JPH09284054A - Digital am demodulator and its method - Google Patents

Digital am demodulator and its method

Info

Publication number
JPH09284054A
JPH09284054A JP11709396A JP11709396A JPH09284054A JP H09284054 A JPH09284054 A JP H09284054A JP 11709396 A JP11709396 A JP 11709396A JP 11709396 A JP11709396 A JP 11709396A JP H09284054 A JPH09284054 A JP H09284054A
Authority
JP
Japan
Prior art keywords
signal
digital
phase
converter
adder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11709396A
Other languages
Japanese (ja)
Other versions
JP2929366B2 (en
Inventor
Iwao Nouchi
巌 野内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaesu Musen Co Ltd
Original Assignee
Yaesu Musen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaesu Musen Co Ltd filed Critical Yaesu Musen Co Ltd
Priority to JP11709396A priority Critical patent/JP2929366B2/en
Publication of JPH09284054A publication Critical patent/JPH09284054A/en
Application granted granted Critical
Publication of JP2929366B2 publication Critical patent/JP2929366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a demodulation signal by means of an extremely small level of a distortion even if a signal generated by means of absolute value addition, etc., does not satisfy a sampling condition by adding the whole plural digital signals together by means of an adder, executing level-correction through the use of a level correcting equipment and, then, removing a D.C. components by means of a digital high-pass filter. SOLUTION: The signal is used as an AM signal by inputting a signal from an input terminal 1 and sampling and quantizing it at a sampling frequency in an A/D converter 2. A set of n signals with desired phase differences are generated by a PSN matrix 9 from the discretized AM signal, the absolute values of respective signals are obtained and the n signals whose absolute values are taken are added in an adder 4. Then, the digital high-pass filter 6 removes the D.C. component from the signal which is corrected by a corrected coefficient generator 16 and a level correcting equipment 5, and the signal becomes the envelope of to the AM signal itself. After that, the signal is converted into an analog signal by a D/A converter 7 and an AM demodulating signal which is proportional the envelope of the carrier is outputted to an output terminal 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、デジタルAM復調器
とその方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a digital AM demodulator and its method.

【0002】[0002]

【従来の技術】例えば、無線通信機等の受信機におい
て、AM信号を復調する場合、包絡線検波や2乗検波等の
復調方式があった。これらの検波回路は、ダイオード等
のアナログ素子で構成されているため、周囲の温度や湿
度の変化及び経年変化によって回路の動作が不安定にな
り、定量的に変調信号を検波するのが困難となる場合が
あった。そこで、昨今、デジタル信号処理技術の発達に
伴い、デジタル処理によるAM信号の復調器やその方法が
種々提案されている。
2. Description of the Related Art For example, in the case of demodulating an AM signal in a receiver such as a wireless communication device, there have been demodulation methods such as envelope detection and square detection. Since these detection circuits are composed of analog elements such as diodes, the operation of the circuits becomes unstable due to changes in ambient temperature and humidity and changes over time, making it difficult to detect modulated signals quantitatively. There was a case. Therefore, recently, with the development of digital signal processing technology, various demodulators and methods for AM signals by digital processing have been proposed.

【0003】デジタルAM復調の従来技術(1)として、
2乗和平方根処理を施して、キャリヤの包絡線に比例し
た変調信号を取り出す包絡線検波方式がある。図2に示
すこの方式によれば、まず、入力するアナログAM信号を
アナログ/デジタル変換器(以下、A/D変換器とい
う。)でデジタルAM信号Xinに変換し端子20よりデジタ
ルAM復調器に入力するが、一般的にA/D変換器に入力
する信号及びD/A変換器に入力する信号等と、標本化
周波数(以下、サンプリング周波数とも言う。)fsと
が、式(1)の関係を満足している必要がある。但し、
tsをサンプリング時間、tcを搬送波周期、fcを搬送波周
波数とする。 fc≦2fs ∴ ts≦tc/2 ・・・(1)
As a conventional technique (1) for digital AM demodulation,
There is an envelope detection method in which a squared sum square root process is performed to extract a modulated signal proportional to the envelope of the carrier. According to this method shown in FIG. 2, first, an input analog AM signal is converted into a digital AM signal Xin by an analog / digital converter (hereinafter, referred to as an A / D converter), and is converted into a digital AM demodulator from a terminal 20. Generally, the signal input to the A / D converter, the signal input to the D / A converter, and the like, and the sampling frequency (hereinafter, also referred to as sampling frequency) fs are input in the equation (1). You need to be happy with the relationship. However,
Let ts be the sampling time, tc be the carrier period, and fc be the carrier frequency. fc ≦ 2fs ∴ts ≦ tc / 2 (1)

【0004】また、式(1)の関係が満足し、式(2)
で示すサンプリング周波数でサンプリングしている時、
乗算器22でデジタルAM信号Xinを自乗した信号と、他
方、レジスタDで構成されたデジタル移相器21でデジタ
ルAM信号Xinをπ/2移相処理し乗算器23で自乗した信
号とが、デジタルAM信号のπ/2位相差のあるq個のサ
ンプル点となる。但し、qは整数である。 4fc=fs(1+2q) ・・・(2)
Further, the relation of the equation (1) is satisfied, and the equation (2) is satisfied.
When sampling at the sampling frequency shown in
The signal obtained by squaring the digital AM signal Xin at the multiplier 22 and the signal obtained by squaring the digital AM signal Xin at the multiplier 23 by the digital phase shifter 21 configured by the register D There are q sample points with a π / 2 phase difference of the digital AM signal. However, q is an integer. 4fc = fs (1 + 2q) (2)

【0005】そして、この2つの信号を加算器24で加算
することで、搬送波fcの振幅の2乗値となる信号Yinを
生成することができる。次に、この2乗和信号Yinを平
方根関数器25で平方根演算し開平することで、デジタル
AM信号の搬送波の振幅を得ることができ、開平後の信号
の直流成分をデジタルハイパスフィルタ26で除去し端子
27から出力し、デジタル/アナログ変換器(以下、D/
A変換器という。)でアナログ信号に変換することで、
AM信号波の振幅レベルに比例した信号を取り出すことが
でき、搬送波の包絡線に比例した変調信号を得ることが
できる。
Then, by adding these two signals by the adder 24, it is possible to generate the signal Yin which is the square value of the amplitude of the carrier wave fc. Then, the square sum signal Yin is square root-calculated by the square root function unit 25 and square rooted to obtain a digital signal.
The amplitude of the carrier wave of the AM signal can be obtained, and the DC component of the signal after square root removal is removed by the digital high-pass filter 26.
Output from 27, digital / analog converter (hereinafter, D /
It is called A converter. ) To convert to an analog signal,
A signal proportional to the amplitude level of the AM signal wave can be taken out, and a modulated signal proportional to the carrier wave envelope can be obtained.

【0006】しかし、上記の従来技術(1)では、原理
的には十分であるものの実用的ではなく、例えば、平方
根関数器25の平方根開平演算でROMテーブルや専用の
デジタル平方根開平器等を使用するが、ROMテーブル
の場合、平方根展開の演算精度を上げるために、膨大な
容量のROMが必要となる問題点があり、また、専用の
デジタル平方根開平器を使用する場合は、平方根開平器
の演算が所定の精度まで収束するのに長時間を要すると
いう問題点もあり、何れの場合も平方根の演算精度が、
復調特性に大きく影響するものであった。
However, the above-mentioned conventional technique (1) is sufficient in principle but is not practical, and for example, a ROM table or a dedicated digital square root square root device is used in the square root square root calculation of the square root function unit 25. However, in the case of the ROM table, there is a problem that a huge amount of ROM is required to improve the calculation accuracy of the square root expansion, and when a dedicated digital square root square root extractor is used, the square root square root extractor There is also a problem that it takes a long time for the calculation to converge to a predetermined accuracy, and in any case, the calculation accuracy of the square root is
It had a great influence on the demodulation characteristics.

【0007】また、従来技術(2)として、従来技術
(1)の問題点の起因となっていた平方根開平の演算を
改良した、特公平6−18291号公報に開示されてい
るデジタルAM復調方式がある。図3で示すように、この
方式は、平方根開平演算の演算精度を入力される信号の
信号レベルによらず一定の精度で演算を実施する方式で
あり、平方根開平演算をする前段で2乗和信号Yinのレ
ベルをレベル検出器30で検出し、そのレベルを平方根開
平を施す多項式演算器32の許容誤差範囲に入るように、
上方ビットシフタ31でレベル補正した後、多項式演算器
32で2乗和平方根に開平し、下方ビットシフタ33で元の
信号レベルに戻して変調信号を得る方式であった。
Further, as the prior art (2), a digital AM demodulation system disclosed in Japanese Patent Publication No. 6-18291, which is an improvement of the calculation of the square root square root, which has caused the problem of the prior art (1). There is. As shown in FIG. 3, this method is a method in which the calculation accuracy of the square root square root calculation is performed with a constant accuracy regardless of the signal level of the input signal. The level of the signal Yin is detected by the level detector 30, and the level is set within the allowable error range of the polynomial calculator 32 that performs square root square root extraction.
After level correction with upper bit shifter 31, polynomial calculator
In this method, the square root of the sum of squares is squared at 32, and the lower bit shifter 33 restores the original signal level to obtain a modulated signal.

【0008】しかし、上記の従来技術(2)では、平方
根の演算精度を上げるために、多項式演算器32の許容誤
差範囲内に入るように、2乗和信号Yinのレベルを補正
することが必要とされるが、例えば、2乗和信号Yinの
レベルがゼロに限りなく近い、つまり、100%変調に
近い信号を多項式演算器32の許容誤差範囲内に入れるの
は原理的に不可能であり、また、レベル補正したゼロに
限りなく近い2乗和信号Yinを精度よく平方根開平演算
するには相当量の計算量を必要とし、実際にクオリティ
の高い変調信号を得るためには、ゼロに限りなく近い2
乗和信号Yinをも高い精度で復調する必要があり、結果
的に相当量の計算が必要となる問題点があった。
However, in the above prior art (2), it is necessary to correct the level of the sum-of-squares signal Yin so as to be within the allowable error range of the polynomial calculator 32 in order to improve the calculation accuracy of the square root. However, for example, it is theoretically impossible to put the signal of the sum of squares signal Yin as close as possible to zero, that is, a signal close to 100% modulation within the allowable error range of the polynomial calculator 32. Also, in order to accurately calculate the square sum squared signal Yin that is as close as possible to the level-corrected zero, the square root square root calculation requires a considerable amount of calculation, and in order to actually obtain a high-quality modulated signal, it is limited to zero. Without close 2
The multiply-add signal Yin also needs to be demodulated with high accuracy, resulting in the problem that a considerable amount of calculation is required.

【0009】一方、従来技術(3)として、上記の従来
技術(1)及び(2)の平方根開平演算方式によるデジ
タルAM復調方式とは異なる、PSN(Phase Shift Networks
の略)方式のデジタルSSB 復調方式がある。図4に示す
この方式は、SSB変調信号の検波に用いられ、搬送波の
上または下の周波数にある側波帯(以下、サイドバンド
とも言う。)成分をDCに移相することで検波するもので
ある。
On the other hand, as the prior art (3), a PSN (Phase Shift Networks) different from the digital AM demodulation method by the square root square root calculation method of the above prior arts (1) and (2) is used.
There is a digital SSB demodulation method. This system, shown in Fig. 4, is used for detection of SSB modulated signals, and it detects the sideband (hereinafter also referred to as "sideband") components at frequencies above or below the carrier by shifting to DC. Is.

【0010】しかし、上記の従来技術(3)では、PSN
によって移相処理することができる帯域が限定され、こ
の帯域を越えると、復調信号の帯域に目的外の側波帯
(イメージ)の移相が生じ、つまり、エイリアシングが
起こり復調信号のサイドバンドサプレッションレベルが
悪化する。後段のフィルタで、この悪化を抑えるような
最適なPSN 帯域を選択できるようにするが、その分、群
遅延特性が悪化する。従って、これらを適当にトレード
オフしても、S/Nが高くクオリティの良い変調信号を
得るのは困難となる。
However, in the above prior art (3), the PSN
The band that can be phase-shifted is limited by this, and beyond this band, an unwanted sideband (image) phase shift occurs in the demodulated signal band, that is, aliasing occurs and sideband suppression of the demodulated signal occurs. The level gets worse. The filter in the latter stage can select the optimum PSN band that suppresses this deterioration, but the group delay characteristic deteriorates to that extent. Therefore, even if these are appropriately traded off, it is difficult to obtain a modulated signal with high S / N and good quality.

【0011】また、従来技術(4)として、上記従来技
術(3)を応用したPSN 方式のデジタルAM復調方式があ
る。図5に示すこの方式は、上記従来技術(3)のSSB
信号とは異なり、搬送波に対して側波帯が正負対称にあ
るため、従来技術(3)のPSN で移相処理を行った後、
絶対値をとることで検波するものである。
Further, as the prior art (4), there is a PSN digital AM demodulation method to which the above-mentioned prior art (3) is applied. This method shown in FIG. 5 is based on the SSB of the prior art (3).
Unlike the signal, the sidebands are symmetrical with respect to the carrier wave, so after performing phase shift processing with PSN of the prior art (3),
Detection is performed by taking an absolute value.

【0012】このPSN 絶対値検波方式は、上記従来技術
(1)及び(2)のデジタルAM復調方式に比べて、変調
度の大きいAM信号でも演算器の演算量によらず精度良く
復調できるものである。
This PSN absolute value detection method can accurately demodulate an AM signal having a large degree of modulation as compared with the digital AM demodulation methods of the above-mentioned prior arts (1) and (2) regardless of the amount of calculation of the calculator. Is.

【0013】しかし、従来技術(4)は、A/D変換器
に入力する信号が式(1)の条件を満たしていても、内
部での絶対値加算した際に生成される信号が、式(1)
の条件を満足せずにD/A変換器に入力されるため、エ
イリアシングが発生し、振幅性の歪み信号が復調信号に
重畳する問題が生じていた。
However, in the prior art (4), even if the signal input to the A / D converter satisfies the condition of the expression (1), the signal generated when the absolute values are internally added is expressed by the expression (1)
Since the signal is input to the D / A converter without satisfying the condition (1), aliasing occurs, and there is a problem that an amplitude distortion signal is superimposed on the demodulation signal.

【0014】[0014]

【発明が解決しようとする課題】そこで、上述した種々
のデジタルAM復調方式の問題点に鑑みて、本発明では従
来技術(4)のPSN 絶対値検波方式を改良し、絶対値加
算して生成した信号等が、式(1)の条件を満たさずD
/A変換されても、極めて小さなレベルの歪みで復調信
号を得ることができるようなデジタルAM復調器を提案す
る。
In view of the problems of the various digital AM demodulation methods described above, the present invention improves the PSN absolute value detection method of the prior art (4) and adds the absolute values to generate the PSN absolute value detection method. Signal, etc. does not satisfy the condition of equation (1)
We propose a digital AM demodulator that can obtain a demodulated signal with an extremely small level of distortion even if it is A / A converted.

【0015】[0015]

【課題を解決するための手段】アナログ/デジタル変換
器と、移相器と、第1の位相係数発生器と、該第1の位
相係数発生器と接続される第1の乗算器と、第2の位相
係数発生器と、該第2の位相係数発生器と接続される第
2の乗算器と、前記第1の乗算器の出力と前記第2の乗
算器の出力とを加算する第1の加算器と、該第1の加算
器と接続する絶対値化器とで構成されるn個のPSN回
路と、該n個のPSN回路の夫々の出力を加算する第2
の加算器と、レベル補正器と、デジタルハイパスフィル
タと、デジタル/アナログ変換器とが、縦列接続してい
ることを特徴とするデジタルAM復調器を提供する。
An analog / digital converter, a phase shifter, a first phase coefficient generator, a first multiplier connected to the first phase coefficient generator, and a first phase coefficient generator. A second phase coefficient generator, a second multiplier connected to the second phase coefficient generator, a first multiplier for adding the output of the first multiplier and the output of the second multiplier No. PSN circuit composed of an adder of ## EQU1 ## and an absolute value converter connected to the first adder, and a second of adding respective outputs of the n PSN circuits.
The digital AM demodulator is characterized in that the adder, the level corrector, the digital high-pass filter, and the digital / analog converter are connected in cascade.

【0016】また、請求項1のデジタルAM復調器におい
て、入力したAM信号をアナログ/デジタル変換器で第1
のデジタル信号に変換し、前記第1のデジタル信号から
移相器で、π/2の位相差を持つ第2及び第3のデジタ
ル信号を生成し、前記第2のデジタル信号に、前記第1
の位相係数発生器より出力される各々がπ/nの位相差を
持つcos(0)からcos((n-1)π/n)までのn個の位相係数を
n個の第1の乗算器でそれぞれ乗じ、前記第3のデジタ
ル信号に、前記第2の位相係数発生器より出力される各
々がπ/n の位相差を持つsin(0)からsin((n-1)π/n) ま
でのn個の位相係数をn個の第2の乗算器でそれぞれ乗
じ、前記n個の第1の乗算器の出力と前記n個の第2の
乗算器の出力とをそれぞれn個の第1の加算器でベクト
ル合成し、前記n個の絶対値化器でそれぞれ絶対値をと
ることでn個の第4のデジタル信号を生成し、前記n個
の第4のデジタル信号を第2の加算器で全て加算し、レ
ベル補正器でレベル補正した後、デジタルハイパスフィ
ルタで直流成分を除去し、デジタル/アナログ変換器で
アナログ信号に変換して、復調信号を得ることを特徴と
するデジタルAM復調器の復調方法を提供する。但し、n
は自然数とする。
Further, in the digital AM demodulator according to claim 1, the input AM signal is first converted by the analog / digital converter.
Of the first digital signal, and a phase shifter generates second and third digital signals having a phase difference of π / 2 from the first digital signal, and the second digital signal is converted into the first digital signal.
N phase coefficients from cos (0) to cos ((n-1) π / n), each of which has a phase difference of π / n, output from the phase coefficient generator of , And the third digital signal is output from the second phase coefficient generator, each of which has a phase difference of π / n from sin (0) to sin ((n-1) π / n ) Up to n phase coefficients are multiplied by n second multipliers, and the output of the n first multipliers and the output of the n second multipliers are respectively multiplied by n. Vector synthesis is performed by the first adder, and n absolute values are taken by the n absolute value generators to generate n fourth digital signals, and the n fourth digital signals are generated as second digital signals. After adding all with the adder of, and correcting the level with the level corrector, remove the DC component with the digital high-pass filter, convert it into an analog signal with the digital / analog converter, and demodulate the signal. Provides a method of demodulating the digital AM demodulator, characterized in that to obtain. Where n
Is a natural number.

【0017】[0017]

【実施の形態】本発明のデジタルAM復調器とその方法を
示す実施の形態を図面を基に説明する。図1は本発明の
実施の形態を示すブロック図であり、1は入力端子、2
はA/D変換器、3はデジタル移相器、4はデジタル加
算器、5はレベル補正器、6はデジタルハイパスフィル
タ、7はD/A変換器、8は出力端子、9はPSNマト
リックス、10a,10b,10cは位相係数発生器、
11a,11b,11cは位相係数発生器、12a,1
2b,12cはデジタル乗算器、13a,13b,13
cはデジタル乗算器、14a,14b,14cはデジタ
ル加算器、15a,15b,15cは絶対値化器であ
る。尚、以下の説明において、10a,10b,10c
の位相係数発生器を位相係数発生器10とし、11a,
11b,11cの位相係数発生器を位相係数発生器11
とし、12a,12b,12cのデジタル乗算器をデジ
タル乗算器12とし、13a,13b,13cのデジタ
ル乗算器をデジタル乗算器13とし、14a,14b,
14cのデジタル加算器をデジタル乗算器14とし、1
5a,15b,15cの絶対値化器を絶対値化器15と
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment showing a digital AM demodulator and its method of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the present invention, where 1 is an input terminal and 2
Is an A / D converter, 3 is a digital phase shifter, 4 is a digital adder, 5 is a level corrector, 6 is a digital high-pass filter, 7 is a D / A converter, 8 is an output terminal, 9 is a PSN matrix, 10a, 10b and 10c are phase coefficient generators,
11a, 11b, 11c are phase coefficient generators, 12a, 1
2b and 12c are digital multipliers, 13a, 13b and 13
c is a digital multiplier, 14a, 14b and 14c are digital adders, and 15a, 15b and 15c are absolute value digitizers. In the following description, 10a, 10b, 10c
Let the phase coefficient generator 10 be a phase coefficient generator 10, and
The phase coefficient generators 11b and 11c are replaced by the phase coefficient generator 11
, The digital multipliers 12a, 12b, 12c are the digital multipliers 12, and the digital multipliers 13a, 13b, 13c are the digital multipliers 13, 14a, 14b,
The digital adder 14c is a digital multiplier 14, and 1
The absolute value digitizers 5a, 15b, and 15c are referred to as absolute value digitizer 15.

【0018】無線通信機において、受信したアナログAM
信号x(式(3))は、フロント・エンド回路及びIF回
路等で信号処理された後、所望のIF周波数となって、本
発明の入力端子1から入力し、A/D変換器2において
サンプリング周波数fsで標本化され量子化しデジタルAM
信号xd となる。尚、vsを変調信号とする。 x=(1+vs)cos(ωt−ψ) ・・・(3)
In the wireless communication device, the received analog AM
The signal x (equation (3)) becomes a desired IF frequency after being subjected to signal processing by the front end circuit, the IF circuit, etc., and is input from the input terminal 1 of the present invention, and is input by the A / D converter 2. Digital AM sampled and quantized at sampling frequency fs
It becomes the signal xd. It should be noted that vs is a modulation signal. x = (1 + vs) cos (ωt−ψ) (3)

【0019】デジタルAM信号xd は、デジタル移相器3
で式(4)及び(5)で示すπ/2の位相差をもつ2つ
のデジタルAM信号I及びQになる。ここで便宜的に、ψ
を零とする。 I=(1+vs)cosωt ・・・(4) Q=(1+vs)cos(ωt-π/2)=(1+vs)sinωt ・・・(5)
The digital AM signal xd is supplied to the digital phase shifter 3
Then, there are two digital AM signals I and Q having a phase difference of π / 2 shown in equations (4) and (5). Here, for convenience, ψ
Is zero. I = (1 + vs) cosωt ・ ・ ・ (4) Q = (1 + vs) cos (ωt-π / 2) = (1 + vs) sinωt ・ ・ ・ (5)

【0020】この信号I及びQを用いて、デジタルAM信
号xd の1周期をπ/nの位相差で等分割したn個のデ
ジタルAM信号xdnを生成する。式(6)で示す如く、こ
のn個のデジタルAM信号xdnは、先の2つの直交するデ
ジタルAM信号I及びQと、後段に位置する位相係数発生
器10及び11からの所望の位相差を導き出す位相係数
信号とをそれぞれ乗算器12及び13で乗算し、加算器
14でそれらをベクトル合成することで生成される。 xd1 = (1+vs)cos(ωt-0) =Icos(0)π + Qsin(0)π xd2 = (1+vs)cos(ωt-(π/n)) =Icos(π/n) + Qsin(π/n) xd3 = (1+vs)cos(ωt-(2π/n)) =Icos(2π/n) + Qsin(2π/n) xd4 = (1+vs)cos(ωt-(3π/n)) =Icos(3π/n) + Qsin(3π/n) ・・・・・・・・・・・・・・・ xdn = (1+vs)cos(ωt-((n-1)π/n)) =Icos((n-1)π/n) + Qsin((n-1)π/n) ・・・(6)
Using these signals I and Q, n digital AM signals xdn are generated by equally dividing one cycle of the digital AM signal xd with a phase difference of π / n. As shown in the equation (6), the n digital AM signals xdn represent the desired phase difference from the preceding two orthogonal digital AM signals I and Q and the phase coefficient generators 10 and 11 located at the subsequent stage. It is generated by multiplying the derived phase coefficient signal by multipliers 12 and 13, respectively, and vector-combining them by an adder 14. xd1 = (1 + vs) cos (ωt-0) = Icos (0) π + Qsin (0) π xd2 = (1 + vs) cos (ωt- (π / n)) = Icos (π / n) + Qsin (π / n) xd3 = (1 + vs) cos (ωt- (2π / n)) = Icos (2π / n) + Qsin (2π / n) xd4 = (1 + vs) cos (ωt- (3π / n)) = Icos (3π / n) + Qsin (3π / n) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ xdn = (1 + vs) cos (ωt-((n-1) π / n)) = Icos ((n-1) π / n) + Qsin ((n-1) π / n) (6)

【0021】次に、絶対値化器15でn個のデジタルAM
信号xdnをそれぞれ絶対値にし、この絶対値をとったn
個のデジタルAM信号|xdn|をデジタル加算器4で、式
(7)及び(8)で示す如く全て加算する。 |xd1|+|xd2|+|xd3|+|xd4|+・・・+|xdn| =(1+vs)Σ|Icos(i/n)π + Qsin(i/n)π| (但し、i=0 〜 n-1) ・・・ (7) =(1+vs)Σ|cos(ωt-(i/n)π)| (但し、i=0 〜 n-1) ・・・ (8)
Next, in the absolute value converter 15, n digital AMs are input.
Each of the signals xdn is set to an absolute value, and this absolute value is taken n
The digital AM signals | xdn | are all added by the digital adder 4 as shown in equations (7) and (8). | Xd1 | + | xd2 | + | xd3 | + | xd4 | + ... + | xdn | = (1 + vs) Σ | Icos (i / n) π + Qsin (i / n) π | (however, i = 0 ~ n-1) ・ ・ ・ (7) = (1 + vs) Σ | cos (ωt- (i / n) π) | (where i = 0 〜 n-1) ・ ・ ・ (8 )

【0022】ここで、式(8)のΣ|cos (ωt-(i/n)
π)|の項について、f(ωt)=Σ|cos (ωt-(i/n)π)
| として式を展開すると、nが偶数の時と奇数の時と
で、関数f(ωt)の展開式が相違してくる。nが偶数の
時、関数f(ωt) の展開式は、以下に示すようになる。 [ 0<ωt≦ π/n] f(ωt)=Cmax1・cos(ωt-( π/2n)) [ π/n<ωt≦2π/n] f(ωt)=Cmax1・cos(ωt-(3π/2n)) [2π/n<ωt≦3π/n] f(ωt)=Cmax1・cos(ωt-(5π/2n)) ・・・・・・・・・・・・・・・・・・・・・・・・・・ [(n-1)π/n<ωt≦nπ/n] f(ωt)=Cmax1・cos(ωt-((n-1)π/2n)) (但し、Cmax1=2・Σ|cos((2j-1)π/2n)| (j=0〜n/2)) ・・・(9)
Here, Σ | cos (ωt- (i / n) in equation (8)
π) | terms, f (ωt) = Σ | cos (ωt- (i / n) π)
When the formula is expanded as |, the expansion formula of the function f (ωt) is different when n is an even number and when it is an odd number. When n is an even number, the expansion formula of the function f (ωt) is as follows. [0 <ωt ≦ π / n] f (ωt) = Cmax1 ・ cos (ωt- (π / 2n)) [π / n <ωt ≦ 2π / n] f (ωt) = Cmax1 ・ cos (ωt- (3π / 2n)) [2π / n <ωt ≦ 3π / n] f (ωt) = Cmax1 ・ cos (ωt- (5π / 2n))・ ・ ・ ・ ・ ・ ・ ・ [(N-1) π / n <ωt ≦ nπ / n] f (ωt) = Cmax1 ・ cos (ωt-((n-1) π / 2n)) (however, Cmax1 = 2 ・ Σ | cos ((2j-1) π / 2n) | (j = 0 to n / 2)) (9)

【0023】また、nが奇数の時は、以下に示すように
なる。 [-π/2n<ωt≦ π/2n] f(ωt)=Cmax2・cos(ωt) [ π/2n<ωt≦3π/2n] f(ωt)=Cmax2・cos(ωt-( π/n)) [3π/2n<ωt≦5π/2n] f(ωt)=Cmax2・cos(ωt-(2π/n)) ・・・・・・・・・・・・・・・・・・・・・・・・・・ [(2n-3)π/2n<ωt≦(2n-1)π/2n] f(ωt)=Cmax2・cos(ωt-((n-1)π/n)) (但し、Cmax2=1+2・Σ|cos(2jπ/2n)| (j=1〜(n-1)/2)) ・・・(10)
When n is an odd number, the following is obtained. [-π / 2n <ωt ≦ π / 2n] f (ωt) = Cmax2 · cos (ωt) [π / 2n <ωt ≦ 3π / 2n] f (ωt) = Cmax2 · cos (ωt- (π / n) ) [3π / 2n <ωt ≦ 5π / 2n] f (ωt) = Cmax2 ・ cos (ωt- (2π / n)) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・・ ・ ・ ・ ・ [(2n-3) π / 2n <ωt ≦ (2n-1) π / 2n] f (ωt) = Cmax2 ・ cos (ωt-((n-1) π / n)) (However, , Cmax2 = 1 + 2 · Σ | cos (2jπ / 2n) | (j = 1 to (n-1) / 2)) (10)

【0024】関数f(ωt)は、nが偶数の時、式(9)か
らωt=π/(2n),3π/(2n),5π/(2n),・・・・で式(11)に
示す最大値を、ωt=0,π/n,2π/n,3π/n,・・・・ で式(1
2)に示す最小値をとる。 f(π/(2n))=Cmax1 ・・・(11) f(π/n) =Cmax1・cos(π/(2n)) ・・・(12)
When n is an even number, the function f (ωt) is expressed by the formula (9) from ωt = π / (2n), 3π / (2n), 5π / (2n), ... The maximum value shown in ωt = 0, π / n, 2π / n, 3π / n, ...
Take the minimum value shown in 2). f (π / (2n)) = Cmax1 (11) f (π / n) = Cmax1 · cos (π / (2n)) (12)

【0025】同様に、nが奇数の時、 式(10)から
ωt=0,π/n,2π/n,3π/n,・・・・で式(13)に示す最大
値を、ωt=π/(2n),3π/(2n),5π/(2n),・・・・で式(1
4)に示す最小値をとる。 f(0) =Cmax2 ・・・(13) f(π/(2n)) =Cmax2・cos(π/(2n)) ・・・(14)
Similarly, when n is an odd number, from the formula (10), ωt = 0, π / n, 2π / n, 3π / n, ... π / (2n), 3π / (2n), 5π / (2n), ...
Take the minimum value shown in 4). f (0) = Cmax2 (13) f (π / (2n)) = Cmax2 ・ cos (π / (2n)) (14)

【0026】nを無限大にすると、式(12)のcos(π
/(2n))の項は1に収束し、最小値は最大値Cmax1に近づ
くことがわかる。つまり、nを大きくすると、関数f(ω
t)は時間tに関係なく、ある一定の値Cmax1に近づく。
式(14)においても同様である。
When n is set to infinity, cos (π in equation (12) is
It can be seen that the term / (2n)) converges to 1 and the minimum value approaches the maximum value Cmax1. That is, when n is increased, the function f (ω
t) approaches a certain value Cmax1 regardless of time t.
The same applies to equation (14).

【0027】上述より、f(ωt)が、ある一定の値Cmax1
及びCmax2に近づくということは、式(8)は、式(1
5)及び(16)で示すような式となり、変調波成分と
直流成分だけが残るような形になることがわかる。つま
り、絶対値加算で生成した信号は、変調信号の包絡線に
ほぼ近くなることが言える。 (1+vs)・Cmax1 ・・・(15) (1+vs)・Cmax2 ・・・(16)
From the above, f (ωt) is a constant value Cmax1
And approaching Cmax2 means that equation (8) is:
It is understood that the equations shown in 5) and (16) are obtained, and only the modulated wave component and the DC component remain. That is, it can be said that the signal generated by the absolute value addition is almost close to the envelope of the modulated signal. (1 + vs) ・ Cmax1 ・ ・ ・ (15) (1 + vs) ・ Cmax2 ・ ・ ・ (16)

【0028】式(15)及び(16)から推察できる通
り、nを増加すると、これらの直流成分が増加するた
め、加算器4の後段にあるデジタル乗算器5で、式(1
1)及び(13)で示す最大値の逆数を下記に示す補正
係数Cとして乗じ、元のデジタルAM信号の振幅レベルに
なるように補正する。 C=1/Cmax1=1/(2・Σ|cos(2j-1)π/2n)|) (nが偶数:j=0〜n/2) ・・・(17) C=1/Cmax2=1/(1+2・Σ|cos(2j)π/2n)|) (nが奇数:j=1〜(n-1)/2) ・・・(18)
As can be inferred from the equations (15) and (16), when n is increased, these DC components are increased. Therefore, the digital multiplier 5 in the subsequent stage of the adder 4 uses the equation (1
The reciprocal of the maximum value shown in 1) and (13) is multiplied as a correction coefficient C shown below to correct the amplitude level of the original digital AM signal. C = 1 / Cmax1 = 1 / (2 ・ Σ | cos (2j-1) π / 2n) |) (n is even: j = 0 to n / 2) ・ ・ ・ (17) C = 1 / Cmax2 = 1 / (1 + 2 ・ Σ | cos (2j) π / 2n) |) (n is odd: j = 1 to (n-1) / 2) (18)

【0029】補正係数発生器16とデジタル乗算器5と
で補正された信号は、デジタルハイパスフィルタで直流
分を除去され、デジタルAM信号の包絡線そのものとな
る。その後、デジタル/アナログ変換器(以下、D/A
変換器という。)でアナログ信号に変換し搬送波の包絡
線に比例したAM復調信号yを出力端子8に出力する。
The signal corrected by the correction coefficient generator 16 and the digital multiplier 5 has a direct current component removed by a digital high-pass filter and becomes the envelope of the digital AM signal itself. After that, a digital / analog converter (hereinafter D / A
It is called a converter. ), It is converted into an analog signal and the AM demodulation signal y proportional to the envelope of the carrier wave is output to the output terminal 8.

【0030】しかし、nは有限であるため、関数f(ωt)
は多少なりとも、時間と共に変動し、絶対値加算で生成
した信号は、わずかながら包絡線から変化する。関数f
(ωt)は、式(8)で明らかのように、無変調の時の絶
対値加算で生成した信号として考えられる。包絡線から
変化する幅は、関数f(ωt)の変動する幅に依存するた
め、後述からは便宜的に無変調として考える。
However, since n is finite, the function f (ωt)
Varies with time, and the signal generated by the absolute value addition changes slightly from the envelope. Function f
As is clear from the equation (8), (ωt) can be considered as a signal generated by the absolute value addition in the non-modulation. The width varying from the envelope depends on the varying width of the function f (ωt), and will be considered as unmodulated for convenience sake from the following.

【0031】そこで、サンプリング条件が満足されなか
った場合等に生じる、エイリアシング信号をその振幅と
周波数に分けて導出する。まず、図6に、上述のn個の
デジタルAM信号を絶対値加算したときの波形図を示す。
図6より、絶対値加算した波形は、搬送波周波数fcの2
n倍の周波数fbで繰り返す半波正弦波であり、この振幅
レベルは上述した最大値、最小値の比より、補正係数C
で補正されていることを考慮して、つまり、復調した時
の信号の最大振幅レベルを1となるように正規化するも
のとし、半波正弦波の振幅レベルをαとすると、αは式
(19)のようになる。 α=(最大値−最小値)・補正係数 =1−cos(π/(2n)) ・・・(19)
Therefore, the aliasing signal generated when the sampling condition is not satisfied is divided into its amplitude and frequency and derived. First, FIG. 6 shows a waveform diagram when the absolute values of the above n digital AM signals are added.
From Fig. 6, the waveform with the absolute value added is 2 times the carrier frequency fc.
It is a half-wave sine wave that repeats at an n-fold frequency fb, and this amplitude level is calculated by the correction coefficient C
Taking into account that the maximum amplitude level of the signal at the time of demodulation is normalized to 1 and the amplitude level of the half-wave sine wave is α, α is given by 19). α = (maximum value−minimum value) / correction coefficient = 1−cos (π / (2n)) (19)

【0032】今、nを無限大にすると、式(19)に示
すαは零に収束し、絶対値加算で生成した信号は、デジ
タルAM信号の包絡線そのものとなって検波されているこ
とが分かる。しかし、デジタルAM信号を無限個加算する
ことは非現実的で、実用上問題の無いレベルにαがあれ
ば良いと考えられる。
When n is set to infinity, α shown in the equation (19) converges to zero, and the signal generated by the absolute value addition is detected as the envelope of the digital AM signal itself. I understand. However, it is unrealistic to add an infinite number of digital AM signals, and it is considered that α should be at a level where there is no practical problem.

【0033】一方、絶対値加算で生成された半波正弦波
の周波数は、搬送波周波数の2n倍となり、式(1)の
条件を満たすことができなくなる。これは、半波正弦波
において、その2分の1周期に1つ以上のサンプル点が
存在しないような形となる。これより、サンプリング周
波数fsに対し、絶対値加算で生成された半波正弦波の周
波数が、fs/(4n) を越える周波数となるため、復調信号
にエイリアシングのような現象が生じる。また、図6で
示すこの標本点の軌跡がエイリアシング信号になると考
えられるが、図6より、そのエイリアシング信号の振幅
は式(19)で示すα以下の値になる。
On the other hand, the frequency of the half-wave sine wave generated by the absolute value addition becomes 2n times the carrier frequency, and the condition of the equation (1) cannot be satisfied. This is a form in which there is not more than one sample point in the half cycle of the half-wave sine wave. As a result, the frequency of the half-wave sine wave generated by the addition of the absolute values with respect to the sampling frequency fs becomes a frequency exceeding fs / (4n), so that a phenomenon such as aliasing occurs in the demodulated signal. Further, it is considered that the locus of this sampling point shown in FIG. 6 becomes an aliasing signal, but from FIG. 6, the amplitude of the aliasing signal becomes a value equal to or less than α shown in equation (19).

【0034】一方、半波正弦波の周期tbは、搬送波周期
tcの1/2n倍であるから、tbは式(20)のようになり、
サンプリング時間tsと半波正弦波の周期tbの差をΔt と
すると、Δtは式(21)になる。 tb=2ntc ・・・(20) Δt=|ts-tb| ・・・(21)
On the other hand, the half-wave sine wave period tb is the carrier wave period.
Since it is 1 / 2n times tc, tb is given by equation (20),
If the difference between the sampling time ts and the half-wave sine wave period tb is Δt, then Δt is given by equation (21). tb = 2ntc ・ ・ ・ (20) Δt = | ts-tb | ・ ・ ・ (21)

【0035】また、半波正弦波において、サンプル点
は、m周期おきに1個表れるので、サンプル点mは式
(22)のようになり、それにともないΔt は、式(2
3)のようになる。 m={(ts/tb)+0.5} (但し、{ }は整数部を示す。) ・・・(22) Δt=|ts-mtb| ・・・(23)
Further, in the half-wave sine wave, since one sample point appears every m cycles, the sample point m is as shown in equation (22), and Δt is accordingly given by equation (2)
It looks like 3). m = {(ts / tb) +0.5} (However, {} indicates the integer part.) (22) Δt = | ts-mtb | (23)

【0036】以上より、エイリアシング信号の周期tu
は、式(24)で示す形となるから、その周波数fuは、
式(25)のようになる。 tu=(tb/Δt)ts ・・・(24) fu=fs/(tb/Δt)=2nfcfs|(1/fs)-(m/(2nfc))| ・・・(25)
From the above, the period tu of the aliasing signal is
Has the form shown in equation (24), the frequency fu is
It becomes like the formula (25). tu = (tb / Δt) ts ・ ・ ・ (24) fu = fs / (tb / Δt) = 2nfcfs | (1 / fs)-(m / (2nfc)) | ・ ・ ・ (25)

【0037】また、このエイリアシング信号が半波正弦
波の1周期分を跨ぐ位置で極が反転するため、復調信号
の歪み成分には、式(25)で示す周波数の高調波成分
もが重畳される。また、この高調波の振幅レベルは、式
(19)で求めたαを乗じた値以下になると考えられ
る。
Further, since the poles of this aliasing signal are inverted at the position where it crosses one cycle of the half-wave sine wave, the distortion component of the demodulated signal is also superposed with the harmonic component of the frequency shown in equation (25). It Further, the amplitude level of this harmonic is considered to be equal to or less than the value obtained by multiplying α obtained by the equation (19).

【0038】以上より、復調信号の歪み成分は、エイリ
アシング信号とその高調波のみで構成されており、式
(19)や式(25)からその歪みレベルは、変調度に
は依存せず、例えば100%の変調度であっても、歪み
レベルの小さいクオリティの高い変調信号を検波するこ
とが可能となる。
From the above, the distortion component of the demodulated signal is composed only of the aliasing signal and its harmonics, and the distortion level does not depend on the modulation factor from equations (19) and (25). Even with a modulation degree of 100%, it is possible to detect a high-quality modulated signal with a low distortion level.

【0039】[0039]

【実施例1】サンプリング周波数fsが48.441kHz、搬送
波周波数fcが12kHzで、本発明のデジタルAM復調を実施
した場合の搬送波に対する歪みレベルを表1に示す。
[Embodiment 1] Table 1 shows distortion levels for a carrier when the sampling frequency fs is 48.441 kHz and the carrier frequency fc is 12 kHz and the digital AM demodulation of the present invention is performed.

【0040】[0040]

【実施例2】サンプリング周波数fsが48.441kHz、搬送
波周波数fcが15.138kHzで、本発明のデジタルAM復調を
実施した場合の搬送波に対する歪みレベルを表2に示
す。
[Embodiment 2] Table 2 shows distortion levels for a carrier when the sampling frequency fs is 48.441 kHz and the carrier frequency fc is 15.138 kHz and the digital AM demodulation of the present invention is performed.

【0041】[0041]

【実施例3】サンプリング周波数fsが48.441kHz、搬送
波周波数fcが1.892 kHzで、本発明のデジタルAM復調を
実施した場合の搬送波に対する歪みレベルを表3に示
す。
[Third Embodiment] Table 3 shows distortion levels for a carrier when the sampling frequency fs is 48.441 kHz and the carrier frequency fc is 1.892 kHz and the digital AM demodulation according to the present invention is performed.

【0042】[0042]

【発明の効果】本発明で示すデジタルAM復調器によれ
ば、近年のデジタル技術やICの製造技術の進歩に鑑み
ると、アナログAM復調器に比べて、回路等の構成が簡単
で、かつ、安定してクオリティの高い変調信号が検波で
き、また、IC化することで安価にデジタルAM復調器を
実現することができる。
According to the digital AM demodulator according to the present invention, in view of the recent advances in digital technology and IC manufacturing technology, the configuration of the circuit and the like is simpler than that of the analog AM demodulator, and A modulated signal of high quality can be stably detected, and a digital AM demodulator can be realized at low cost by forming an IC.

【0043】[0043]

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】 従来技術(1)を示すブロック図。FIG. 2 is a block diagram showing a conventional technique (1).

【図3】 従来技術(2)を示すブロック図。FIG. 3 is a block diagram showing a conventional technique (2).

【図4】 従来技術(3)を示すブロック図。FIG. 4 is a block diagram showing a conventional technique (3).

【図5】 従来技術(4)を示すブロック図。FIG. 5 is a block diagram showing a conventional technique (4).

【図6】 本発明の実施の形態を示す波形図。FIG. 6 is a waveform diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 入力端子 2 A/D変換器 3 デジタル移相器 4 デジタル加算器 5 レベル補正器 6 デジタルハイパスフィルタ 7 D/A変換器 8 出力端子 9 PSNマトリックス 10a〜10c 位相係数発生器 11a〜11c 位相係数発生器 12a〜12c デジタル乗算器 13a〜13c デジタル乗算器 14a〜14c デジタル加算器 15a〜15c 絶対値化器 1 Input Terminal 2 A / D Converter 3 Digital Phase Shifter 4 Digital Adder 5 Level Corrector 6 Digital High Pass Filter 7 D / A Converter 8 Output Terminal 9 PSN Matrix 10a-10c Phase Coefficient Generator 11a-11c Phase Coefficient Generator 12a to 12c Digital multiplier 13a to 13c Digital multiplier 14a to 14c Digital adder 15a to 15c Absolute value digitizer

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アナログ/デジタル変換器と、移相器
と、第1の位相係数発生器と、該第1の位相係数発生器
と接続される第1の乗算器と、第2の位相係数発生器
と、該第2の位相係数発生器と接続される第2の乗算器
と、前記第1の乗算器の出力と前記第2の乗算器の出力
とを加算する第1の加算器と、該第1の加算器と接続す
る絶対値化器とで構成されるn個のPSN回路と、該n
個のPSN回路の夫々の出力を加算する第2の加算器
と、レベル補正器と、デジタルハイパスフィルタと、デ
ジタル/アナログ変換器とが、縦列接続していることを
特徴とするデジタルAM復調器。
1. An analog / digital converter, a phase shifter, a first phase coefficient generator, a first multiplier connected to the first phase coefficient generator, and a second phase coefficient. A generator, a second multiplier connected to the second phase coefficient generator, and a first adder for adding the output of the first multiplier and the output of the second multiplier , N PSN circuits each comprising an absolute value converter connected to the first adder,
A second AM adder for adding the respective outputs of the PSN circuits, a level corrector, a digital high-pass filter, and a digital / analog converter are connected in cascade, and a digital AM demodulator is provided. .
【請求項2】 請求項1のデジタルAM復調器において、
入力したAM信号をアナログ/デジタル変換器で第1のデ
ジタル信号に変換し、前記第1のデジタル信号から移相
器で、π/2の位相差を持つ第2及び第3のデジタル信
号を生成し、前記第2のデジタル信号に、前記第1の位
相係数発生器より出力される各々がπ/nの位相差を持つ
cos(0)からcos((n-1)π/n)までのn個の位相係数をn個
の第1の乗算器でそれぞれ乗じ、前記第3のデジタル信
号に、前記第2の位相係数発生器より出力される各々が
π/n の位相差を持つsin(0)からsin((n-1)π/n) までの
n個の位相係数をn個の第2の乗算器でそれぞれ乗じ、
前記n個の第1の乗算器の出力と前記n個の第2の乗算
器の出力とをそれぞれn個の第1の加算器でベクトル合
成し、前記n個の絶対値化器でそれぞれ絶対値をとるこ
とでn個の第4のデジタル信号を生成し、前記n個の第
4のデジタル信号を第2の加算器で全て加算し、レベル
補正器でレベル補正した後、デジタルハイパスフィルタ
で直流成分を除去し、デジタル/アナログ変換器でアナ
ログ信号に変換して、復調信号を得ることを特徴とする
デジタルAM復調の復調方法。
2. The digital AM demodulator according to claim 1, wherein
The input AM signal is converted into a first digital signal by an analog / digital converter, and a phase shifter is used to generate second and third digital signals having a phase difference of π / 2 from the first digital signal. However, each of the second digital signals output from the first phase coefficient generator has a phase difference of π / n.
n phase coefficients from cos (0) to cos ((n-1) π / n) are respectively multiplied by n first multipliers, and the third digital signal is multiplied by the second phase coefficient. The n phase coefficients from sin (0) to sin ((n-1) π / n), each of which has a phase difference of π / n, are output from the generator with n second multipliers. Multiply by
The outputs of the n first multipliers and the outputs of the n second multipliers are vector-combined by the n first adders, respectively, and the n absolute value converters respectively perform absolute vector synthesis. By taking a value, n fourth digital signals are generated, the n fourth digital signals are all added by the second adder, the level is corrected by the level corrector, and then the digital high-pass filter is used. A demodulation method for digital AM demodulation, which removes a DC component and converts it into an analog signal with a digital / analog converter to obtain a demodulated signal.
JP11709396A 1996-04-16 1996-04-16 Digital AM demodulator and method Expired - Fee Related JP2929366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11709396A JP2929366B2 (en) 1996-04-16 1996-04-16 Digital AM demodulator and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11709396A JP2929366B2 (en) 1996-04-16 1996-04-16 Digital AM demodulator and method

Publications (2)

Publication Number Publication Date
JPH09284054A true JPH09284054A (en) 1997-10-31
JP2929366B2 JP2929366B2 (en) 1999-08-03

Family

ID=14703229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11709396A Expired - Fee Related JP2929366B2 (en) 1996-04-16 1996-04-16 Digital AM demodulator and method

Country Status (1)

Country Link
JP (1) JP2929366B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206536A (en) * 2008-01-30 2009-09-10 Daihen Corp High frequency detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206536A (en) * 2008-01-30 2009-09-10 Daihen Corp High frequency detector

Also Published As

Publication number Publication date
JP2929366B2 (en) 1999-08-03

Similar Documents

Publication Publication Date Title
JP3017041B2 (en) Automatic frequency control method and device
US4750214A (en) Digital FM demodulator using delayed signal product with arctangent
WO2018116943A1 (en) Noise suppression device, noise suppression method, and reception device and reception method using same
JP3095067B2 (en) DC offset canceller, receiver having the same, communication system and DC offset canceling method
JP2874511B2 (en) Balanced phase-amplitude baseband processor for quadrature detection receiver
JPH0823231A (en) Fm modulation circuit
JP3247850B2 (en) FM signal demodulation method and apparatus therefor
JP2929366B2 (en) Digital AM demodulator and method
KR100676568B1 (en) Timing extractor, timing extraction method and demodulator having the timing extractor
JPH0779363B2 (en) Delay detection circuit
JP3568284B2 (en) Demodulation method and demodulation device
JP4458549B2 (en) Receiver
JP4324595B2 (en) Digital modulation signal demodulator
JPH06216650A (en) Digital circuit for extracting phase signal and envelope signal of single-sideband signal
JP3404326B2 (en) Carrier recovery circuit, carrier recovery method and quadrature detection circuit, quadrature detection method
EP2797225B1 (en) Method of and apparatus for demodulating an amplitude modulated signal
CN117614795A (en) Carrier wave capturing method suitable for multiple phase modulation modes
JP2901427B2 (en) FM demodulator
JP2587160B2 (en) Inverse modulation type demodulation circuit for OQPSK
JPH08265381A (en) Quadrature modulator
JPH04261248A (en) Batch demodulator
JPS5835408B2 (en) AFC circuit for demodulating differential phase modulated waves
KR20040066433A (en) Apparatus for recovering carrier in bsb receiver
JPS60196049A (en) Carrier recovery circuit
JP2003037442A (en) Fm digital demodulator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120521

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 14

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees