JPH09285730A - Combustion catalyst for high temperature and its production - Google Patents

Combustion catalyst for high temperature and its production

Info

Publication number
JPH09285730A
JPH09285730A JP10243096A JP10243096A JPH09285730A JP H09285730 A JPH09285730 A JP H09285730A JP 10243096 A JP10243096 A JP 10243096A JP 10243096 A JP10243096 A JP 10243096A JP H09285730 A JPH09285730 A JP H09285730A
Authority
JP
Japan
Prior art keywords
palladium oxide
catalyst
palladium
temperature
reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10243096A
Other languages
Japanese (ja)
Inventor
Keiichi Furuta
圭一 古田
Hirohide Yada
博英 矢田
Koji Narui
耕治 鳴井
Akio Nishida
明生 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP10243096A priority Critical patent/JPH09285730A/en
Publication of JPH09285730A publication Critical patent/JPH09285730A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a combustion catalyst for high temp. having high activity and small in the deterioration or the fluctuation of oxidation activity at 700-1000 deg.C. SOLUTION: This combustion catalyst for high temp. is a catalyst having palladium oxide carried on a heat resistant inorganic carrier, the palladium oxide consists essentially of a hardly reducing palladium oxide having 880 deg.C dissociation temp. in an inert gas and the hardly reducing palladium oxide is present on the surface of palladium oxide particle. The palladium oxide is carried on the heat resistant inorganic carrier, fired in an oxygen-containing pressurized atmosphere and, after that, an easily reducing palladium oxide is reduced by reduction treating and the reduced palladium is removed by acid- treating. The catalyst having the high activity hardly reducing palladium oxide present on the particle surface is obtained by reducing the easily reducing palladium oxide present on the particle surface in the catalyst obtained by firing under the oxygen-containing pressurized atmosphere, and removing the reduced product by dissolving by the acid treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高温用燃焼触媒及
びその製造方法に関するものであり、特に、ガスタービ
ン、ボイラーなどの高温燃焼器に使用可能な高温用燃焼
触媒であって、酸化活性の低下及び変動が少なく、しか
も酸化活性が高い高温用燃焼触媒及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high temperature combustion catalyst and a method for producing the same, and more particularly to a high temperature combustion catalyst which can be used in a high temperature combustor such as a gas turbine or a boiler, TECHNICAL FIELD The present invention relates to a high temperature combustion catalyst having a small decrease and fluctuation and a high oxidation activity and a method for producing the same.

【0002】[0002]

【従来の技術】触媒燃焼法は、メタン、プロパンなどの
燃料と空気とを予混合した後、触媒層で無炎燃焼させる
方法であり、窒素酸化物の発生量が極めて少ないという
利点を有する。この触媒燃焼法に用いられる燃焼触媒と
しては、アルミナ、ジルコニア、マグネシア、シリカな
どの耐熱性担体に酸化パラジウムを担持したものが、活
性が高いことから広く研究されている。
2. Description of the Related Art The catalytic combustion method is a method of premixing a fuel such as methane or propane with air and then performing flameless combustion in a catalyst layer, and has an advantage that the amount of nitrogen oxides generated is extremely small. As a combustion catalyst used in this catalytic combustion method, a catalyst in which palladium oxide is supported on a heat-resistant carrier such as alumina, zirconia, magnesia, or silica has been widely studied because of its high activity.

【0003】しかし、担持酸化パラジウム触媒は、高温
で酸化パラジウムが粒成長して活性が低下する、800
℃以上で酸化パラジウムが解離してパラジウムになり酸
化活性が著しく低下する(Appl.Catal.,A81,227(1992))
などの問題がある。
However, the supported palladium oxide catalyst has a low activity due to the particle growth of palladium oxide at high temperature.
Palladium oxide dissociates into palladium at temperatures above ℃ and the oxidation activity decreases significantly (Appl. Catal., A81,227 (1992)).
There is such a problem.

【0004】従来、酸化パラジウムの粒成長を抑制する
方法としては、酸化パラジウムと担体との間に中間層を
設ける(特開昭63−72345号公報)、酸化パラジ
ウム上に酸化物を分散させる(特開平3−186347
号公報)方法が提案されている。一方、酸化パラジウム
の解離を抑制する方法としては、ランタン成分を添加す
る方法(特開平4−27432号公報)が提案されてい
る。
Conventionally, as a method for suppressing the grain growth of palladium oxide, an intermediate layer is provided between the palladium oxide and the carrier (JP-A-63-72345), and the oxide is dispersed on the palladium oxide ( JP-A-3-186347
Method) has been proposed. On the other hand, as a method of suppressing the dissociation of palladium oxide, a method of adding a lanthanum component (JP-A-4-27432) is proposed.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記従来の改
良された担持酸化パラジウム触媒を用いても、700〜
1000℃の温度領域での酸化活性の低下及び変動を十
分に防ぐことはできないという問題がある。
However, even when the above-mentioned conventional improved supported palladium oxide catalyst is used,
There is a problem that it is not possible to sufficiently prevent the decrease and fluctuation of the oxidation activity in the temperature range of 1000 ° C.

【0006】本発明は上記従来の問題点を解決し、高活
性で、しかも、700〜1000℃の温度領域でも酸化
活性の低下及び変動が少ない高温用燃焼触媒及びその製
造方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and provides a high temperature combustion catalyst and a method for producing the same, which is highly active and has a small decrease and fluctuation in oxidation activity even in the temperature range of 700 to 1000 ° C. To aim.

【0007】[0007]

【課題を解決するための手段】請求項1の高温用燃焼触
媒は、耐熱性無機担体に酸化パラジウムを担持した触媒
であって、該酸化パラジウムが主として不活性ガス中で
の解離温度のピークが880℃以上である難還元性の酸
化パラジウムからなり、かつ該難還元性の酸化パラジウ
ムが酸化パラジウム粒子表面に存在することを特徴とす
る。
A high temperature combustion catalyst according to claim 1 is a catalyst in which palladium oxide is supported on a heat-resistant inorganic carrier, the palladium oxide having a peak dissociation temperature mainly in an inert gas. It is characterized in that it is composed of a non-reducing palladium oxide having a temperature of 880 ° C. or higher, and that the non-reducing palladium oxide is present on the surface of the palladium oxide particles.

【0008】請求項2の高温用燃焼触媒の製造方法は、
上記請求項1に記載の高温用燃焼触媒を製造する方法で
あって、耐熱性無機担体に酸化パラジウム又は焼成によ
り酸化パラジウムを生成するパラジウム化合物を担持
し、酸素含有加圧雰囲気中で焼成した後、還元処理によ
って、不活性ガス中での解離温度のピークが850℃以
下である易還元性の酸化パラジウムを還元し、次いで酸
処理することにより該還元されたパラジウムを除去する
ことを特徴とする。
A method for producing a high temperature combustion catalyst according to claim 2 is
The method for producing a combustion catalyst for high temperature according to claim 1, wherein palladium oxide or a palladium compound that produces palladium oxide by firing is supported on a heat-resistant inorganic carrier, and after firing in an oxygen-containing pressurized atmosphere. A reduction treatment is performed to reduce easily reduced palladium oxide having a peak dissociation temperature of 850 ° C. or less in an inert gas, and then acid treatment is performed to remove the reduced palladium. .

【0009】即ち、本発明者らは、前述の問題点を解決
するべく、高温用燃焼触媒について鋭意研究した結果、
耐熱性無機担体に担持された酸化パラジウムのうち、結
晶性が良くない酸化パラジウムは還元され易く、高温で
の活性変動の原因となること、また、酸化パラジウムの
還元され易さの違いと、還元されたパラジウムは酸に溶
解しやすいという現象を利用することによって、高温で
活性変動を起こす易還元性の酸化パラジウムを選択的に
除去できることを見出し、本発明を完成させた。
That is, the inventors of the present invention have conducted extensive studies on a high temperature combustion catalyst in order to solve the above-mentioned problems, and as a result,
Of the palladium oxide supported on the heat-resistant inorganic carrier, palladium oxide with poor crystallinity is easily reduced, which causes activity fluctuations at high temperatures. Also, the difference in the ease of reduction of palladium oxide and reduction By utilizing the phenomenon that the formed palladium is easily dissolved in an acid, it has been found that the easily reducing palladium oxide, whose activity fluctuates at high temperature, can be selectively removed, and the present invention has been completed.

【0010】なお、本発明における難還元性の酸化パラ
ジウムとは、不活性ガス中、昇温速度20℃/minで
の解離温度のピークが880℃以上である酸化パラジウ
ムを意味する。また、易還元性の酸化パラジウムとは、
不活性ガス中、昇温速度20℃/minでの解離温度の
ピークが850℃以下である酸化パラジウムを意味す
る。
The refractory palladium oxide in the present invention means palladium oxide having a peak dissociation temperature of 880 ° C. or higher at a temperature rising rate of 20 ° C./min in an inert gas. Also, with easily reducing palladium oxide,
It means palladium oxide having a peak dissociation temperature of 850 ° C. or less at a temperature rising rate of 20 ° C./min in an inert gas.

【0011】通常、酸化パラジウム触媒は、大気中で1
000℃以上の温度で焼成して調製される。このように
大気中、1000℃以上で焼成して作製した触媒中の酸
化パラジウムは、粒子径50nm以上の粒子が多く、結
晶性も良くなく、解離温度(不活性ガス中、昇温速度2
0℃/minでの解離温度のピーク)は約700℃であ
る。
Usually, the palladium oxide catalyst is 1
It is prepared by firing at a temperature of 000 ° C. or higher. As described above, the palladium oxide in the catalyst produced by baking at 1000 ° C. or higher in the air has many particles with a particle size of 50 nm or more, and the crystallinity is not good, and the dissociation temperature (in an inert gas, the temperature rising rate 2
The peak of the dissociation temperature at 0 ° C / min) is about 700 ° C.

【0012】これに対し、酸素含有雰囲気にて加圧下で
焼成した触媒は、大気中焼成に比べ、酸化パラジウムの
結晶性が良好であり、また、酸化パラジウムの粒子径も
小さい。そして、解離温度を調べると、不活性ガス中、
昇温速度20℃/minでの解離温度のピークが880
℃以上である難還元性の酸化パラジウムが生成している
ことがわかる。
On the other hand, the catalyst calcined under pressure in an oxygen-containing atmosphere has a better crystallinity of palladium oxide and a smaller particle size of palladium oxide than in the atmosphere. Then, when the dissociation temperature is examined, in an inert gas,
The peak of dissociation temperature at a temperature rising rate of 20 ° C / min is 880.
It can be seen that non-reducing palladium oxide having a temperature of ℃ or higher is produced.

【0013】しかし、該難還元性の酸化パラジウム以外
に、解離温度のピークが850℃以下である易還元性の
酸化パラジウムも同時に生成しており、その存在形態と
しては、担体に担持された酸化パラジウム粒子のうち、
粒子の担体側に難還元性の酸化パラジウムがあり、粒子
表面には易還元性の酸化パラジウムが存在していると考
えられる。これは、担体との何らかの相互作用によっ
て、酸化パラジウムが安定化されるためではないかと推
測される。
However, in addition to the hardly reducible palladium oxide, easily reducible palladium oxide having a peak dissociation temperature of 850 ° C. or less is also produced, and its existence form is as follows: Of the palladium particles,
It is considered that there is hardly reducible palladium oxide on the carrier side of the particles, and easily reducible palladium oxide exists on the surface of the particles. It is speculated that this is because palladium oxide is stabilized by some interaction with the carrier.

【0014】この粒子表面に存在する易還元性の酸化パ
ラジウムは、反応温度900℃までは解離せずに触媒活
性を保持するが、反応温度が1000℃になると解離し
て金属パラジウムを生成する。そして、このことが触媒
活性の低下の原因となっているものと考えられる。な
お、粒子内部には、活性な難還元性の酸化パラジウムが
存在するが、粒子表面が金属パラジウムで覆われてしま
うため、この活性な難還元性の酸化パラジウムは反応に
寄与できない。
The easily reducing palladium oxide present on the surface of the particles does not dissociate up to the reaction temperature of 900 ° C. and retains the catalytic activity, but dissociates at the reaction temperature of 1000 ° C. to form metallic palladium. It is considered that this is the cause of the decrease in catalytic activity. Although active and hardly reducing palladium oxide exists inside the particles, since the surface of the particles is covered with metallic palladium, this active and hardly reducing palladium oxide cannot contribute to the reaction.

【0015】従って、このような触媒を用いて反応温度
1000℃で燃焼を行うと、この粒子表面に存在する易
還元性の酸化パラジウムが解離し、その結果、粒子表面
が活性の小さい金属パラジウムで覆われてしまうため、
触媒活性は著しく低下してしまう。
Therefore, when combustion is carried out at a reaction temperature of 1000 ° C. using such a catalyst, the easily reducing palladium oxide existing on the surface of the particles is dissociated, and as a result, the surface of the particle is made of metallic palladium having a small activity. Because it will be covered
The catalytic activity is significantly reduced.

【0016】これに対して、本発明においては、酸素含
有加圧雰囲気下で焼成して得られた触媒のうち、粒子表
面に存在する易還元性の酸化パラジウムを還元処理によ
って還元し、更にこの還元されたパラジウムを酸処理に
よって溶解除去することにより、粒子表面に難還元性の
酸化パラジウムが存在する触媒を得る。
On the other hand, in the present invention, among the catalysts obtained by calcination in an oxygen-containing pressurized atmosphere, the easily reducing palladium oxide present on the particle surface is reduced by a reduction treatment, and The reduced palladium is dissolved and removed by an acid treatment to obtain a catalyst in which the non-reducing palladium oxide is present on the particle surface.

【0017】このため、本発明の高温用燃焼触媒は、酸
化パラジウムの解離温度が高く、700〜1000℃の
高温においても酸化パラジウムの解離に伴う酸化活性の
低下が極めて小さいものとなる。
Therefore, the high temperature combustion catalyst of the present invention has a high dissociation temperature of palladium oxide, and the decrease in the oxidation activity due to the dissociation of palladium oxide is extremely small even at a high temperature of 700 to 1000 ° C.

【0018】[0018]

【発明の実施の形態】以下に本発明を、本発明による高
温用燃焼触媒の製造手順に従って、詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below in accordance with the procedure for producing a high temperature combustion catalyst according to the present invention.

【0019】本発明において、酸化パラジウムを担持さ
せる耐熱性無機担体としては、特に制限はないが、10
00℃まで加熱した時の比表面積の低下の少ないものが
好ましく、アルミナ、ジルコニア、マグネシアなどのセ
ラミック粉末、或いは、これらのセラミック粉末を各種
添加物により安定化した粉末等を用いることができる。
In the present invention, the heat resistant inorganic carrier for supporting palladium oxide is not particularly limited, but 10
It is preferable that the specific surface area is less reduced when heated to 00 ° C., and ceramic powders such as alumina, zirconia, and magnesia, or powders obtained by stabilizing these ceramic powders with various additives can be used.

【0020】本発明においては、このような耐熱性無機
担体に酸化パラジウムを0.01〜5.0重量%の割合
で担持させるのが好ましい。
In the present invention, it is preferable to load palladium oxide on such a heat-resistant inorganic carrier in a proportion of 0.01 to 5.0% by weight.

【0021】耐熱性無機担体に酸化パラジウムを担持す
る方法には特に制限はなく、通常の触媒調製に用いられ
る方法を採用することができる。例えば、耐熱性無機担
体にパラジウムアセチルアセトナート、硝酸パラジウ
ム、酢酸パラジウムなどのパラジウム塩を含んだ溶液を
含浸させる含浸法が用いられる。なお、パラジウム塩は
焼成の際に分解してガスを発生するので、含浸法により
得られた混合物は、予め、乾燥した後、空気中で300
〜800℃の温度で熱分解し、その後、酸化雰囲気中で
焼成するのが好ましい。
The method for supporting palladium oxide on the heat-resistant inorganic carrier is not particularly limited, and the method used for usual catalyst preparation can be adopted. For example, an impregnation method is used in which a heat-resistant inorganic carrier is impregnated with a solution containing a palladium salt such as palladium acetylacetonate, palladium nitrate or palladium acetate. Since the palladium salt decomposes during firing to generate a gas, the mixture obtained by the impregnation method is dried in advance and then dried in air at 300
It is preferable to pyrolyze at a temperature of up to 800 ° C. and then bake in an oxidizing atmosphere.

【0022】本発明においては、このようにして耐熱性
無機担体に酸化パラジウムを担持したものを酸素含有加
圧雰囲気中で焼成するが、この焼成雰囲気の圧力は2k
gf/cm2 以上、好ましくは、10kgf/cm2
上、特に好ましくは、50kgf/cm2 以上である。
2kgf/cm2 よりも低い圧力の酸素含有雰囲気中で
の焼成では、難還元性の酸化パラジウムの生成の効果が
十分に望めない。
In the present invention, the heat-resistant inorganic carrier carrying palladium oxide is fired in an oxygen-containing pressurized atmosphere in this manner. The pressure of this firing atmosphere is 2 k.
gf / cm 2 or more, preferably 10 kgf / cm 2 or more, particularly preferably 50 kgf / cm 2 or more.
By firing in an oxygen-containing atmosphere at a pressure lower than 2 kgf / cm 2, the effect of forming the non-reducing palladium oxide cannot be fully expected.

【0023】また、この焼成雰囲気中の酸素分圧は0.
5kgf/cm2 以上、好ましくは1kgf/cm2
上、特に好ましくは25kgf/cm2 以上とする。
0.5kgf/cm2 より低い酸素分圧で焼成すると、
酸化パラジウムの高温安定性は、大気中で焼成した場合
と変わらなくなり、難還元性の酸化パラジウムを得るの
が難しい。
The oxygen partial pressure in the firing atmosphere is 0.
5 kgf / cm 2 or more, preferably 1 kgf / cm 2 or more, particularly preferably at 25 kgf / cm 2 or more.
When firing at an oxygen partial pressure lower than 0.5 kgf / cm 2 ,
The high temperature stability of palladium oxide is the same as when it is fired in the air, and it is difficult to obtain a non-reducing palladium oxide.

【0024】なお、酸化雰囲気中の酸素以外のガス成分
としては、アルゴン、窒素等が用いられ、通常の場合、
酸素2〜50%、その他のガス50〜98%の酸化雰囲
気中で焼成が行われる。
As a gas component other than oxygen in the oxidizing atmosphere, argon, nitrogen or the like is used.
Firing is performed in an oxidizing atmosphere of 2 to 50% oxygen and 50 to 98% other gas.

【0025】本発明において、焼成温度は焼成雰囲気圧
下における酸化パラジウムの解離する温度より低いこと
が好ましい。酸化パラジウムが解離する温度以上で焼成
すると、難還元性の酸化パラジウムが生成しにくくな
り、燃焼触媒の酸化活性の低下及び変動が著しくなる。
焼成は500〜1200℃の温度で1〜5時間程度行う
のが好ましい。
In the present invention, the firing temperature is preferably lower than the temperature at which palladium oxide dissociates under the firing atmosphere pressure. When calcined at a temperature at which the palladium oxide is dissociated or higher, hardly-reducible palladium oxide is less likely to be produced, and the oxidation activity of the combustion catalyst is significantly reduced and fluctuated.
The firing is preferably performed at a temperature of 500 to 1200 ° C. for about 1 to 5 hours.

【0026】このような方法によれば、難還元性の酸化
パラジウムを担持した触媒を得ることができる。しかし
ながら、このように調製しても、難還元性の酸化パラジ
ウムとともに還元されやすい酸化パラジウムが同時に生
成してしまう。前述の如く、この易還元性の酸化パラジ
ウムは高温での活性変動の原因となるので、本発明で
は、焼成後の還元処理とそれに続く酸処理によってこれ
を除去する。
According to such a method, it is possible to obtain a catalyst carrying a hardly reducing palladium oxide. However, even if prepared in this way, palladium oxide which is easily reduced is simultaneously produced together with the hardly reducing palladium oxide. As described above, this easily reducing palladium oxide causes fluctuations in activity at high temperatures, so in the present invention, it is removed by a reduction treatment after firing and a subsequent acid treatment.

【0027】易還元性の酸化パラジウムの還元処理は、
ヒドラジン水溶液などのような還元剤を用いた湿式手法
を用いても良いし、水素ガス,メタンガス等の還元性ガ
ス又はヘリウムガス,窒素ガス,およびアルゴンガス等
の不活性ガス中で加熱するような乾式手法を用いても良
い。通常は、処理の容易な乾式手法を用いる。
The reduction treatment of the easily reducing palladium oxide is
A wet method using a reducing agent such as an aqueous solution of hydrazine may be used, or heating may be performed in a reducing gas such as hydrogen gas or methane gas or an inert gas such as helium gas, nitrogen gas, and argon gas. A dry method may be used. Usually, a dry method is used because it is easy to process.

【0028】この場合、水素の濃度に特に限定はない
が、還元温度については、温度が高すぎると、難還元性
の酸化パラジウムまで還元される可能性があるので、通
常は400℃以下が好ましい。不活性ガス中での処理
は、還元性ガスを用いる場合に比べ還元力が弱いので、
より高温とすることが必要であるが、この場合において
も温度が高すぎると難還元性の酸化パラジウムまで還元
される可能性があるので、通常は850℃以下が好まし
い。還元時間は、温度及び雰囲気によって異なるが、1
時間程度行えば十分である。
In this case, the concentration of hydrogen is not particularly limited, but the reduction temperature is preferably 400 ° C. or lower, because if the temperature is too high, it may be reduced to the hardly reducible palladium oxide. . Treatment in an inert gas has a weaker reducing power than when a reducing gas is used.
It is necessary to raise the temperature, but even in this case, if the temperature is too high, it is possible to reduce even the hardly-reducing palladium oxide. The reduction time depends on the temperature and the atmosphere, but is 1
It is enough to go for about an hour.

【0029】還元処理後の酸処理には、硝酸、硫酸、塩
酸、王水などを用いることができるが、塩酸及び硫酸で
は溶解しにくく、王水では担体まで溶解する可能性があ
るので、酸処理は、通常の場合、室温で硝酸に浸漬する
ことによって行う。この場合、硝酸の濃度及び時間によ
って浸漬時間は異なるが、濃硝酸であれば、5分〜1時
間程度浸漬処理する。
For the acid treatment after the reduction treatment, nitric acid, sulfuric acid, hydrochloric acid, aqua regia, etc. can be used. However, since it is difficult to dissolve in hydrochloric acid and sulfuric acid and even the carrier may be dissolved in aqua regia, the acid treatment The treatment is usually carried out by immersion in nitric acid at room temperature. In this case, the immersion time varies depending on the nitric acid concentration and time, but if it is concentrated nitric acid, the immersion treatment is performed for about 5 minutes to 1 hour.

【0030】この酸処理後は水洗し、加熱乾燥して高温
用燃焼触媒を得る。
After this acid treatment, it is washed with water and dried by heating to obtain a high temperature combustion catalyst.

【0031】このような方法によれば、気相に接してい
る酸化パラジウムのうち、難還元性である酸化パラジウ
ムが6割以上であるような担持酸化パラジウム触媒を得
ることができる。
According to such a method, it is possible to obtain a supported palladium oxide catalyst in which 60% or more of the palladium oxide which is hardly reducible among the palladium oxides in contact with the gas phase is used.

【0032】[0032]

【実施例】以下に実施例及び比較例を挙げて、本発明を
より具体的に説明するが、本発明はその要旨を超えない
限り以下の実施例に限定されるものではない。
EXAMPLES The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples unless it exceeds the gist.

【0033】実施例1 δ−アルミナ粉末をパラジウムアセチルアセトナートを
含有するエタノール水溶液に含浸した後、100℃で乾
燥した。得られた乾燥混合物を大気中500℃で4時間
熱分解して、δ−アルミナ100g当り0.5gの酸化
パラジウムを担持した担持酸化パラジウム触媒を調製し
た。
Example 1 δ-alumina powder was impregnated with an aqueous ethanol solution containing palladium acetylacetonate and dried at 100 ° C. The obtained dry mixture was pyrolyzed in air at 500 ° C. for 4 hours to prepare a supported palladium oxide catalyst carrying 0.5 g of palladium oxide per 100 g of δ-alumina.

【0034】次に、この担持酸化パラジウム触媒を10
00kgf/cm2 の圧力の5%酸素−95%アルゴン
混合ガス雰囲気の下(酸素分圧50kgf/cm2 )、
1100℃で4時間焼成した。
Next, 10 times this supported palladium oxide catalyst was used.
Under 5% oxygen 95% argon mixed gas atmosphere at a pressure of 00kgf / cm 2 (partial pressure of oxygen 50kgf / cm 2),
It was baked at 1100 ° C. for 4 hours.

【0035】この触媒を水素流通下(水素100%、3
0cc/min)、300℃で30分間還元処理を行っ
た。更にその後、濃硝酸に室温で30分間浸漬し、次い
で洗浄後加熱乾燥して、易還元性の酸化パラジウムを除
去した高温用触媒を調製した。
This catalyst was passed under hydrogen flow (100% hydrogen, 3%
(0 cc / min) at 300 ° C. for 30 minutes. After that, the catalyst was immersed in concentrated nitric acid at room temperature for 30 minutes, washed, and then dried by heating to prepare a high-temperature catalyst from which easily reducible palladium oxide was removed.

【0036】実施例2 実施例1と同様にして担持酸化パラジウム触媒を調製
し、この担持酸化パラジウム触媒を2000kgf/c
2 の圧力の5%酸素−95%アルゴン混合ガス雰囲気
下、1100℃で4時間焼成した。
Example 2 A supported palladium oxide catalyst was prepared in the same manner as in Example 1, and 2000 kgf / c of this supported palladium oxide catalyst was used.
Firing was performed at 1100 ° C. for 4 hours in a mixed gas atmosphere of 5% oxygen-95% argon with a pressure of m 2 .

【0037】この触媒をヘリウム流通下(ヘリウム10
0%、30cc/min)、830℃で10分還元処理
を行った。更にその後、濃硝酸に室温で45分間浸漬
し、次いで、洗浄後加熱乾燥して、易還元性の酸化パラ
ジウムを除去した高温用触媒を調製した。
This catalyst was passed through helium (helium 10
0%, 30 cc / min), and reduction treatment was performed at 830 ° C. for 10 minutes. After that, the catalyst was immersed in concentrated nitric acid at room temperature for 45 minutes, then washed and dried by heating to prepare a catalyst for high temperature from which easily reducible palladium oxide was removed.

【0038】実施例3 実施例1において、還元処理を250℃で60分間行っ
たこと以外は同様にして高温用燃焼触媒を調製した。
Example 3 A high temperature combustion catalyst was prepared in the same manner as in Example 1 except that the reduction treatment was performed at 250 ° C. for 60 minutes.

【0039】比較例1 実施例1において、焼成を大気中で行ったこと以外は同
様にして燃焼触媒を調製した。
Comparative Example 1 A combustion catalyst was prepared in the same manner as in Example 1, except that the firing was performed in the atmosphere.

【0040】比較例2 実施例1において、還元処理及びその後の酸処理を行わ
なかったこと以外は同様にして燃焼触媒を調製した。
Comparative Example 2 A combustion catalyst was prepared in the same manner as in Example 1, except that the reduction treatment and the subsequent acid treatment were not performed.

【0041】比較例3 比較例1において、還元処理及びその後の酸処理を行わ
なかったこと以外は同様にして燃焼触媒を調製した。
Comparative Example 3 A combustion catalyst was prepared in the same manner as in Comparative Example 1, except that the reduction treatment and the subsequent acid treatment were not performed.

【0042】[触媒の評価] 反応温度の変化によるメタン酸化活性の変化の測定 実施例1〜3及び比較例1〜3で製造された触媒のメタ
ン酸化活性を調べた。まず、固定床流通式反応装置に各
々調製した燃焼触媒を0.4g充填し、0.5%メタン
−99.5%空気の混合ガスを1分当り1.7リットル
流通させた。
[Evaluation of Catalyst] Measurement of Change in Methane Oxidation Activity with Change in Reaction Temperature The methane oxidation activity of the catalysts produced in Examples 1 to 3 and Comparative Examples 1 to 3 was examined. First, 0.4 g of each prepared combustion catalyst was filled in a fixed bed flow reactor, and 1.7 liters of a mixed gas of 0.5% methane-99.5% air was flowed per minute.

【0043】次に、電気炉の温度を1000℃に昇温し
て触媒層を加熱し、メタン転化率を測定し、引続き、反
応温度を所定温度に順次下げながら降温過程のメタン転
化率を測定した。
Next, the temperature of the electric furnace is raised to 1000 ° C. to heat the catalyst layer, the methane conversion rate is measured, and subsequently, the methane conversion rate in the temperature lowering process is measured while sequentially lowering the reaction temperature to a predetermined temperature. did.

【0044】実施例1〜3の高温用燃焼触媒のメタン転
化率をそれぞれ図1〜図3に示す。図1〜3より、実施
例1〜3の高温用燃焼触媒は、700〜800℃でのメ
タン転化率の落ち込みが少ないことがわかる。
The methane conversion rates of the high temperature combustion catalysts of Examples 1 to 3 are shown in FIGS. 1 to 3, respectively. From FIGS. 1 to 3, it can be seen that the high temperature combustion catalysts of Examples 1 to 3 have little drop in the methane conversion rate at 700 to 800 ° C.

【0045】比較例1の燃焼触媒のメタン転化率を図4
に示す。図4より明らかなように、800℃以下の反応
温度でメタン転化率は急激に小さくなっており、さらに
温度を下げても増加しなかった。これは、加圧下で焼成
していないため、難還元性の酸化パラジウムが存在せ
ず、還元処理と、それに続く酸処理で酸化パラジウムが
殆ど除去されたためである。
The methane conversion of the combustion catalyst of Comparative Example 1 is shown in FIG.
Shown in As is clear from FIG. 4, the methane conversion rate rapidly decreased at the reaction temperature of 800 ° C. or lower, and did not increase even when the temperature was further lowered. This is because the non-reducing palladium oxide did not exist because it was not fired under pressure, and the palladium oxide was almost removed by the reduction treatment and the subsequent acid treatment.

【0046】比較例2の燃焼触媒のメタン転化率を図5
に示す。図5より明らかなように、750℃でのメタン
転化率の低下は、実施例1〜3に比較して大きい。
FIG. 5 shows the methane conversion rate of the combustion catalyst of Comparative Example 2.
Shown in As is clear from FIG. 5, the decrease in the methane conversion rate at 750 ° C. is large as compared with Examples 1 to 3.

【0047】比較例3の燃焼触媒のメタン転化率を図6
に示す。図6より明らかなように、750℃でのメタン
転化率の低下は、実施例1〜3に比較して大きい。
FIG. 6 shows the methane conversion rate of the combustion catalyst of Comparative Example 3.
Shown in As is clear from FIG. 6, the decrease in the methane conversion rate at 750 ° C. is large as compared with Examples 1 to 3.

【0048】 各触媒の粒子径の測定 透過電子顕微鏡(TEM)観察(200000倍)によ
り、各燃焼触媒の粒子径50nm以上の粒子の割合を調
べ、結果を表1に示した。
Measurement of Particle Size of Each Catalyst The proportion of particles having a particle size of 50 nm or more in each combustion catalyst was examined by observation with a transmission electron microscope (TEM) (20000 times), and the results are shown in Table 1.

【0049】[0049]

【表1】 [Table 1]

【0050】表1より、実施例1〜3の高温用燃焼触媒
は、粗大粒子が少なく、高活性であることがわかる。
From Table 1, it can be seen that the high temperature combustion catalysts of Examples 1 to 3 have few coarse particles and have high activity.

【0051】 燃焼触媒の解離温度測定 代表例として実施例1及び比較例2の燃焼触媒につい
て、試料約0.3gをヘリウムガス流通下(ヘリウム1
00%,30cc/min)、昇温速度20℃/min
で昇温した場合の解離温度を測定し、それぞれ図7に示
した。
Measurement of Dissociation Temperature of Combustion Catalyst For the combustion catalysts of Example 1 and Comparative Example 2 as a representative example, about 0.3 g of a sample was passed under helium gas flow (helium 1
00%, 30 cc / min), heating rate 20 ° C / min
The dissociation temperature when the temperature was raised at was measured and is shown in FIG.

【0052】図7より、本発明の高温用燃焼触媒は高温
安定性に優れることがわかる。
FIG. 7 shows that the high temperature combustion catalyst of the present invention is excellent in high temperature stability.

【0053】[0053]

【発明の効果】以上詳述した通り、本発明の高温用燃焼
触媒及びその製造方法によれば、酸化活性が高く、しか
も、1000℃以上の高温にさらした後も、また、70
0〜1000℃の高温度領域においても酸化活性の低下
及び変動が少ない高特性高温用燃焼触媒が提供される。
As described above in detail, according to the combustion catalyst for high temperature and the method for producing the same of the present invention, the oxidation activity is high, and even after exposure to a high temperature of 1000 ° C. or higher, 70
Provided is a high-performance high temperature combustion catalyst in which the oxidation activity does not decrease or fluctuate even in a high temperature range of 0 to 1000 ° C.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で調製された高温用燃焼触媒のメタン
転化率を示す図である。
1 is a diagram showing a methane conversion rate of a high temperature combustion catalyst prepared in Example 1. FIG.

【図2】実施例2で調製された高温用燃焼触媒のメタン
転化率を示す図である。
2 is a diagram showing a methane conversion rate of a high temperature combustion catalyst prepared in Example 2. FIG.

【図3】実施例3で調製された高温用燃焼触媒のメタン
転化率を示す図である。
3 is a diagram showing a methane conversion rate of a high temperature combustion catalyst prepared in Example 3. FIG.

【図4】比較例1で調製された燃焼触媒のメタン転化率
を示す図である。
FIG. 4 is a diagram showing a methane conversion rate of a combustion catalyst prepared in Comparative Example 1.

【図5】比較例2で調製された燃焼触媒のメタン転化率
を示す図である。
5 is a diagram showing a methane conversion rate of a combustion catalyst prepared in Comparative Example 2. FIG.

【図6】比較例3で調製された燃焼触媒のメタン転化率
を示す図である。
FIG. 6 is a diagram showing a methane conversion rate of a combustion catalyst prepared in Comparative Example 3.

【図7】実施例1で調製された高温用燃焼触媒及び比較
例2で調製された燃焼触媒の解離温度の測定結果を示す
図である。
7 is a diagram showing measurement results of dissociation temperatures of a high temperature combustion catalyst prepared in Example 1 and a combustion catalyst prepared in Comparative Example 2. FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西田 明生 山口県宇部市大字小串1978番地の5 宇部 興産株式会社宇部研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akio Nishida 5 1978, Kozugushi, Ube City, Yamaguchi Prefecture Ube Kosan Co., Ltd. Ube Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 耐熱性無機担体に酸化パラジウムを担持
した触媒であって、該酸化パラジウムが主として不活性
ガス中での解離温度のピークが880℃以上である難還
元性の酸化パラジウムからなり、かつ該難還元性の酸化
パラジウムが酸化パラジウム粒子表面に存在することを
特徴とする高温用燃焼触媒。
1. A catalyst in which palladium oxide is supported on a heat-resistant inorganic carrier, wherein the palladium oxide is mainly composed of non-reducing palladium oxide having a peak dissociation temperature of 880 ° C. or higher in an inert gas, A combustion catalyst for high temperature, characterized in that the hardly reducing palladium oxide is present on the surface of the palladium oxide particles.
【請求項2】 耐熱性無機担体に酸化パラジウム又は焼
成により酸化パラジウムを生成するパラジウム化合物を
担持し、酸素含有加圧雰囲気中で焼成した後、還元処理
によって、不活性ガス中での解離温度のピークが850
℃以下である易還元性の酸化パラジウムを還元し、次い
で酸処理することにより該還元されたパラジウムを除去
することを特徴とする請求項1記載の高温用燃焼触媒の
製造方法。
2. A heat-resistant inorganic carrier is loaded with palladium oxide or a palladium compound which produces palladium oxide by calcination, and calcinated in an oxygen-containing pressurized atmosphere, and then subjected to reduction treatment to reduce the dissociation temperature in an inert gas. 850 peak
The method for producing a high temperature combustion catalyst according to claim 1, wherein the easily reducing palladium oxide having a temperature of not higher than 0 ° C. is reduced, and then the reduced palladium is removed by acid treatment.
JP10243096A 1996-04-24 1996-04-24 Combustion catalyst for high temperature and its production Pending JPH09285730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10243096A JPH09285730A (en) 1996-04-24 1996-04-24 Combustion catalyst for high temperature and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10243096A JPH09285730A (en) 1996-04-24 1996-04-24 Combustion catalyst for high temperature and its production

Publications (1)

Publication Number Publication Date
JPH09285730A true JPH09285730A (en) 1997-11-04

Family

ID=14327256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10243096A Pending JPH09285730A (en) 1996-04-24 1996-04-24 Combustion catalyst for high temperature and its production

Country Status (1)

Country Link
JP (1) JPH09285730A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2384195B (en) * 2001-10-22 2005-08-24 Lattice Intellectual Property A method and apparatus for performing steam reforming
KR20140107454A (en) * 2011-12-21 2014-09-04 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Catalysts systems

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2384195B (en) * 2001-10-22 2005-08-24 Lattice Intellectual Property A method and apparatus for performing steam reforming
KR20140107454A (en) * 2011-12-21 2014-09-04 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Catalysts systems
JP2015503440A (en) * 2011-12-21 2015-02-02 スリーエム イノベイティブ プロパティズ カンパニー Catalyst system

Similar Documents

Publication Publication Date Title
CN110639519B (en) Three-dimensional ordered mesoporous cerium dioxide loaded Pt-MnO for efficiently catalyzing and oxidizing toluenexCatalyst and process for preparing same
JP2002211908A (en) Compound oxide powder, manufacturing method thereof and catalyst
JP6415738B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification apparatus including the catalyst
JP5459322B2 (en) Redox material for thermochemical water splitting and hydrogen production method
KR101574553B1 (en) Composite oxide for catalyst for exhaust gas purification, process for producing the same, coating composition for catalyst for exhaust gas purification, and filter for diesel exhaust gas purification
JP5761710B2 (en) Ammonia decomposition method and method for regenerating catalyst for ammonia decomposition
JPWO2014057839A1 (en) Method for producing composite oxide and composite oxide catalyst
JPH09285730A (en) Combustion catalyst for high temperature and its production
KR101828791B1 (en) Thermally stable monolith catalysts for reforming reaction
CN113952956B (en) Preparation method of methane dry reforming catalyst, methane dry reforming catalyst and application thereof
JPH0729055B2 (en) Catalyst for oxidizing carbon-containing compound and method for producing the same
WO2012096017A1 (en) Catalysts and process for producing same
JPH08243391A (en) High temperature combustion catalyst and production thereof
JPS63248444A (en) Steam reforming and/or partial oxidation catalyst for hydrocarbon
KR101092358B1 (en) Low Temperature Catalyst for Combustion of Organic Compound, And Manufacturing Method thereof
CN113457722A (en) Methane carbon dioxide dry reforming catalyst and preparation method and application thereof
JP4508693B2 (en) Carbon monoxide combustion catalyst and method for producing the same
JP2008230937A (en) Compound oxide and compound oxide carrier, and method for producing catalyst for exhaust gas clarification using them
JPH08309184A (en) Catalyst for high temperature combustion and manufacture thereof
CN115282970B (en) Nickel-based catalyst for oxide film limited-area low-carbon alkane dry reforming and preparation method and application thereof
JP2840054B2 (en) Heat-resistant oxide
JP3963856B2 (en) Catalyst support for producing epoxide, catalyst for producing epoxide, and method for producing epoxide
JPS6388041A (en) Oxidizing catalyst
JP2005104799A (en) Compound oxide and catalyst for cleaning exhaust gas
JPS6316050A (en) Catalyst for preparing heat-treatment atmospheric gas