24 2016-06-30 国立大学法人東北大学 Liquid feeding apparatus and liquid feeding system

Similar Documents

Publication Publication Date Title
JP3624225B2 (en) Silicon nitride or sialon ceramics and molding method thereof
EP0701112B1 (en) Method of producing ceramic diaphragm structure having convex diaphragm portion and diaphragm structure produced by the same method.
JP3830382B2 (en) Ceramic sintered body and method for producing the same
JPH09286659A (en) Ceramic diaphragm and its manufacture
JPH0212918B2 (en)
EP0419151A2 (en) Sintered ceramic composite body and method of manufacturing same
JPS6252191A (en) Plasticity process of ceramic sintered body
JP5038018B2 (en) Method for manufacturing a reflective optical element
KR102395407B1 (en) Sialon sintered body, method for producing the same, composite substrate, and electronic device
JP2592223B2 (en) Alumina ceramics for bonding capillaries and method for producing the same
WO2018070374A1 (en) Middle member
JPS62138370A (en) Method of joining ceramic bodies
JP3366158B2 (en) Ceramic diaphragm structure and method of manufacturing the same
JP2764177B2 (en) Manufacturing method of wear-resistant ceramics
JP3853438B2 (en) Method for producing sintered silicon nitride
JPH11268920A (en) Forming mold for forming optical element and its production
JPH08187714A (en) Manufacture of long cylindrical or columnar ceramics
JP3001827B2 (en) Method for manufacturing ceramic molded body
JP2005126270A (en) Micromachined component made of polycrystalline material and its manufacturing method
JP3440013B2 (en) blade
WO2018221379A1 (en) Support substrate
JPH0425838B2 (en)
JP2003133613A (en) Ceramic diaphragm structural body and manufacturing method thereof
JP2826672B2 (en) Ceramic joining method
JPS62212257A (en) Manufacture of ceramic seal impression

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041019