JPH09283173A - Metal oxide-fullerence storage battery - Google Patents

Metal oxide-fullerence storage battery

Info

Publication number
JPH09283173A
JPH09283173A JP8092364A JP9236496A JPH09283173A JP H09283173 A JPH09283173 A JP H09283173A JP 8092364 A JP8092364 A JP 8092364A JP 9236496 A JP9236496 A JP 9236496A JP H09283173 A JPH09283173 A JP H09283173A
Authority
JP
Japan
Prior art keywords
fullerene
negative electrode
storage battery
metal oxide
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8092364A
Other languages
Japanese (ja)
Inventor
Toru Kikuyama
亨 菊山
Yoshiaki Nitta
芳明 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8092364A priority Critical patent/JPH09283173A/en
Publication of JPH09283173A publication Critical patent/JPH09283173A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize high capacity and high density by regulating charging weight ratio of a positive electrode and a negative electrode. SOLUTION: In this battery, Fullerence compound is used for the negative electrode, and the metal oxide is used for the positive electrode. Charging weight ratio thereof is regulated so that the negative electrode per one part by weight of the positive electrode is set in a range at 0.2-0.5. The Fullerence compound is expressed with a general formula Cn , and 60<=n<=82, and C60 and C70 exist 0<C60 /(C60 +C70 )<1, and at least any one of 12 kinds of metal such as Li is included in the negative electrode active material, and desirably expressed with a general formula Mx Cn (M means metal kind, 1<=x<=3, 60<=n<=82), and the charged Fullerence hydride is desirably expressed with a general formula Cn Hy (Y means an even number, 0<y/n<=0.8 60<=n<=82). Electrochemical absorption and discharge of hydrogen of this hydride is performed so as to obtain a light battery at a high energy density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気化学的に水素
を吸蔵・放出する能力を有するフラーレンを用いた金属
酸化物・フラーレン蓄電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal oxide / fullerene storage battery using a fullerene capable of electrochemically storing and releasing hydrogen.

【0002】[0002]

【従来の技術】近年、ポータブル機器は小型化傾向を強
めており、必然的にその電源である小型蓄電池の高エネ
ルギー密度化が望まれている。また、機器の用途が多様
化しつつあることから、広温度範囲で安定した性能の電
池が切望されている。
2. Description of the Related Art In recent years, portable devices have been increasingly miniaturized, and there is an inevitably demand for a high-density storage battery as a power source. In addition, since applications of devices are diversifying, a battery having stable performance in a wide temperature range is desired.

【0003】アルカリ電解液を用いた蓄電池は正極活物
質にニッケル酸化物を用い、負極活物質にカドミウムを
用いたニッケル・カドミウム蓄電池が従来より広く使用
されていたが、カドミウムの環境問題に対する影響が心
配され、その代替物質としての水素吸蔵合金を用いたニ
ッケル・水素蓄電池が実用化されてきた。これは同時に
蓄電池に要求されている高容量、高密度化を図ることが
できる。また、特に通信、情報やAVなどのポータブル
電源機器用電池は、ニッケル・カドミウムおよびニッケ
ル・水素蓄電池の重量エネルギー密度がおよそ70Wh
/Kgであるのに対し、それ以上の特性を有すリチウム
イオン蓄電池の開発により、さらなる電池の小型、軽量
化の期待も寄せられている。
A nickel-cadmium storage battery using a nickel oxide as a positive electrode active material and cadmium as a negative electrode active material has been widely used in a storage battery using an alkaline electrolyte. Concerned, nickel-hydrogen storage batteries using hydrogen storage alloys as alternatives have been put to practical use. This can attain the high capacity and high density required for the storage battery at the same time. In addition, especially for batteries for portable power equipment such as communication, information and AV, the weight energy density of nickel-cadmium and nickel-hydrogen storage batteries is about 70 Wh.
However, due to the development of a lithium ion storage battery having more than that, it is expected that the battery will be smaller and lighter.

【0004】しかし、上記のように広温度範囲におけ
る、リチウムイオン蓄電池等の非水系蓄電池は、まだ安
定しているとはいえず、アルカリ電解液を用いた蓄電池
に対しても大きな期待が寄せられている。
However, nonaqueous storage batteries such as lithium ion storage batteries in a wide temperature range as described above are not yet stable, and there are great expectations for storage batteries using an alkaline electrolyte. ing.

【0005】[0005]

【発明が解決しようとする課題】アルカリ電解液を用い
た蓄電池では、上記したような電池系より高エネルギー
密度で軽量な電池が求められている。現行のニッケル・
水素蓄電池は負極の比重がおよそ8.0g/cm3であ
り、これは水素吸蔵合金を用いているためこれ以上の重
量エネルギー密度の向上は難しい。そのため合金系より
も重量効率の良い材料が求められていた。
For a storage battery using an alkaline electrolyte, a battery having a higher energy density and a lighter weight than that of the battery system described above is required. Current nickel
The specific gravity of the negative electrode of the hydrogen storage battery is about 8.0 g / cm 3 , and it is difficult to further improve the weight energy density because it uses a hydrogen storage alloy. Therefore, there has been a demand for a material that is more weight efficient than the alloy type.

【0006】本発明は上記課題を解決するものであり、
高容量、高密度化が可能な蓄電池を提供することを目的
とする。
The present invention is intended to solve the above problems,
An object is to provide a storage battery capable of high capacity and high density.

【0007】[0007]

【課題を解決するための手段】本発明は上記目的を達成
するために、負極にフラーレン化合物を用いるものであ
り、正極として金属酸化物を用いた金属酸化物・フラー
レン蓄電池における充填重量比率が正極1重量部当たり
負極が0.2から0.5の範囲で用いたものである。
In order to achieve the above object, the present invention uses a fullerene compound for the negative electrode, and the filling weight ratio in the metal oxide / fullerene storage battery using the metal oxide as the positive electrode is positive. The negative electrode was used in the range of 0.2 to 0.5 per part by weight.

【0008】また、上記フラーレン化合物は、一般式C
nで表され60≦n≦82であり、C60とC70が0<C
60/(C60+C70)<1の範囲にあり、負極活物質中に
Li,Na,Mg,K,Ca,Ni,Fe,Co,R
b,Cs,Sr,Baのいずれかの金属の少なくとも1
種を含有し、一般式MxCn(Mは金属種、xは化学量
論組成比を示し、1≦x≦3であり炭素原子数を示すn
は60≦n≦82)で表され、充電状態のフラーレン水
素化物が、一般式CnHy(yは化学量論組成比を示し
偶数であり、水素化度が0<y/n≦0.8および60
≦n≦82)で表されるものであることが好ましい。
The fullerene compound has the general formula C
n is 60 ≦ n ≦ 82, and C 60 and C 70 are 0 <C
60 / (C 60 + C 70 ) <1 and Li, Na, Mg, K, Ca, Ni, Fe, Co, R in the negative electrode active material.
at least one of b, Cs, Sr, and Ba metals
And a general formula MxCn (M is a metal species, x is a stoichiometric composition ratio, 1 ≦ x ≦ 3, and n is the number of carbon atoms).
Is represented by the general formula CnHy (y represents a stoichiometric composition ratio and is an even number, and the degree of hydrogenation is 0 <y / n ≦ 0.8). 60
It is preferable that it is represented by ≦ n ≦ 82).

【0009】[0009]

【発明の実施の形態】本発明の実施の一形態を図1に示
すニッケル・フラーレン蓄電池の概略構成図を用いて説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described with reference to the schematic configuration diagram of a nickel fullerene storage battery shown in FIG.

【0010】図1において、1は本発明のフラーレンを
主成分に用いた負極板、2は水酸化ニッケルを主成分に
用いた正極板、3はセパレータ、4はケース、5は絶縁
板、6は安全弁、7は封口板、8は正極端子、9は正極
リードである。
In FIG. 1, 1 is a negative electrode plate using the fullerene of the present invention as a main component, 2 is a positive electrode plate using nickel hydroxide as a main component, 3 is a separator, 4 is a case, 5 is an insulating plate, 6 Is a safety valve, 7 is a sealing plate, 8 is a positive electrode terminal, and 9 is a positive electrode lead.

【0011】まず、負極に用いたフラーレン化合物の製
造法について説明する。基本的な製造メカニズムはアー
ク放電法であり、予め、カリウムの炭酸塩とグラファイ
ト粉末を混合しピッチで固め電極とし、容器内を真空排
気し、キャリアガスとしてヘリウムガス(約200To
rr)を導入し、電極に直流電圧23Vを印加し、40
mA程度を通電してアーク放電を発生させた。容器内に
堆積した炭素材を分析した結果、フラーレン化合物の収
率は18%であった。この炭素材から約90%の純度の
フラーレン化合物を溶媒抽出により分別し、これを負極
材料として用いた。このフラーレン化合物は、フラーレ
ンと金属が周期性をもった結晶固体であり、一般式Mx
Cnで表した場合、1≦x≦3であった。また、このフ
ラーレン化合物をアルゴンガス雰囲気下1200℃で5
32nmのYAGレーザーを照射することにより、フラ
ーレンの中空に金属原子を内包させた金属内包フラーレ
ンも製造し負極材料として用いた。
First, a method for producing the fullerene compound used for the negative electrode will be described. The basic manufacturing mechanism is the arc discharge method, in which potassium carbonate and graphite powder are mixed in advance and solidified at a pitch to form an electrode, the container is evacuated, and helium gas (about 200To
rr) is introduced and a DC voltage of 23 V is applied to the electrodes,
An electric current of about mA was applied to generate an arc discharge. As a result of analyzing the carbon material deposited in the container, the yield of the fullerene compound was 18%. A fullerene compound having a purity of about 90% was separated from this carbon material by solvent extraction, and this was used as a negative electrode material. This fullerene compound is a crystalline solid in which fullerenes and metals have a periodicity, and has a general formula Mx
When expressed by Cn, 1 ≦ x ≦ 3. In addition, this fullerene compound was heated at 1200 ° C. in an argon gas atmosphere for 5 hours.
By irradiating a YAG laser of 32 nm, a metal-containing fullerene in which metal atoms were included in the hollow of fullerene was also produced and used as a negative electrode material.

【0012】負極板1はフラーレン化合物に、カルボキ
シルメチルセルロースの1wt%水溶液を加えてペース
ト状にし、これを多孔度約95%の発泡状ニッケル多孔
体内に充填した。これを乾燥後、所定の厚みにプレスし
て、多孔度20%のフラーレン電極を作製した。なお、
このフラーレン電極の理論容量は、フラーレンであるC
nが水素と最大に反応できる量、すなわち満充電状態で
CnHnになると考え、この水素の量から算出してCn
1gあたり2061mAhとした。
The negative electrode plate 1 was prepared by adding a 1 wt% aqueous solution of carboxymethyl cellulose to a fullerene compound to form a paste, which was filled in a foamed nickel porous body having a porosity of about 95%. This was dried and then pressed to a predetermined thickness to produce a fullerene electrode having a porosity of 20%. In addition,
The theoretical capacity of this fullerene electrode is C, which is fullerene.
The amount of n that can react with hydrogen to the maximum, that is, CnHn when fully charged, is calculated from this amount of hydrogen, and CnHn is calculated.
It was 2061 mAh per gram.

【0013】正極板2には多孔度約95%の発泡状ニッ
ケル多孔体内に水酸化ニッケルを充填し、亜鉛化合物お
よびコバルト化合物を添加し多孔度25%にプレスした
ものを用いた。さらに正極にニッケルリードを溶接して
封口板と接続した。セパレータにはスルホン化処理を施
したポリプロピレン製の不織布を用いて電極群を構成し
て、金属ケースに挿入して電解液として30重量%の水
酸化カリウム水溶液を注入した後、封口しAサイズの密
閉型のニッケル酸化物・フラーレン蓄電池を作製した。
For the positive electrode plate 2, a foamed nickel porous body having a porosity of about 95% was filled with nickel hydroxide, a zinc compound and a cobalt compound were added, and the product was pressed to have a porosity of 25%. Further, a nickel lead was welded to the positive electrode and connected to the sealing plate. The separator is made of a non-woven polypropylene fabric that has been subjected to sulfonation to form an electrode group, which is inserted into a metal case and injected with a 30 wt% potassium hydroxide aqueous solution as an electrolytic solution. A sealed nickel oxide / fullerene storage battery was produced.

【0014】球殻状分子構造をとるフラーレンは、H.
W.Krotoら(Nature,318,162(1
985))によって合成され、代表的なものとしてC60
があるが、ほかのフラーレンとしてC70、C76、C78
80、C82、あるいはそれ以上の炭素数で形成されたも
のがある。これらのフラーレンは、全て5員環と6員環
で構成されており、合成に於ける一般的な各々の生成比
率は、C60が85%、C70が13%、残りはそれ以上の
高次フラーレンであることが報告されている。また、フ
ラーレンは、球状であるため通常の平面構造をなす半金
属性の黒鉛と電子構造が異なり半導体的性質を示す。
Fullerene having a spherical shell-like molecular structure is described in H.H.
W. Kroto et al. (Nature, 318, 162 (1
985)) and typically C 60
There are other fullerenes such as C 70 , C 76 , C 78 ,
Some are formed with carbon numbers of C 80 , C 82 , or higher. All of these fullerenes are composed of a 5-membered ring and a 6-membered ring, and the general production ratio of each of them is 85% for C 60 , 13% for C 70 , and the rest are higher than that. It is reported to be the next fullerene. In addition, since fullerene is spherical, it has semiconducting properties unlike ordinary semi-metallic graphite having a planar structure, and exhibits semiconductor-like properties.

【0015】その理由は、電子構造が球の外側と内側で
はパイ電子の電子密度状態が異なり、外側では高く内側
では低くなる傾向を示し、さらにシグマ性軌道が混成す
るため、単純なsp2混成軌道で規定できなくなり伝導
帯と価電子帯にバンドギャップが生じるためである。し
かしながら、シグマ性軌道が混成するために歪んだパイ
電子は反応後にsp3混成となる付加反応のような反応
に有利であることが知られている。そのためフラーレン
の結晶格子間にアルカリ金属、アルカリ土類金属や3d
遷移金属などをドーピングあるいはフラーレン分子内部
に金属を内包させると、フラーレンの伝導帯を形成する
1u軌道(正二十面体対称性とし、11の軌道から生じ
る3重縮退のLUMO(最低空状態)を形成する軌道)
に電子が入って、電子密度および電子伝導性が向上し、
これにより電子親和力の大きい水素イオンが容易にこの
軌道から電子を授受(電荷移動)し、負電荷を帯びた電
子状態でフラーレンに吸蔵される。
[0015] The reason is that different electron density state of the pi-electrons of the electron structure at the outer and inner sphere, tended to be lower in the high inside the outside, to further sigma orbital is mixed, simple sp 2 hybridized This is because the orbit cannot be defined and a band gap occurs in the conduction band and the valence band. However, it is known that distorted pi-electrons due to sigma-orbital hybridization are advantageous for reactions such as addition reactions in which sp 3 hybridization occurs after the reaction. Therefore, alkali metal, alkaline earth metal or 3d is present between the fullerene crystal lattices.
When the like transition metal is encapsulated metal inside doping or fullerene molecule, the t 1u orbital (icosahedral symmetry to form a conduction band of the fullerene, the triple degeneration resulting from trajectory 11 LUMO (lowest unoccupied state) Orbit that forms the
Electrons in, improving electron density and electron conductivity,
As a result, hydrogen ions, which have a high electron affinity, easily exchange electrons (charge transfer) from this orbit, and are occluded by fullerenes in the negatively charged electronic state.

【0016】この水素化物は、一般に球殻状の外側でフ
ラーレンの炭素−炭素二重結合が解離して炭素−水素結
合を形成することにより生成するため立体的な障害等の
影響を受けずに容易に安定な構造を取れるのは水素化度
(水素数/炭素数比)が0.8以下のものである。これ
らのことから、電気化学的に水素の吸蔵・放出を行わせ
ることにより水素吸蔵合金に代わる電池負極材料として
用いることができ、エネルギー密度が高く、かつ軽量な
金属酸化物・フラーレン蓄電池を提供することが可能と
なる。
This hydride is generally produced by dissociation of the carbon-carbon double bond of fullerene outside the spherical shell to form a carbon-hydrogen bond, so that it is not affected by steric hindrance and the like. A stable structure can be easily obtained when the degree of hydrogenation (hydrogen number / carbon number ratio) is 0.8 or less. From these facts, a metal oxide / fullerene storage battery which has a high energy density and can be used as a battery negative electrode material replacing an hydrogen storage alloy by electrochemically storing and releasing hydrogen is provided. It becomes possible.

【0017】[0017]

【実施例】正極板2に水酸化ニッケルを上記の負極1重
量部に対して0.05(a)〜0.7(h)重量部の範
囲内で種々変化させて充填し、さらに亜鉛化合物および
コバルト化合物を添加し多孔度25%にプレスしたもの
を用いた。
EXAMPLE The positive electrode plate 2 was filled with nickel hydroxide in various amounts within the range of 0.05 (a) to 0.7 (h) parts by weight relative to 1 part by weight of the above negative electrode, and a zinc compound was further added. And a cobalt compound were added and pressed to a porosity of 25%.

【0018】[0018]

【表1】 [Table 1]

【0019】正負極のアルカリ電解液中での充放電反応
式を示すと として表すことができる。
The charge / discharge reaction formula of the positive and negative electrodes in the alkaline electrolyte is shown below. Can be expressed as

【0020】ここで、Cn:フラーレン(n=60〜8
2)、y:反応電子数を意味する。したがって、電池全
体としては次式のように示される。
Here, Cn: fullerene (n = 60 to 8)
2), y: means the number of reaction electrons. Therefore, the battery as a whole is expressed by the following equation.

【0021】 上記で示した式より充電状態でフラーレンと反応するこ
とのできる水素量yは、最大CnHnであることから0
<y/n≦1.0として考えることができる。
[0021] From the formula shown above, the amount of hydrogen y that can react with fullerene in a charged state is 0 because the maximum amount is CnHn.
It can be considered that <y / n ≦ 1.0.

【0022】図2は各正/負極重量比(a)から(h)
におけるサイクル数に対する放電容量について示したも
のであり、10時間率電流でそれぞれの電池容量の15
0%を充電したのち、終止電圧を1.0Vとして5時間
率電流で放電するサイクル条件で充放電を行った。
FIG. 2 shows the positive / negative electrode weight ratios (a) to (h).
Discharge capacity with respect to the number of cycles in the
After charging 0%, charging / discharging was performed under the cycle condition that the final voltage was 1.0 V and the discharging was performed at a 5-hour rate current.

【0023】なお、それぞれの電池の初期容量を100
として示している。図2は負極の組成比R=C60/(C
60+C70)が0.8の場合について示してあり、上記の
正・負極重量比において図に示すような結果が得られ、
このことから正・負極の重量比を正極がもつ単位重量当
たりの比容量に対し、理由は定かではないが負極の充填
重量比率を正極1重量部当たり0.2〜0.5重量部の
範囲で用いることにより良好な特性が得られる。
The initial capacity of each battery is 100
Is shown as. FIG. 2 shows the composition ratio of the negative electrode R = C 60 / (C
60 + C 70 ) is 0.8, and the above-mentioned positive / negative electrode weight ratio gives the results shown in the figure.
For this reason, although the reason is not clear with respect to the specific capacity of the positive electrode / negative electrode relative to the specific capacity of the positive electrode per unit weight, the filling weight ratio of the negative electrode is in the range of 0.2 to 0.5 parts by weight per 1 part by weight of the positive electrode. Good characteristics can be obtained by using.

【0024】また、図3は、負極の充填重量比率を正極
1重量部当たり0.3重量部にして負極の組成比Rをか
えた場合の放電容量について示してあり、負極の組成比
が0.1≦R≦0.9の範囲で良好な特性が得られた。
ここで、R<0.1あるいは0.9<Rの範囲について
も同様な結果が得られることが考えられるが、このよう
な範囲の組成は合成およびクロマトグラフィーによる分
離において非常に困難であることが知られており、実用
性に欠ける。
Further, FIG. 3 shows the discharge capacity when the composition ratio R of the negative electrode was changed by changing the filling weight ratio of the negative electrode to 0.3 parts by weight per 1 part by weight of the positive electrode. Good characteristics were obtained in the range of 1 ≦ R ≦ 0.9.
Here, it is considered that similar results can be obtained in the range of R <0.1 or 0.9 <R, but the composition in such a range is very difficult in synthesis and separation by chromatography. Is known and lacks in practicality.

【0025】また、ドーピング金属種が異なる場合にお
いても本実施例の場合と同様に0.1≦R≦0.9の組
成比において正極に対し負極の充填重量比率が正極1重
量部当たり0.2〜0.5重量部の範囲で良好な特性が
得られ、さらにこのような結果は、金属を内包させたフ
ラーレンを用いた場合および金属をドーピングさせたフ
ラーレンと金属内包フラーレンを混合させた場合も同様
な特性が得られた。
Also, even when the doping metal species are different, the filling weight ratio of the negative electrode to the positive electrode is 0.1. Good results are obtained in the range of 2 to 0.5 parts by weight, and further, such results are obtained when a metal-encapsulated fullerene is used and when a metal-doped fullerene is mixed with a metal-encapsulated fullerene. Also obtained similar characteristics.

【0026】なお、金属をドーピングあるいは内包させ
なかった場合は、正・負極の容量バランスが崩れ良好な
特性が得られなかった。
When the metal was not doped or included, the capacity balance between the positive and negative electrodes was lost, and good characteristics could not be obtained.

【0027】[0027]

【発明の効果】以上のように、本発明は正・負極の充填
容量比率において正極がもつ単位重量当たりの比容量に
対し負極の充填重量比率が正極1重量部当たり0.2〜
0.5重量部の範囲で用いることにより、ニッケル・フ
ラーレン蓄電池が提供できるものである。
As described above, according to the present invention, the filling weight ratio of the negative electrode to the specific capacity per unit weight of the positive electrode in the filling capacity ratio of the positive and negative electrodes is 0.2 to 1 part by weight of the positive electrode.
When used in the range of 0.5 parts by weight, a nickel fullerene storage battery can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるニッケル・フラーレ
ン蓄電池の概略構成図
FIG. 1 is a schematic configuration diagram of a nickel fullerene storage battery according to an embodiment of the present invention.

【図2】本実施例で作成したニッケル・フラーレン蓄電
池におけるサイクル数に対する放電容量を示す図
FIG. 2 is a graph showing the discharge capacity with respect to the number of cycles in the nickel-fullerene storage battery prepared in this example.

【図3】本実施例で作成したニッケル・フラーレン蓄電
池におけるサイクル数に対する放電容量を示す図
FIG. 3 is a diagram showing the discharge capacity with respect to the number of cycles in the nickel-fullerene storage battery prepared in this example.

【符号の説明】[Explanation of symbols]

1 フラーレン化合物を用いた負極板 2 水酸化ニッケル正極板 3 セパレータ 4 ケース 5 絶縁板 6 安全弁 7 封口板 8 正極端子 9 正極リード 1 Negative electrode plate using fullerene compound 2 Nickel hydroxide positive electrode plate 3 Separator 4 Case 5 Insulating plate 6 Safety valve 7 Sealing plate 8 Positive electrode terminal 9 Positive electrode lead

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】金属酸化物を用いた正極とフラーレン化合
物を用いた負極とアルカリ電解液とを備え、前記正極と
負極の充填重量比率が正極1重量部当たり負極が0.2
から0.5であることを特徴とする金属酸化物・フラー
レン蓄電池。
1. A positive electrode using a metal oxide, a negative electrode using a fullerene compound, and an alkaline electrolyte, wherein the filling weight ratio of the positive electrode to the negative electrode is 0.2 per 1 part by weight of the positive electrode.
To 0.5, a metal oxide / fullerene storage battery.
【請求項2】負極活物質に用いるフラーレンは、一般式
Cn(nは炭素原子数)で表され60≦n≦82である
ことを特徴とする請求項1記載の金属酸化物・フラーレ
ン蓄電池。
2. The metal oxide / fullerene storage battery according to claim 1, wherein the fullerene used for the negative electrode active material is represented by the general formula Cn (n is the number of carbon atoms) and 60 ≦ n ≦ 82.
【請求項3】負極活物質に用いるフラーレンは、R=C
60/(C60+C70)の組成比が0<R<1の範囲にある
ことを特徴とする請求項1記載の金属酸化物・フラーレ
ン蓄電池。
3. Fullerene used for the negative electrode active material is R = C
The metal oxide / fullerene storage battery according to claim 1, wherein the composition ratio of 60 / (C 60 + C 70 ) is in the range of 0 <R <1.
【請求項4】負極活物質中にLi,Na,Mg,K,C
a,Ni,Fe,Co,Rb,Cs,Sr,Baのいず
れかの金属の少なくとも1種を含有し、一般式MxCn
(Mは金属種、xは化学量論組成比を示し、1≦x≦3
であり炭素原子数を示すnは60≦n≦82)で表され
ることを特徴とする請求項1記載の金属酸化物・フラー
レン蓄電池。
4. Li, Na, Mg, K, C in the negative electrode active material.
a, Ni, Fe, Co, Rb, Cs, Sr, or Ba containing at least one kind of metal, and having the general formula MxCn
(M represents a metal species, x represents a stoichiometric composition ratio, and 1 ≦ x ≦ 3
And n representing the number of carbon atoms is represented by 60 ≦ n ≦ 82), wherein the metal oxide / fullerene storage battery according to claim 1.
【請求項5】充電状態のフラーレン水素化物が、一般式
CnHy(yは化学量論組成比を示し偶数であり、水素
化度が0<y/n≦0.8および60≦n≦82)で表
されることを特徴とする請求項1記載の金属酸化物・フ
ラーレン蓄電池。
5. A fullerene hydride in a charged state has a general formula CnHy (y represents a stoichiometric composition ratio and is an even number, and the degree of hydrogenation is 0 <y / n ≦ 0.8 and 60 ≦ n ≦ 82). The metal oxide / fullerene storage battery according to claim 1, wherein
JP8092364A 1996-04-15 1996-04-15 Metal oxide-fullerence storage battery Pending JPH09283173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8092364A JPH09283173A (en) 1996-04-15 1996-04-15 Metal oxide-fullerence storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8092364A JPH09283173A (en) 1996-04-15 1996-04-15 Metal oxide-fullerence storage battery

Publications (1)

Publication Number Publication Date
JPH09283173A true JPH09283173A (en) 1997-10-31

Family

ID=14052367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8092364A Pending JPH09283173A (en) 1996-04-15 1996-04-15 Metal oxide-fullerence storage battery

Country Status (1)

Country Link
JP (1) JPH09283173A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9225023B2 (en) 2013-10-04 2015-12-29 Toyota Motor Engineering & Manufacturing North America, Inc. Fullerenes as high capacity cathode materials for a rechargeable magnesium battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9225023B2 (en) 2013-10-04 2015-12-29 Toyota Motor Engineering & Manufacturing North America, Inc. Fullerenes as high capacity cathode materials for a rechargeable magnesium battery

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP3558590B2 (en) Method for producing positive electrode active material for alkaline storage battery
KR20120010211A (en) Porous silicon based alloy, method of preparing the same, and negative active material for rechargeable lithium battery and rechargeable lithium battery including the same
Tsais et al. Nickel-based batteries: Materials and chemistry
JPH0630249B2 (en) Electrochemical battery
JP2000003706A (en) Positive electrode for alkaline storage battery and positive electrode active material
Martha et al. Nanostructured anode materials for batteries (lithium ion, Ni-MH, lead-acid, and thermal batteries)
US6613213B1 (en) Method for producing electrodes using microscale or nanoscale materials obtained from hydrogendriven metallurgical reactions
CN111082063A (en) Flexible conductive carbon/metal composite nanofiber membrane, preparation method and application thereof, and lithium-sulfur battery
KR101542838B1 (en) Manufacturing method of Cathode material for Mg rechargeable batteries, and Cathode material for Mg rechargeable batteries made by the same
JPH10125321A (en) Battery negative electrode carbonaceous material and nonaqueous electrolyte secondary battery
JP3475652B2 (en) Negative electrode for alkaline storage battery and battery using the same
JPH09283173A (en) Metal oxide-fullerence storage battery
JP2004235088A (en) Nickel-hydrogen storage battery
JPH09274931A (en) Metal oxide/fullerenee storage battery
Kuriyama et al. Solid-state metal hydride batteries using tetramethylammonium hydroxide pentahydrate
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JPH0765833A (en) Hydrogen storage alloy electrode
JP3473221B2 (en) Negative electrode for alkaline storage battery and battery using the same
JPS60109174A (en) Manufacture of hydrogen absorption electrode
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH09245799A (en) Lithium secondary battery
JPH09199123A (en) Negative electrode active material for alkaline storage battery and battery with it
JP3500858B2 (en) Negative electrode for alkaline storage battery and battery using the same
JPH11312540A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040817