JPH09199123A - Negative electrode active material for alkaline storage battery and battery with it - Google Patents

Negative electrode active material for alkaline storage battery and battery with it

Info

Publication number
JPH09199123A
JPH09199123A JP8004562A JP456296A JPH09199123A JP H09199123 A JPH09199123 A JP H09199123A JP 8004562 A JP8004562 A JP 8004562A JP 456296 A JP456296 A JP 456296A JP H09199123 A JPH09199123 A JP H09199123A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
battery
metal
fullerence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8004562A
Other languages
Japanese (ja)
Inventor
Yoshiaki Nitta
芳明 新田
Kazuhiro Okamura
一広 岡村
Toru Kikuyama
亨 菊山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8004562A priority Critical patent/JPH09199123A/en
Publication of JPH09199123A publication Critical patent/JPH09199123A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the battery capacity by using a Fullerence compound containing a specific metal for a negative electrode active material. SOLUTION: A Fullerence compound containing at least one kind of metal selected from Fe, Co, Ni, Cu is used for an active material. The electrochemical action when it is used as a negative electrode is as follows: When charging, hydrogen ions in an electrolyte form C-H bond via the charge shift on the Fullerence compound having an increased charge density, and hydrogen is stored. In discharging, the C-H bond is released via the charge shift by the electron releasing reaction from the Fullerence compound, and hydrogen ions are diffused in the electrolyte. When the contained metal is doped, one Fullerence molecule can store 60 hydrogen ions, and this negative electrode can theoretically have the capacity and density higher than those of a hydrogen storage alloy negative electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池用
負極の高容量化とこれを用いた電池の高性能化、特に容
量密度の向上に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high capacity negative electrode for an alkaline storage battery and a high performance battery using the same, particularly to an improvement in capacity density.

【0002】[0002]

【従来の技術】近年、各種の小型ポータブル機器用電源
として高信頼性が期待できるアルカリ蓄電池の需要が高
まっている。代表的なアルカリ蓄電池として、正極活物
質に水酸化ニッケルを用い、負極活物質にカドミウムを
用いたニッケル−カドミウム蓄電池と、高容量化が期待
できる水素吸蔵合金負極を用いたニッケル−水素蓄電池
が実用化されている。
2. Description of the Related Art In recent years, there has been an increasing demand for alkaline storage batteries that can be expected to have high reliability as power sources for various small portable devices. As typical alkaline storage batteries, nickel-cadmium storage batteries that use nickel hydroxide as the positive electrode active material and cadmium as the negative electrode active material, and nickel-hydrogen storage batteries that use a hydrogen storage alloy negative electrode that can be expected to have higher capacity are in practical use. Has been converted.

【0003】[0003]

【発明が解決しようとする課題】アルカリ蓄電池のさら
なる高容量化に向けて、水素吸蔵合金材料の改良研究が
行われている。これらの材料のうち、代表的なAB5系
の合金を実際の電池に用いた場合の容量密度はおよそ3
00mAh/g程度に留まっている。したがって、高エ
ネルギー密度の電池を得るために、水素を電気化学的に
吸蔵・放出できる新規な負極材料を得ることが必要とさ
れている。
DISCLOSURE OF THE INVENTION In order to further increase the capacity of alkaline storage batteries, researches for improving hydrogen storage alloy materials are being conducted. Of these materials, the capacity density when a typical AB5 alloy is used in an actual battery is about 3
It remains around 00 mAh / g. Therefore, in order to obtain a battery with high energy density, it is necessary to obtain a novel negative electrode material capable of electrochemically absorbing and desorbing hydrogen.

【0004】本発明は、このような課題を解決するため
に、水素を吸蔵・放出できるフラーレンの特質に注目
し、これを金属との化合物として改質することにより、
電池用として有用な新規負極材料を見い出し、高容量密
度の負極とこれを用いたエネルギー密度の高いアルカリ
蓄電池を提供することを目的としたものである。
In order to solve such problems, the present invention pays attention to the characteristics of fullerenes capable of storing and releasing hydrogen, and by modifying them as a compound with a metal,
The object of the present invention is to find a novel negative electrode material useful for batteries, and to provide a high capacity density negative electrode and an alkaline storage battery using the same having a high energy density.

【0005】[0005]

【課題を解決するための手段】本発明は、Fe,Co,
Ni,Cuからなる群から選ばれる少なくとも1種の金
属を含むフラーレン化合物を用いて高容量密度のアルカ
リ蓄電池用負極を提供し、さらにこの負極と水酸化ニッ
ケル正極と、アルカリ性電解液とを備えた電池を構成す
ることにより、高性能のアルカリ蓄電池を提供するもの
である。
The present invention is based on Fe, Co,
Provided is a high capacity density negative electrode for an alkaline storage battery using a fullerene compound containing at least one metal selected from the group consisting of Ni and Cu, and further including the negative electrode, a nickel hydroxide positive electrode, and an alkaline electrolyte. By constructing a battery, a high performance alkaline storage battery is provided.

【0006】さらに、上記のフラーレン化合物として、
一般式MxCn(MはFe,Co,Ni,Cuからなる
群から選ばれる少なくとも1種の金属、xは化学量論組
成比を示し、1≦x≦3であり、nは炭素原子数を示
し、n=60)で表されるもの、あるいは上記の一般式
MxCnにおいて、x=1、n=82であるものを用い
ることを特徴とするものである。
Further, as the above fullerene compound,
The general formula MxCn (M is at least one metal selected from the group consisting of Fe, Co, Ni, and Cu, x is a stoichiometric composition ratio, 1 ≦ x ≦ 3, and n is the number of carbon atoms. , N = 60), or in the above general formula MxCn, x = 1 and n = 82 is used.

【0007】[0007]

【発明の実施の形態】フラーレンC60は、既に1985
年にKrotoらによって合成に成功している。形状は
ほぼサッカーボールと同様の球状である。このほかのフ
ラーレンとして、C70、C82、あるいはそれ以上の炭素
数で形成されたものがあり、5員環、6員環で構成され
ている。これらのフラーレンの電子構造は通常の半金属
性の黒鉛と異なり、半導体的性質を示す。その理由は電
子構造が、球の外側と内側ではパイ性電子の電子密度状
態が異なり、外側で高く内側で低くなる傾向を示し、さ
らにシグマ性軌道が混成するため、単純なSP2混成軌
道で規定できなくなり、伝導帯と価電子帯に約1.9e
Vのバンドギャップが生じるからである。したがって、
フラーレンの電子伝導性や電荷移動は黒鉛よりも劣る
が、予め伝導帯に他原子からの電子供与があれば、電子
親和力の大きい水素に容易にフラーレン上で電荷移動が
行われ、水素イオンが吸蔵されやすくなる。これは、例
えば黒鉛に予めカリウムをインターカレートしたC8
という材料が、黒鉛の伝導帯にカリウムからの電子が入
っているために容易に水素へ電子供与を行い(電荷移
動)、吸蔵が可能となる事実(榎ら 炭素 143,1
36(1990))と似通っている。
BEST MODE FOR CARRYING OUT THE INVENTION Fullerene C 60 is already 1985.
It was successfully synthesized by Kuroto et al. The shape is almost the same as a soccer ball. Other fullerenes include those having a carbon number of C 70 , C 82 , or higher, and are composed of a 5-membered ring or a 6-membered ring. The electronic structure of these fullerenes, unlike ordinary semi-metallic graphite, shows semiconductor-like properties. The reason is the electronic structure, the outer and inner sphere different electron density states of pi-electric electron, tended to be lower in higher inside the outside, to further sigma orbital is mixed, in a simple SP 2 hybrid orbital It is not possible to specify it, and the conduction band and valence band are approximately 1.9e.
This is because a V band gap is generated. Therefore,
Fullerene is inferior to graphite in electron conductivity and charge transfer, but if there is an electron donation from another atom in the conduction band in advance, hydrogen with a high electron affinity will easily transfer charge on fullerene and occlude hydrogen ions. It is easy to be done. This is, for example, C 8 K obtained by pre-intercalating potassium with graphite.
The fact that the material contains electrons from potassium in the conduction band of graphite can easily donate electrons to hydrogen (charge transfer) and can occlude (Enoki et al. Carbon 143,1).
36 (1990)).

【0008】こうした水素の吸蔵はサッカーボール状の
フラーレンの主として外側にC−H結合を形成すること
で可能となる。イオン半径をほとんど持たない水素イオ
ンはこのような水素の吸蔵が可能であるが、例えばLi
+イオンのように2S軌道閉殻構造により、明確なイオ
ン半径を有する化学種は立体的因子において吸蔵が困難
である。
The storage of hydrogen is possible by forming C--H bonds mainly outside the soccer ball-shaped fullerene. Hydrogen ions having almost no ionic radius can absorb such hydrogen, but for example, Li
Due to the 2S orbital closed shell structure such as + ion, it is difficult for a species having a definite ionic radius to absorb due to a steric factor.

【0009】本発明者らは、これらの事柄に着目し、フ
ラーレンの伝導帯に電子を与えるのに有効な元素は、局
在のd電子を持ち易い3d遷移金属と考え、これらをド
ーピングすることで電子伝導性を向上させ、これにより
電子密度を高めたフラーレンに容易に水素を吸蔵・放出
することが期待できるものと考えた。
The present inventors pay attention to these matters, and consider that an element effective for giving electrons to the conduction band of fullerene is a 3d transition metal which tends to have localized d electrons, and dope these. Therefore, we thought that it is expected that the fullerene with improved electron conductivity can absorb and release hydrogen easily.

【0010】本発明では、局在のd電子を持つ傾向にあ
る3d遷移金属の中でも特に局在電子を持つ傾向にある
Fe,Co,Ni,Cuがドーピングする元素として適
したものであると注目して検討した。
In the present invention, it is noted that among the 3d transition metals that tend to have localized d-electrons, Fe, Co, Ni and Cu, which tend to have localized electrons, are suitable as doping elements. And examined.

【0011】C60への一般的なドーピングする方法とし
ては、C60を1つの原子として見立てた結晶固体の格子
間位置、つまりC60の外側へ金属原子をドープする方法
と、C60の中空に金属原子を閉じこめて内包させる方法
が報告されている。前者はC 601個当たり3個の金属原
子からなる単位格子を固体結晶としてドープが可能であ
り、後者ではC601個当たりの1個の金属原子をドープ
することが可能である。また、高次フラーレンであるC
82の方が金属原子を内包し易い性質であることが報告さ
れている。
C60As a general method of doping into
Is C60Lattice of a crystalline solid with the atom as an atom
Between positions, that is, C60Method of doping metal atoms to the outside
And C60To enclose and enclose metal atoms in the hollow of
Have been reported. The former is C 603 original metal pieces
Can be doped as a solid crystal
And in the latter C60Doping one metal atom per one
It is possible to C, which is a higher fullerene
82Has been reported to be more likely to contain metal atoms.
Have been.

【0012】本発明者らは、いずれの方法でFe,C
o,Ni,Cuをドーピングしても、d電子が伝導帯を
形成するt1u軌道(正二十面体対称性とし、11の軌道
から生じる3重縮退のLUMO(最低空状態)を形成す
る軌道)に入って、電子密度及び電子伝導性を向上さ
せ、これにより電子親和力の大きい水素イオンは容易に
この軌道から電子を授受(電荷移動)し、負電荷を帯び
た電子状態でフラーレンに吸蔵されるものと考えた。こ
のようにして得られた金属含有フラーレン化合物をアル
カリ蓄電池の負極として用いた場合の電気化学的作用は
次のように説明される。
[0012] The present inventors have found that Fe, C
A t 1u orbital in which a d electron forms a conduction band even if doped with o, Ni, or Cu (an orbital that forms a regular icosahedral symmetry and forms a triple degenerate LUMO (lowest empty state) generated from 11 orbitals) ), The electron density and electron conductivity are improved. As a result, hydrogen ions with a high electron affinity easily exchange electrons from this orbit (charge transfer) and are occluded by fullerenes in the negatively charged electronic state. I thought it was something. The electrochemical action when the metal-containing fullerene compound thus obtained is used as the negative electrode of an alkaline storage battery is explained as follows.

【0013】まず、充電時には、電解液中の水素イオン
が電荷密度の高められた金属含有フラーレン化合物上で
電荷移動によりC−H結合を形成し、水素イオンが吸蔵
される。放電時には、フラーレン化合物から脱電子反応
による電荷移動のためC−H結合が切れ、水素イオンが
電解液中に拡散する。この場合、金属がドープされた状
態で1個のC60分子に、最高60個の水素が吸蔵でき、
これを放電電気容量密度に換算すると約1900mAh
/gが可能となり、水素吸蔵合金負極よりも理論的に高
容量密度化が図れる。
First, at the time of charging, hydrogen ions in the electrolytic solution form C—H bonds on the metal-containing fullerene compound having an increased charge density by charge transfer, and the hydrogen ions are occluded. During discharge, C—H bonds are broken due to charge transfer due to a deelectron reaction from the fullerene compound, and hydrogen ions diffuse into the electrolytic solution. In this case, up to 60 hydrogens can be stored in one C 60 molecule in the metal-doped state,
Converting this to the discharge capacitance density, about 1900 mAh
/ G is possible, and the capacity density can be theoretically increased as compared with the hydrogen storage alloy negative electrode.

【0014】上記により、負極活物質として金属をドー
ピングしたフラーレン化合物を用いることにより、高容
量のアルカリ蓄電池を提供することが可能となる。
As described above, by using a metal-doped fullerene compound as the negative electrode active material, it is possible to provide a high capacity alkaline storage battery.

【0015】[0015]

【実施例】図1は、本発明の一実施例におけるフラーレ
ン化合物を用いたニッケル−炭素蓄電池の概略構成図で
ある。図1において、1は本発明のFe,Co,Ni,
Cuのいずれかの金属を備えたフラーレン化合物を用い
た負極板、2は水酸化ニッケル正極板、3はセパレー
タ、4は絶縁用板、5は電池ケース、6は正極リード、
7は絶縁用ガスケット、8は正極キャップ、9は安全
弁、10は封口板である。
EXAMPLE FIG. 1 is a schematic configuration diagram of a nickel-carbon storage battery using a fullerene compound in one example of the present invention. In FIG. 1, 1 is Fe, Co, Ni of the present invention,
A negative electrode plate using a fullerene compound containing any metal of Cu, 2 a nickel hydroxide positive electrode plate, 3 a separator, 4 an insulating plate, 5 a battery case, 6 a positive electrode lead,
Reference numeral 7 is an insulating gasket, 8 is a positive electrode cap, 9 is a safety valve, and 10 is a sealing plate.

【0016】本発明の実施例において負極に用いたフラ
ーレン化合物の製造法について説明する。基本的なメカ
ニズムはアーク放電法であり、まずガラス容器に直径1
cmの予め各種金属の炭酸塩をドーパントとして混合し
て成型した炭素棒電極を垂直に設置した。次いで容器内
を真空に排気し、キャリアガスとしてヘリウムガス(約
200Torr)を導入し、電極に直流電圧22Vを印
加し、40mA程度を通電してアーク放電を発生させ
た。放電反応を行うと対極の先端部に金属を含んだ炭素
の堆積物が成長してくる。この堆積物を分析した結果、
フラーレン化合物の収率は18%であった。この炭素材
から約90%の純度のフラーレン化合物をオクタデシル
シリカなどを用いて分別し、これを評価用負極材料とし
て用いた。固体結晶性のフラーレン化合物、すなわちX
=3のものについては上記の方法によって得たが、金属
内包タイプ、すなわちX=1のものについては、さらに
X=3のフラーレン化合物をアルゴンガス雰囲気下12
00℃で532nmのYAGレーザーを照射し、1個の
フラーレン化合物あたり、1個の金属を内包した。
A method for producing the fullerene compound used for the negative electrode in the examples of the present invention will be described. The basic mechanism is the arc discharge method.
A carbon rod electrode, which was formed by mixing carbonates of various metals as dopants in advance, was placed vertically. Then, the inside of the container was evacuated to a vacuum, helium gas (about 200 Torr) was introduced as a carrier gas, a DC voltage of 22 V was applied to the electrodes, and an electric current of about 40 mA was applied to generate arc discharge. When the discharge reaction is performed, a carbon-containing carbon deposit grows on the tip of the counter electrode. As a result of analyzing this deposit,
The yield of the fullerene compound was 18%. A fullerene compound having a purity of about 90% was fractionated from this carbon material using octadecyl silica or the like, and this was used as a negative electrode material for evaluation. Solid crystalline fullerene compound, ie X
= 3 was obtained by the above method, but for the metal-encapsulated type, that is, X = 1, a fullerene compound of X = 3 was further added under an argon gas atmosphere.
A 532 nm YAG laser was irradiated at 00 ° C. to encapsulate one metal per one fullerene compound.

【0017】負極板1は5重量%のフッ素樹脂ディスパ
ージョンをこの樹脂がフラーレン化合物に対して3倍の
重量になるように加えてペーストをつくり、ついでこの
ペーストを厚さ0.17mm、孔径1.8mm、開口度
53%の鉄製でニッケル鍍金を施したパンチングメタル
板に塗着し、0.6mmのスリットを通して平滑化し、
その後、120℃で1時間乾燥し、この電極をローラー
プレス機に通して厚さ0.5mmに調整して構成した。
負極リード板はスポット溶接により取り付けた。正極板
2には多孔性の発砲ニッケル基板に水酸化ニッケルを充
填したもの、セパレータには親水処理を施したポリプロ
ピレン性の不織布を用いた。電解液には比重1.25の
水酸化カリウム水溶液に25g/lの水酸化リチウムを
溶解したものを用いた。
For the negative electrode plate 1, a paste was prepared by adding 5% by weight of a fluororesin dispersion so that the weight of this resin was 3 times that of the fullerene compound, and then this paste was formed to a thickness of 0.17 mm and a pore diameter of 1 It is applied to a punching metal plate made of iron with a diameter of 8 mm and an opening degree of 53% and plated with nickel, and smoothed through a slit of 0.6 mm.
Then, it was dried at 120 ° C. for 1 hour, and this electrode was passed through a roller press to adjust the thickness to 0.5 mm.
The negative electrode lead plate was attached by spot welding. For the positive electrode plate 2, a porous foamed nickel substrate filled with nickel hydroxide was used, and for the separator, a hydrophilic polypropylene non-woven fabric was used. The electrolyte used was a 25 g / l lithium hydroxide solution dissolved in a potassium hydroxide aqueous solution having a specific gravity of 1.25.

【0018】なお、正極活物質の充填量が負極の充填容
量に対して大過剰となるように正極板2を構成し、電池
特性が負極の特性によって規制されるように電池を構成
した。比較例としては、ミッシュメタルとニッケルを主
成分としたAB5タイプの水素吸蔵合金を用いて上記と
同様の手法で構成した負極を用いて実施例と同様の構成
法でニッケル−水素蓄電池を作成した。これらの実施例
の電池と比較例の電池とを0.17Aで11時間の定電
流充電を行った後、0.5Aで0.9Vまでの定電流放
電を行なった。その結果を(表1)に示す。
The positive electrode plate 2 was constructed so that the filling amount of the positive electrode active material was in excess of the filling capacity of the negative electrode, and the battery was constructed so that the battery characteristics were regulated by the characteristics of the negative electrode. As a comparative example, a nickel-hydrogen storage battery was prepared by the same construction method as that of the example, using a negative electrode constructed in the same manner as above using an AB 5 type hydrogen storage alloy containing misch metal and nickel as main components. did. The batteries of these examples and the batteries of comparative examples were subjected to constant current charging at 0.17 A for 11 hours, and then constant current discharging to 0.5 V at 0.5 A. The results are shown in (Table 1).

【0019】[0019]

【表1】 [Table 1]

【0020】ただし、容量については、比較試料の負極
を用いた水素吸蔵合金の重量あたりの放電容量密度を1
00とした場合のフラーレン化合物の重量あたりの放電
容量密度の相対値を示した。なお、平均放電電圧は1.
24Vであった。
However, regarding the capacity, the discharge capacity density per weight of the hydrogen storage alloy using the negative electrode of the comparative sample is 1
The relative value of the discharge capacity density per weight of the fullerene compound when 00 was shown. The average discharge voltage was 1.
It was 24V.

【0021】(表1)からわかるように、Fe,Co,
Ni,Cuを備えたフラーレン化合物を負極に用いた電
池は、電圧、容量ともに金属を添加していないフラーレ
ンよりも優れており、かつ水素吸蔵合金を負極に用いた
場合よりも高容量密度が得られている。これらの理由は
次のように考えられる。まず、金属元素を添加していな
いフラーレンに於いて電圧が低いのは、その負極電位が
金属水素化物よりも貴な電位にあるからであり、これは
先述したようにフラーレンの1.9eVのバンドギャッ
プ間にフェルミレベルが存在するのでエネルギー準位的
に低い位置に電極電位が置かれるためである。しかし、
金属を添加するとt1u軌道に電子が供与されるのでフェ
ルミレベルが上がり、エネルギー準位的に高い位置に電
極電位が置かれ、電位が卑な方向へシフトしたために電
池電圧が高くなったものと考えている。
As can be seen from Table 1, Fe, Co,
The battery using a fullerene compound containing Ni and Cu for the negative electrode is superior in voltage and capacity to the fullerene containing no metal, and has a higher capacity density than the case using a hydrogen storage alloy for the negative electrode. Has been. These reasons are considered as follows. First, the reason why the voltage is low in the fullerene to which the metal element is not added is that the negative electrode potential is a nobler potential than the metal hydride, which is the fullerene band of 1.9 eV as described above. This is because the Fermi level exists between the gaps, and the electrode potential is placed at a low energy level. But,
When a metal is added, electrons are donated to the t 1u orbit, so the Fermi level rises, the electrode potential is placed at a position higher in energy level, and the battery voltage becomes higher because the potential shifts to the base direction. thinking.

【0022】また、金属元素を添加していないフラーレ
ンにおいて容量が十分得られないのは、先述のバンドギ
ャップが存在するので電荷移動あるいは電子伝導性の低
下などで過電圧が大きく、負極電位が貴な電位で作動し
たことなどにより、放電終止電圧に早く達したことが原
因と考えられる。
In addition, fullerene to which a metal element is not added does not have a sufficient capacity, because the above-mentioned band gap exists, so that overvoltage is large due to charge transfer or deterioration of electronic conductivity, and the negative electrode potential is noble. It is considered that the discharge end voltage was reached early due to the fact that it operated at a potential.

【0023】なお、表中、x=1の場合、この時のnは
82であり、C82に1個の金属原子が内包されており、
x=3の時はn=60であり、C60と金属が周期性をも
った結晶固体であることが確認された。上記の実施例以
外に、n=60の場合には結晶中に金属の欠損部が偏在
する可能性があり、このような場合には、Xは1以上で
3未満の値を示す。このような範囲の様々なX値を示す
フラーレン化合物が混在する試料を負極材料に用いた電
池においても実施例の電池と同じレベルの電池特性が得
られたことから、n=60の場合は1≦X≦3において
本発明の効果が発揮できることが確認された。なお、本
発明は上述のC60、C82をベースとしたフラーレン化合
物以外にもFe,Co,Ni,Cuを備えた他のフラー
レン化合物を負極に用いた場合にも同様の作用による効
果が期待できる。
In the table, when x = 1, n at this time is 82, and one metal atom is included in C 82 ,
When x = 3, n = 60, and it was confirmed that C 60 and the metal were crystalline solids having periodicity. In addition to the above examples, when n = 60, metal defects may be unevenly distributed in the crystal, and in such a case, X has a value of 1 or more and less than 3. The same level of battery characteristics as that of the battery of the example was obtained even in the battery using the sample in which the fullerene compounds exhibiting various X values in such a range were mixed as the negative electrode material. It was confirmed that the effect of the present invention can be exhibited when ≦ X ≦ 3. In addition to the above-mentioned C 60 and C 82- based fullerene compounds, the present invention is expected to have similar effects even when other fullerene compounds containing Fe, Co, Ni and Cu are used for the negative electrode. it can.

【0024】[0024]

【発明の効果】以上のように、本発明はFe,Co,N
i,Cuのいずれかの金属の少なくとも1種を含むフラ
ーレン化合物をアルカリ蓄電池用負極に用いることによ
り、高容量を有する負極とその電池が提供できるもので
ある。
As described above, according to the present invention, Fe, Co, N
By using a fullerene compound containing at least one metal of i or Cu for a negative electrode for an alkaline storage battery, a negative electrode having a high capacity and the battery can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるフラーレン化合物負
極を用いたニッケル水素蓄電池の概略構成図
FIG. 1 is a schematic configuration diagram of a nickel-hydrogen storage battery using a fullerene compound negative electrode according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 水素吸蔵電極(フラーレン化合物) 2 水酸化ニッケル極 3 セパレータ 4 絶縁用板 5 電池ケース 6 正極リード 7 絶縁用ガスケット 8 正極キャップ 9 安全弁 10 封口板 1 Hydrogen Storage Electrode (Fullerene Compound) 2 Nickel Hydroxide Electrode 3 Separator 4 Insulating Plate 5 Battery Case 6 Positive Electrode Lead 7 Insulating Gasket 8 Positive Cap 9 Safety Valve 10 Sealing Plate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】活物質として、Fe,Co,Ni,Cuか
らなる群から選ばれる少なくとも1種の金属を含むフラ
ーレン化合物を用いたことを特徴とするアルカリ蓄電池
用負極活物質。
1. A negative electrode active material for an alkaline storage battery, wherein a fullerene compound containing at least one metal selected from the group consisting of Fe, Co, Ni and Cu is used as the active material.
【請求項2】フラーレン化合物が、一般式MxCn(M
はFe,Co,Ni,Cuからなる群から選ばれる少な
くとも1種の金属、xは化学量論組成比を示し、1≦x
≦3であり、nは炭素原子数を示し、n=60)で表さ
れるフラーレン化合物であることを特徴とする請求項1
記載のアルカリ蓄電池用負極活物質。
2. A fullerene compound is represented by the general formula MxCn (M
Is at least one metal selected from the group consisting of Fe, Co, Ni and Cu, x is a stoichiometric composition ratio, and 1 ≦ x
≦ 3, n represents the number of carbon atoms, and is a fullerene compound represented by n = 60).
The negative electrode active material for an alkaline storage battery according to the above.
【請求項3】フラーレン化合物、一般式MxCn(Mは
Fe,Co,Ni,Cuからなる群から選ばれる少なく
とも1種の金属、xは化学量論組成比を示し、x=1で
あり、nは炭素原子数を示し、n=82)で表されるフ
ラーレン化合物であることを特徴とする請求項1記載の
アルカリ蓄電池用負極活物質。
3. A fullerene compound, a general formula MxCn (M is at least one metal selected from the group consisting of Fe, Co, Ni and Cu, x is a stoichiometric composition ratio, x = 1, and n Represents the number of carbon atoms and is a fullerene compound represented by n = 82), The negative electrode active material for alkaline storage batteries according to claim 1.
【請求項4】水酸化ニッケルを用いた正極と、Fe,C
o,Ni,Cuからなる群から選ばれる少なくとも1種
の金属を含むフラーレン化合物を用いた負極と、アルカ
リ性電解液とを備えたことを特徴とするアルカリ蓄電
池。
4. A positive electrode using nickel hydroxide and Fe, C
An alkaline storage battery comprising a negative electrode using a fullerene compound containing at least one metal selected from the group consisting of o, Ni, and Cu, and an alkaline electrolyte.
JP8004562A 1996-01-16 1996-01-16 Negative electrode active material for alkaline storage battery and battery with it Pending JPH09199123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8004562A JPH09199123A (en) 1996-01-16 1996-01-16 Negative electrode active material for alkaline storage battery and battery with it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8004562A JPH09199123A (en) 1996-01-16 1996-01-16 Negative electrode active material for alkaline storage battery and battery with it

Publications (1)

Publication Number Publication Date
JPH09199123A true JPH09199123A (en) 1997-07-31

Family

ID=11587491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8004562A Pending JPH09199123A (en) 1996-01-16 1996-01-16 Negative electrode active material for alkaline storage battery and battery with it

Country Status (1)

Country Link
JP (1) JPH09199123A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002063918A (en) * 2000-08-18 2002-02-28 Sony Corp Proton conductor and electrochemical device
JP2011029184A (en) * 2009-07-22 2011-02-10 Belenos Clean Power Holding Ag New electrode material, in particular for rechargeable lithium ion battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002063918A (en) * 2000-08-18 2002-02-28 Sony Corp Proton conductor and electrochemical device
JP4635306B2 (en) * 2000-08-18 2011-02-23 ソニー株式会社 Proton conductor and electrochemical device
JP2011029184A (en) * 2009-07-22 2011-02-10 Belenos Clean Power Holding Ag New electrode material, in particular for rechargeable lithium ion battery

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
KR20010082174A (en) Composite positive electrode material and method for making same
JPH04137368A (en) Nickel-hydrogen storage battery and its manufacture
JP2012227106A (en) Nickel-metal hydride battery
JP2012188728A (en) Composite hydrogen-storage alloy and nickel-metal hydride storage battery
JPH0638333B2 (en) Electrochemical battery
KR100274374B1 (en) Electrodes, alkaline secondary battery, and method for manufacturing alkaline secondary battery
JP3475652B2 (en) Negative electrode for alkaline storage battery and battery using the same
JPH02291665A (en) Alkali battery and manufacture of its negative electrode
JP3173973B2 (en) Alkaline storage battery
US3098771A (en) Primary battery cell for high current loads and method of its manufacture
JPH09199123A (en) Negative electrode active material for alkaline storage battery and battery with it
JPH08329937A (en) Nickel positive electrode for alkaline storage battery and nickel hydrogen storage battery
JP3473221B2 (en) Negative electrode for alkaline storage battery and battery using the same
JPH0756802B2 (en) Manufacturing method of hydrogen storage electrode
US6238823B1 (en) Non-stoichiometric AB5 alloys for metal hydride electrodes
JP3379893B2 (en) Paste-type positive electrode for alkaline secondary battery and method for producing alkaline secondary battery
JPH09283173A (en) Metal oxide-fullerence storage battery
JP3678283B2 (en) Hydrogen storage electrode
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP3141141B2 (en) Sealed nickel-metal hydride storage battery
JP3500858B2 (en) Negative electrode for alkaline storage battery and battery using the same
JPH09274931A (en) Metal oxide/fullerenee storage battery
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JPS60119079A (en) Hydrogen absorption electrode

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040127