JP2826672B2 - Ceramic joining method - Google Patents

Ceramic joining method

Info

Publication number
JP2826672B2
JP2826672B2 JP34171889A JP34171889A JP2826672B2 JP 2826672 B2 JP2826672 B2 JP 2826672B2 JP 34171889 A JP34171889 A JP 34171889A JP 34171889 A JP34171889 A JP 34171889A JP 2826672 B2 JP2826672 B2 JP 2826672B2
Authority
JP
Japan
Prior art keywords
joining
ceramics
less
bonding
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34171889A
Other languages
Japanese (ja)
Other versions
JPH03199174A (en
Inventor
史博 若井
泰治 児玉
永野  孝幸
英純 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Suzuki Motor Corp
Original Assignee
Agency of Industrial Science and Technology
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Suzuki Motor Corp filed Critical Agency of Industrial Science and Technology
Priority to JP34171889A priority Critical patent/JP2826672B2/en
Publication of JPH03199174A publication Critical patent/JPH03199174A/en
Application granted granted Critical
Publication of JP2826672B2 publication Critical patent/JP2826672B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 a. 産業上の利用分野 本発明は、セラミックスの接合方法に関し、特にムラ
イトセラミックス同志の接合方法に関する。
The present invention relates to a method for joining ceramics, and more particularly, to a method for joining mullite ceramics.

b. 従来の技術 ムライトセラミックスは、熱膨張率が低いため、熱衝
撃に強く、また耐酸化性にも優れていることから、炉心
管、理化学用製品等に利用されている。
b. Conventional technology Mullite ceramics have low thermal expansion coefficient, are resistant to thermal shock, and have excellent oxidation resistance.

また、ジルコニアとの複合セラミックスは、熱膨張係
数がシリコンと近いことから、IC基板材料への応用が期
待され、さらに高靭性、高強度のため精密機械部品、高
温構造部品等に利用されている。
In addition, composite ceramics with zirconia are expected to be applied to IC substrate materials because their thermal expansion coefficient is close to that of silicon, and are used for precision mechanical parts and high-temperature structural parts due to their high toughness and high strength. .

一方、近年、粉末調整技術の進歩により、高純度、高
強度のムライトセラミックスが製造されるようになった
ため、その特性を生かして高温試験治具等にも使用され
るようになり、高温材料として今後、期待される材料で
ある。
On the other hand, in recent years, with the advancement of powder preparation technology, high-purity, high-strength mullite ceramics have been manufactured, and by taking advantage of their characteristics, they have also been used in high-temperature test jigs and the like. It is expected material in the future.

このムライトセラミックス同志の接合は、通常、拡散
接合による固相接合によりおこなわれている。
The joining of the mullite ceramics is usually performed by solid-phase joining by diffusion joining.

c. 発明が解決しようとする課題 ムライトセラミックス同志の拡散接合によって、製品
の大型化や、複雑な形状の部材を製作することがおこな
われるが、この場合、接合面を介して存在する原子間の
距離に十分な引力が働くようにするため、この格子定数
のオーダーにまで接合面を接近させる必要がある。その
ため、従来の技術では、接合面における接触面積を大き
くするため、平滑な接合面と、大きな圧力を必要とし、
したがって迅速な接合がおこなえないという問題点があ
った。
c. Problems to be Solved by the Invention The diffusion bonding of mullite ceramics leads to the enlargement of products and the production of members with complicated shapes. In order for a sufficient attractive force to act on the distance, it is necessary to bring the bonding surface close to the order of this lattice constant. Therefore, in the conventional technology, in order to increase the contact area on the joint surface, a smooth joint surface and a large pressure are required,
Therefore, there was a problem that quick joining could not be performed.

本発明は前記事情に鑑みてなされたもので、ムライト
セラミックスがある温度域で容易に塑性変形することに
着目し、それを利用して接合面での接触面積を増大させ
ながら拡散により接合することによって前記課題を解消
したセラミックスの接合方法を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and focuses on the fact that mullite ceramics are easily plastically deformed in a certain temperature range, and using this to increase the contact area on the joining surface and join by diffusion. Accordingly, it is an object of the present invention to provide a method for joining ceramics which solves the above-mentioned problem.

d. 課題を解決するための手段 前記目的に添い、本発明は、 ムライトセラミックス同志の接合条件を、 接合温度:1000〜1700℃、 結晶粒径:3μm以下、 変形速度:10-3/sec以下、 変形応力:15kg/mm2以下、 として、拡散により接合することによって前記課題を解
決した。
d. Means for Solving the Problems In accordance with the above objects, the present invention provides a method for joining mullite ceramics under the following conditions: joining temperature: 1000 to 1700 ° C., crystal grain size: 3 μm or less, deformation rate: 10 −3 / sec or less The above problem was solved by bonding by diffusion with a deformation stress of 15 kg / mm 2 or less.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明はムライトセラミックスが1000℃以上の温度に
おいて容易に塑性変形することを利用し、塑性変形させ
て接合面での接触面積を増大させ、拡散によりムライト
セラミックス同志を接合するものである。
The present invention utilizes the fact that mullite ceramics are easily plastically deformed at a temperature of 1000 ° C. or more, increases the contact area at the joining surface by plastically deforming, and joins mullite ceramics by diffusion.

本発明が対象とするムライトセラミックスの接合部材
の結晶粒径は、3μm以下であることが必要であり、さ
らに2μm以下であればより好ましい。結晶粒径が3μ
mを超える場合は、1000℃以上の温度でも容易に塑性変
形せず、加圧処理中に接合部材にクラックが生ずる。
The crystal grain size of the mullite ceramic joining member targeted by the present invention needs to be 3 μm or less, and more preferably 2 μm or less. 3μ grain size
If it exceeds m, plastic deformation will not easily occur even at a temperature of 1000 ° C. or more, and cracks will occur in the joining member during the pressure treatment.

接合温度は1000℃以上が必要で、1000℃未満の場合
は、所定の結晶粒径内であっても容易に塑性変形しな
い。また接合温度が1700℃を超えると、結晶粒が著しく
成長してしまい、好ましくない。従って接合温度は1000
〜1700℃の範囲でおこなう。
The joining temperature must be 1000 ° C. or higher. If the joining temperature is lower than 1000 ° C., plastic deformation does not easily occur even within a predetermined crystal grain size. On the other hand, if the bonding temperature exceeds 1700 ° C., crystal grains will grow remarkably, which is not preferable. Therefore, the joining temperature is 1000
Perform in the range of ~ 1700 ° C.

加圧時の変形速度は10-3/sec以下とする。これにより
変形速度が速いと結晶粒界にキャビティの生成と成長が
著しくなり、接合後の部材の強度が低下する。
The deformation speed during pressurization is 10 −3 / sec or less. As a result, when the deformation rate is high, the generation and growth of cavities at the crystal grain boundaries become remarkable, and the strength of the member after joining is reduced.

変形応力は15kg/mm2以下とする。これより大きいと加
圧中に接合部材にクラックが発生するからである。
The deformation stress is 15 kg / mm 2 or less. If it is larger than this, cracks occur in the joining member during pressurization.

e.実施例 まず、ゾルーゲル法により化学量論組成で製造された
高純度ムライトセラミックス(3Al2O3・2SiO2)の微粉
末を、冷間静水圧プレスによって加圧成形し、これを大
気中で温度1650℃で2時間かけて焼成した。これをダイ
ヤモンド砥石を用いて切断・研削して材寸15×25×20mm
(第2図参照)の焼結体とした。この焼結体の結晶粒径
は平均約0.8μmであった。
e. Example First, a fine powder of high-purity mullite ceramics (3Al 2 O 3 .2SiO 2 ) manufactured with a stoichiometric composition by a sol-gel method was pressed and formed by a cold isostatic press, and this was pressed in air. At 1650 ° C. for 2 hours. This is cut and ground using a diamond whetstone, and the material size is 15 × 25 × 20mm
(See FIG. 2). The crystal grain size of this sintered body was about 0.8 μm on average.

次に第1図に示すように、このムライトセラミックス
焼結体1,1を2つに重ね、この上下にSiC板2,2を介設し
てSiCロッド3,3によって加圧処理した。接合条件は大気
中で接合温度1550℃、圧力12.5MPaとし、4mm変形させ
た。
Next, as shown in FIG. 1, the mullite ceramics sintered bodies 1 and 1 were stacked on top of each other, and pressure treatment was performed with SiC rods 3 and 3 with upper and lower SiC plates 2 and 2 interposed therebetween. The joining conditions were a joining temperature of 1550 ° C. and a pressure of 12.5 MPa in the atmosphere, and a deformation of 4 mm.

得られた接合体からダイヤモンド砥石による切断・研
削により、断面3×4mmの曲げ試験片を作成し、JIS R60
1に基づいて4点曲げ試験を室温で実施したところ約24k
g/mm2の接合強度がえられた。また、比較のため接合後
の母材の部分の強度を測定したところ、その曲げ強度は
約26kg/mm2であった。したがって接合強度は母材強度の
90%以上であり、優れた接合状態であることが確認でき
た。
A bending test piece having a cross section of 3 x 4 mm was prepared from the obtained joined body by cutting and grinding with a diamond whetstone.
Approximately 24k when a 4-point bending test was performed at room temperature based on 1.
A bonding strength of g / mm 2 was obtained. When the strength of the base material after bonding was measured for comparison, the bending strength was about 26 kg / mm 2 . Therefore, the joining strength is
It was 90% or more, and it could be confirmed that the bonding state was excellent.

f. 発明の効果 本発明の方法によれば、次のような効果がえられる。f. Effects of the Invention According to the method of the present invention, the following effects can be obtained.

ムライトセラミックスによる製品を容易に大形化、
あるいは複雑形状化することが可能となることから、そ
の応用範囲を大幅に拡大することができ、工業的価値は
極めて大きい。
Mullite ceramic products can be easily enlarged
Alternatively, since it is possible to form a complicated shape, the range of application can be greatly expanded, and the industrial value is extremely large.

塑性変形により接触面積が急速に増加するため、従
来の拡散接合に比較して迅速に接合でき、接合面の表面
粗さの影響も少ない。しかも、低い圧力で容易に変形す
るため、加圧力も小さくてすむ。
Since the contact area increases rapidly due to plastic deformation, bonding can be performed more quickly than in conventional diffusion bonding, and the influence of the surface roughness of the bonding surface is small. In addition, since it is easily deformed at a low pressure, the pressing force can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係るセラミックスの接合方法の要領を
説明する図、第2図は接合前のセラミックスの材寸を示
す斜視図である。 1……セラミックス、2……SiC板、 3……SiCロッド。
FIG. 1 is a view for explaining the outline of a method for joining ceramics according to the present invention, and FIG. 2 is a perspective view showing the dimensions of ceramics before joining. 1. Ceramics 2. SiC plate 3. SiC rod.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 英純 静岡県浜松市佐鳴台5丁目28―4 審査官 大工原 大二 (56)参考文献 特開 平1−145382(JP,A) (58)調査した分野(Int.Cl.6,DB名) C04B 37/00──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hidezumi Kato 5-28-4 Sanarudai, Hamamatsu-shi, Shizuoka Examiner Daiji Daikohara (56) References JP-A-1-145382 (JP, A) (58) Survey Field (Int.Cl. 6 , DB name) C04B 37/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ムライトセラミックス同志の接合条件を、 接合温度:1000〜1700℃、 結晶粒径:3μm以下、 変形速度:10-3/sec以下、 変形応力:15kg/mm2以下 として、拡散により接合することを特徴とするセラミッ
クスの接合方法。
1. The bonding conditions of mullite ceramics are as follows: bonding temperature: 1000-1700 ° C., crystal grain size: 3 μm or less, deformation speed: 10 −3 / sec or less, deformation stress: 15 kg / mm 2 or less, and diffusion A method for joining ceramics, comprising joining.
JP34171889A 1989-12-28 1989-12-28 Ceramic joining method Expired - Lifetime JP2826672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34171889A JP2826672B2 (en) 1989-12-28 1989-12-28 Ceramic joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34171889A JP2826672B2 (en) 1989-12-28 1989-12-28 Ceramic joining method

Publications (2)

Publication Number Publication Date
JPH03199174A JPH03199174A (en) 1991-08-30
JP2826672B2 true JP2826672B2 (en) 1998-11-18

Family

ID=18348245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34171889A Expired - Lifetime JP2826672B2 (en) 1989-12-28 1989-12-28 Ceramic joining method

Country Status (1)

Country Link
JP (1) JP2826672B2 (en)

Also Published As

Publication number Publication date
JPH03199174A (en) 1991-08-30

Similar Documents

Publication Publication Date Title
JP3624225B2 (en) Silicon nitride or sialon ceramics and molding method thereof
US3911188A (en) High strength composite ceramic structure
JPH06506187A (en) Method of manufacturing ceramic bodies
Nagano et al. Diffusion bonding of zirconia/alumina composites
JP2826672B2 (en) Ceramic joining method
Nagano et al. Fabrication of zirconia-alumina functionally gradient material by superplastic diffusion bonding
JP2803111B2 (en) Ceramic joining method
Shih et al. Application of hot-pressed silicon carbide to large high-precision optical structures
JPH0212918B2 (en)
JP6196492B2 (en) Manufacturing method of alumina ceramic joined body
JPH06298574A (en) Joined ceramic article and joining method
JPS6270041A (en) Manufacture of compounded ceramics
US6136738A (en) Silicon nitride sintered body with region varying microstructure and method for manufacture thereof
JP3070121B2 (en) Method for joining Al2O3 / TiC composite material
JPH03141168A (en) Bonding of ceramics
JPH057353B2 (en)
JPS62113775A (en) Method of joining ceramic members
JPH0627037B2 (en) Conductive sialon sintered body, method for producing the same, and wire drawing die
JPH1192245A (en) Ceramic member joined with intermediate material and joining thereof
JP2664764B2 (en) Ceramic composite material and method for producing the same
JPS6177681A (en) Method of bonding nitride ceramics
JP2512495B2 (en) Bonded body of silicon nitride ceramics and metal
JP2600116B2 (en) Superplastic silicon nitride sintered body and its manufacturing method
JP2664760B2 (en) Ceramic composite material and method for producing the same
JP3001827B2 (en) Method for manufacturing ceramic molded body