JPH09283148A - Alkaline storage battery - Google Patents

Alkaline storage battery

Info

Publication number
JPH09283148A
JPH09283148A JP8096491A JP9649196A JPH09283148A JP H09283148 A JPH09283148 A JP H09283148A JP 8096491 A JP8096491 A JP 8096491A JP 9649196 A JP9649196 A JP 9649196A JP H09283148 A JPH09283148 A JP H09283148A
Authority
JP
Japan
Prior art keywords
hydrogen storage
electrode
storage alloy
storage battery
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8096491A
Other languages
Japanese (ja)
Other versions
JP3572794B2 (en
Inventor
Makoto Tsutsue
誠 筒江
Koji Yamamura
康治 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP09649196A priority Critical patent/JP3572794B2/en
Publication of JPH09283148A publication Critical patent/JPH09283148A/en
Application granted granted Critical
Publication of JP3572794B2 publication Critical patent/JP3572794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a storage battery having a sufficient discharging capacity even in the case of a high rate pulse discharging at a low temperature by using a negative electrode with the specified structure in a storage battery formed of a positive electrode and a negative electrode, which are mainly composed of the predetermined material, and a separator and the alkali electrolyte. SOLUTION: In a storage battery formed of a positive electrode, which is mainly composed of nickel hydrogen, a negative electrode, which is mainly composed of the hydrogen storage alloy for electrochemically absorb and discharge hydrogen as an active material, a separator and the alkali electrolyte, the negative electrode is formed by including the carbon group conductive material, which is selected among active carbon powder, active carbon fiber, carbon black or the mixture thereof at 0.3-3.0 parts by weight and at 500-3000m<2> /g of a specific surface area, in relation to the hydrogen storage alloy powder at 100 parts by weight so that 1.2-20m<2> /g of the specific surface area of the whole of the electrode is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル水素蓄電
池等のアルカリ蓄電池に用いられる水素吸蔵合金電極の
改良に関するものである。
TECHNICAL FIELD The present invention relates to an improvement of a hydrogen storage alloy electrode used in an alkaline storage battery such as a nickel-hydrogen storage battery.

【0002】[0002]

【従来の技術】従来の水素吸蔵合金電極は、微粉化した
水素吸蔵合金粉末に導電材粉末としてカーボンブラック
および結着剤としてスチレンブタジエンラバー(SB
R)、増粘剤としてカルボキシルメチルセルロース(C
MC)を加え、これらを水で混練してペースト化し、そ
のペーストを芯材であるエキスパンドメタルに塗着する
かあるいはニッケル多孔体に充填して、乾燥、加圧して
作製している。この水素吸蔵合金電極を用いたニッケル
水素蓄電池は、現在、パソコン、ビデオカメラ、通信機
器などの小型携帯電子機器用電源として広く実用化され
ている。
2. Description of the Related Art A conventional hydrogen storage alloy electrode is composed of finely divided hydrogen storage alloy powder, carbon black as a conductive material powder, and styrene-butadiene rubber (SB) as a binder.
R) and carboxymethyl cellulose (C
MC) is added, and these are kneaded with water to form a paste, and the paste is applied to an expanded metal as a core material or filled in a nickel porous body, dried, and pressed to produce. A nickel-hydrogen storage battery using this hydrogen storage alloy electrode is now widely put into practical use as a power source for small portable electronic devices such as personal computers, video cameras and communication devices.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の水素吸
蔵合金電極を負極として用いたニッケル水素蓄電池で
は、低温での負極の反応抵抗が高いため電極反応が起こ
りにくく、高率放電時の放電特性がニッケルカドミウム
蓄電池に比べ劣っている。このため低温での高率パルス
放電においては十分な放電容量が得られない。
However, in the nickel-metal hydride storage battery using the conventional hydrogen storage alloy electrode as the negative electrode, the reaction resistance of the negative electrode is high at low temperature, and therefore the electrode reaction is difficult to occur, and the discharge characteristics at high rate discharge are high. Is inferior to nickel-cadmium storage batteries. Therefore, sufficient discharge capacity cannot be obtained in high-rate pulse discharge at low temperature.

【0004】とくに、携帯電話等の通信機器においては
高率パルス放電を行うデジタル機器が主流になりつつあ
り、この低温での高率パルス放電特性が重要になる。
In particular, in communication devices such as mobile phones, digital devices which perform high-rate pulse discharge are becoming mainstream, and the high-rate pulse discharge characteristics at low temperatures are important.

【0005】本発明は上記課題を解決するものであり、
低温での高率パルス放電においても十分な放電容量が得
られるニッケル水素蓄電池を提供することを目的とした
ものである。
[0005] The present invention is to solve the above problems,
It is an object of the present invention to provide a nickel-hydrogen storage battery that can obtain a sufficient discharge capacity even at a high rate pulse discharge at a low temperature.

【0006】[0006]

【課題を解決するための手段】本発明は、上記従来の課
題を解決するために、水素吸蔵合金粉末100重量部当
たり0.3〜3.0重量部の比表面積が500〜300
0m2/gの炭素系導電材を混入していて電極全体の比
表面積を1.2〜20m2/gにしたものである。
In order to solve the above-mentioned conventional problems, the present invention has a specific surface area of 500 to 300 parts by weight of 0.3 to 3.0 parts by weight per 100 parts by weight of hydrogen storage alloy powder.
A carbon-based conductive material of 0 m 2 / g was mixed and the specific surface area of the entire electrode was set to 1.2 to 20 m 2 / g.

【0007】[0007]

【発明の実施の形態】本発明の請求項1に記載の発明
は、水素吸蔵合金粉末に混入する導電材の種類とその比
表面積、およびニッケル水素蓄電池に使用する水素吸蔵
合金電極自体の比表面積を規定したものである。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention is the kind of conductive material mixed in the hydrogen storage alloy powder and its specific surface area, and the specific surface area of the hydrogen storage alloy electrode itself used in a nickel-hydrogen storage battery. Is defined.

【0008】また請求項2に記載の発明は、炭素系導電
材の材料を特定したものである。これらのことにより水
素吸蔵合金電極の表面積を増大させることができるとと
もに水素吸蔵合金粉末間の接触抵抗を低減することがで
きる。このように水素吸蔵合金電極の表面積を増大させ
たことにより電極−電解液間の電気二重層容量を大きく
でき、大電流の充電や放電に対する緩衝効果を向上する
ことができる。また、合金粉末間の接触抵抗を低減する
ことにより大電流の充電や放電に対する合金電極中の合
金の利用率を向上することができ、電極での反応抵抗を
低減することができる。
The invention according to claim 2 specifies the material of the carbon-based conductive material. By these, the surface area of the hydrogen storage alloy electrode can be increased and the contact resistance between the hydrogen storage alloy powders can be reduced. By increasing the surface area of the hydrogen storage alloy electrode in this manner, the electric double layer capacity between the electrode and the electrolytic solution can be increased, and the buffering effect for charging and discharging a large current can be improved. Further, by reducing the contact resistance between the alloy powders, it is possible to improve the utilization rate of the alloy in the alloy electrode with respect to charging and discharging of a large current, and it is possible to reduce the reaction resistance at the electrode.

【0009】以上のことから本発明による水素吸蔵合金
電極を負極に用いることで、低温の高率パルス放電にお
いても十分な放電容量を有するニッケル水素蓄電池を得
ることができる。
From the above, by using the hydrogen storage alloy electrode according to the present invention as the negative electrode, it is possible to obtain a nickel-hydrogen storage battery having a sufficient discharge capacity even at low temperature and high rate pulse discharge.

【0010】電池の放電電流としては、電極反応による
放電以外に、電極−電解液間に形成される電気二重層を
利用する方法が考えられる。一般に、帯電した電極表面
には電解液中のイオンが吸着あるいは配向して電気二重
層が形成され、この電気二重層に電荷が蓄えられる。蓄
えられた電荷は外部回路を接続することにより、瞬間的
に大きな電流として放電される。ここで、電気二重層に
蓄えられる電荷は、(数1)で表される。
As the discharge current of the battery, besides the discharge by the electrode reaction, a method of utilizing an electric double layer formed between the electrode and the electrolytic solution can be considered. Generally, ions in the electrolytic solution are adsorbed or oriented on the charged electrode surface to form an electric double layer, and the electric double layer stores electric charges. The stored charge is instantaneously discharged as a large current by connecting an external circuit. Here, the electric charge stored in the electric double layer is represented by (Equation 1).

【0011】[0011]

【数1】 [Equation 1]

【0012】ここで、Qは電気二重層に蓄えられた電
荷、Cは電気二重層の容量、Vは電気二重層の電位差で
ある。また、電気二重層容量は(数2)で表される。
Here, Q is the electric charge stored in the electric double layer, C is the capacity of the electric double layer, and V is the potential difference of the electric double layer. The electric double layer capacity is represented by (Equation 2).

【0013】[0013]

【数2】 [Equation 2]

【0014】ここで、εは誘電率、Sは二重層を形成し
ている部分の面積、ここでは電極が電解液で漏れている
部分、dは二重層の間隔でここではイオン半径に相当す
る。(数1),(数2)より電荷Qは(数3)
Here, ε is the dielectric constant, S is the area of the portion forming the double layer, here the portion where the electrode leaks in the electrolytic solution, and d is the distance between the double layers and corresponds to the ionic radius here. . From (Equation 1) and (Equation 2), the charge Q is (Equation 3)

【0015】[0015]

【数3】 (Equation 3)

【0016】と表され、Sに比例することがわかる。す
なわち、電極の表面積が大きく、かつ電解液で濡れてい
る面積が大きいほど、電気二重層は多くの電荷を蓄える
ことができる。この電荷の放電による電流は瞬間的なも
のなので、長時間の連続放電はできないが、数ミリ秒間
のパルス放電には対応できる可能性がある。
It can be seen that it is proportional to S. That is, the larger the surface area of the electrode and the larger the area wetted by the electrolytic solution, the more electric charges the electric double layer can store. Since the current due to the discharge of this electric charge is instantaneous, continuous discharge for a long time cannot be performed, but there is a possibility that it can cope with pulse discharge for several milliseconds.

【0017】したがって、低温での高率パルス放電を可
能にするためには、水素吸蔵合金電極の改良が必要であ
る。
Therefore, in order to enable high rate pulse discharge at low temperature, it is necessary to improve the hydrogen storage alloy electrode.

【0018】[0018]

【実施例】以下に、本発明の具体例を説明する。EXAMPLES Specific examples of the present invention will be described below.

【0019】一般式MmNi3.7Co0.9Mn0.2Al0.2
を市販のMm,Mn,Ni,Coを用いて作成した。ま
ず、各金属材料を所定量秤量して混合し、高周波溶解炉
により加熱溶解させて冷却した。冷却後、アルゴンガス
気流中、1050℃で6時間熱処理を行い、AB5系の
水素吸蔵合金を作製した。この水素吸蔵合金をボールミ
ルで38μm以下の粉末に粉砕した。この水素吸蔵合金
粉末100重量部に対して導電材として比表面積が約7
80m2/gのカーボンブラックをそれぞれ0,0.
2,0.6,0.9重量部混合した。これらにイオン交
換水15重量部を加え、よく混練してペースト状にし
た。このペーストを発泡状ニッケル多孔体内に充填し、
95℃で30分間乾燥した後、約1t/cm2で加圧
し、一定の大きさに裁断して試料1〜4の4種類の水素
吸蔵合金電極を作製した。
General formula MmNi 3.7 Co 0.9 Mn 0.2 Al 0.2
Was prepared using commercially available Mm, Mn, Ni and Co. First, a predetermined amount of each metal material was weighed and mixed, heated and melted in a high frequency melting furnace, and then cooled. After cooling, heat treatment was performed in an argon gas stream at 1050 ° C. for 6 hours to produce an AB 5 -based hydrogen storage alloy. This hydrogen storage alloy was pulverized with a ball mill into powder of 38 μm or less. The specific surface area of the conductive material is about 7 parts by weight based on 100 parts by weight of the hydrogen storage alloy powder.
80 m 2 / g of carbon black was added to 0, 0.
2, 0.6, 0.9 parts by weight were mixed. To these, 15 parts by weight of ion-exchanged water was added and kneaded well to form a paste. Fill this paste into a foamed nickel porous body,
After drying at 95 ° C. for 30 minutes, it was pressed at about 1 t / cm 2 and cut into a certain size to prepare four types of hydrogen storage alloy electrodes of Samples 1 to 4.

【0020】上記のように作製した水素吸蔵合金電極の
比表面積をBET法により測定した。また、カーボンブ
ラックの添加量が0と0.9重量部の水素吸蔵合金電極
の電極反応抵抗と水素吸蔵合金電極−電解液間の電気二
重層容量を交流インピーダンス法により測定した。それ
ぞれの結果を(表1)に示した。
The specific surface area of the hydrogen storage alloy electrode produced as described above was measured by the BET method. Further, the electrode reaction resistance of the hydrogen storage alloy electrode with the addition amount of carbon black of 0 and 0.9 parts by weight and the electric double layer capacity between the hydrogen storage alloy electrode and the electrolytic solution were measured by the AC impedance method. The respective results are shown in (Table 1).

【0021】[0021]

【表1】 [Table 1]

【0022】(表1)に示すようにカーボンブラックの
添加量を増加することにより水素吸蔵合金電極の比表面
積が増大する。また、電極反応抵抗は、カーボンブラッ
クを加えることにより小さくなっていることがわかっ
た。さらに、カーボンブラックの添加量が多いほど、傾
向的に負極−電解液間の電気二重層容量が大きいことも
わかった。これらのことから比表面積の大きな導電材を
水素吸蔵合金粉末に加えた水素吸蔵合金電極では、高比
表面積を有する導電材の添加量が多いほど、水素吸蔵合
金電極の比表面積を大きくでき、それに従い電気二重層
容量を大きくでき、かつ電極反応抵抗を小さくすること
ができることがわかった。
As shown in Table 1, increasing the amount of carbon black added increases the specific surface area of the hydrogen storage alloy electrode. It was also found that the electrode reaction resistance was reduced by adding carbon black. Furthermore, it was also found that the larger the amount of carbon black added, the larger the electric double layer capacity between the negative electrode and the electrolytic solution. From these facts, in a hydrogen storage alloy electrode in which a conductive material having a large specific surface area is added to a hydrogen storage alloy powder, the larger the amount of the conductive material having a high specific surface area added, the larger the specific surface area of the hydrogen storage alloy electrode can be. Therefore, it was found that the electric double layer capacity can be increased and the electrode reaction resistance can be decreased.

【0023】次に、上記のようにして作製したそれぞれ
の水素吸蔵合金電極を負極とし、発泡ニッケルを基体と
して用いて公知の方法で製造したペースト式ニッケル正
極を用い、セパレータを介して渦巻状に構成し、電解液
として水酸化リチウムを30g/l溶解した水酸化カリ
ウム水溶液、液比重約1.3を用いて、公称容量500
mAhの単4型の密閉型ニッケル水素蓄電池を作製し、
その放電特性を調べた。放電特性はこれらの電池を、2
0℃,1C(500mA)で1.5時間充電(150
%)し、0.2C(100mA)で終止電圧1.0Vま
で放電した。このときの放電容量を100として、−2
0℃で1Cあるいは2Cで1.0Vまで放電したときの
容量比率を図1に示す。図1の結果より明らかなように
本発明の水素吸蔵合金電極を用いた電池は、カーボンブ
ラックを添加していないものや少ないものに比べ放電特
性が向上した。特に、−20℃,2Cの放電特性の向上
が著しいことがわかった。これは、カーボンブラックの
添加量を増加することにより表1に示したように水素吸
蔵合金負極の低温での電極反応抵抗が低減されたために
放電特性が向上したと考えられる。
Next, using each of the hydrogen storage alloy electrodes produced as described above as a negative electrode, and using a foamed nickel positive electrode as a substrate, a pasty nickel positive electrode manufactured by a known method was spirally formed through a separator. Using an aqueous solution of potassium hydroxide in which 30 g / l of lithium hydroxide is dissolved as an electrolyte and a specific gravity of about 1.3, a nominal capacity of 500
A mAh AAA type sealed nickel-metal hydride storage battery was manufactured,
The discharge characteristics were investigated. The discharge characteristics of these batteries are 2
Charge at 0 ° C, 1C (500mA) for 1.5 hours (150
%) And discharged at a final voltage of 1.0 V at 0.2 C (100 mA). When the discharge capacity at this time is 100, -2
FIG. 1 shows the capacity ratio when discharged at 0 ° C. to 1 C or 2 C to 1.0 V. As is clear from the results of FIG. 1, the battery using the hydrogen storage alloy electrode of the present invention had improved discharge characteristics as compared with the battery containing no carbon black or the battery containing less carbon black. In particular, it was found that the discharge characteristics at -20 ° C and 2C were significantly improved. It is considered that the discharge characteristic was improved because the electrode reaction resistance at low temperature of the hydrogen storage alloy negative electrode was reduced as shown in Table 1 by increasing the addition amount of carbon black.

【0024】同様の電池で、次にパルス放電特性を調べ
た。これらの電池は、あらかじめ20℃,1C(500
mA)で1.5時間充電(150%)し、4C(2A)
で0.6mS(ミリ秒),0.6C(300mA)で4
mSというくりかえしのパルス放電電流パターンで、終
止電圧1.0Vまで放電した。20℃でこのパルス放電
を行ったときの放電容量を100として、0℃,−20
℃でパルス放電を行ったときの容量比率を調べた結果を
図2に示す。図2の結果も先の図1の放電特性の結果と
同様に、カーボンブラックの添加量が多いほど、特性が
向上したことがわかった。さらに、パルス放電試験で
は、最大電流4Cの高率パルス放電を行っているにもか
かわらず、図1に示した定電流放電を行った場合の結果
より放電容量は大きくなった。これは、4C放電時に負
極−電解液間の電気二重層に蓄えられた電荷が放電され
たことによる効果であると考えられる。
Next, the pulse discharge characteristics of the same battery were examined. These batteries are preheated at 20 ° C, 1C (500
Charged (150%) for 1.5 hours at 4mA (2A)
0.6 mS (millisecond), 0.6 C (300 mA) 4
It was discharged to a final voltage of 1.0 V with a repeating pulse discharge current pattern of mS. The discharge capacity at the time of performing this pulse discharge at 20 degreeC is set to 100, and 0 degreeC and -20
FIG. 2 shows the result of examining the capacity ratio when pulse discharge was performed at ° C. The results of FIG. 2 were also found to improve as the amount of carbon black added increased, similarly to the results of the discharge characteristics of FIG. Further, in the pulse discharge test, the discharge capacity was larger than the result when the constant current discharge shown in FIG. 1 was performed, although the high rate pulse discharge with the maximum current of 4 C was performed. This is considered to be due to the fact that the electric charge stored in the electric double layer between the negative electrode and the electrolytic solution was discharged during 4C discharge.

【0025】水素吸蔵合金電極の表面積の効果を調べる
ために、水素吸蔵合金粉末100重量部に対して約20
00m2/gの比表面積を有するカーボンブラック0.
6重量部添加した合金電極を作成し、その合金電極を用
いて上記同様に容量500mAhの単4型の密閉型ニッ
ケル水素蓄電池を作成して低温における高率パルス放電
特性を調べた。その結果、比表面積約780m2/gを
有するカーボンブラックを用いた合金電極からなる電池
に比べ、合金電極の比表面積は約2.2倍増大し、放電
特性は約1.5倍向上した。このことより合金電極の比
表面積の増大により放電特性が向上することがわかっ
た。
In order to investigate the effect of the surface area of the hydrogen storage alloy electrode, about 20 parts by weight per 100 parts by weight of the hydrogen storage alloy powder are used.
Carbon black having a specific surface area of 00 m 2 / g.
An alloy electrode containing 6 parts by weight was prepared, and using the alloy electrode, a AAA type sealed nickel-metal hydride storage battery having a capacity of 500 mAh was prepared in the same manner as described above, and the high rate pulse discharge characteristics at low temperature were examined. As a result, the specific surface area of the alloy electrode was increased by about 2.2 times and the discharge characteristics were improved by about 1.5 times, as compared with the battery including the alloy electrode using carbon black having a specific surface area of about 780 m 2 / g. From this, it was found that the discharge characteristics were improved by increasing the specific surface area of the alloy electrode.

【0026】なお、本実施例ではカーボンブラックの添
加量について0.9重量部までしか述べていないが、
3.0重量部まで増加しても同様の効果が得られた。し
かし、1.5重量部を越える量を添加しても、添加量の
増大に比べて大きな特性の向上は得られなかった。ま
た、3.0重量部を越える量を添加すると、負極の単位
体積当たりの容量が低下する。以上のことよりカーボン
ブラックの添加量は水素吸蔵合金粉末100重量部当た
り0.3〜3.0重量部、特に、0.6〜1.5重量部
の範囲とすることが最も好ましい。
In this embodiment, the amount of carbon black added is limited to 0.9 parts by weight.
Similar effects were obtained even when the amount was increased to 3.0 parts by weight. However, even if the amount added exceeds 1.5 parts by weight, a great improvement in characteristics cannot be obtained as compared with the increase in the added amount. Moreover, when the amount exceeds 3.0 parts by weight, the capacity per unit volume of the negative electrode decreases. From the above, the addition amount of carbon black is most preferably 0.3 to 3.0 parts by weight, especially 0.6 to 1.5 parts by weight, per 100 parts by weight of the hydrogen storage alloy powder.

【0027】また、本実施例はカーボンの比表面積につ
いて約780m2/gのカーボンブラックを用いた場合
と比較として約2000m2/gを用いた場合を示した
が、比表面積は500〜3000m2/gの範囲で同様
の効果を得ることができた。さらに導電材としてはカー
ボンブラックの他、同様な比表面積をもった活性炭粉末
や繊維を用いても同様の効果を得ることができた。
Further, this example shows the case where about 2,000 m 2 / g is used as a comparison with the case where about 780 m 2 / g of carbon black is used as the specific surface area of carbon, but the specific surface area is 500 to 3,000 m 2. A similar effect could be obtained in the range of / g. Further, as the conductive material, in addition to carbon black, activated carbon powder or fiber having a similar specific surface area could be used to obtain the same effect.

【0028】[0028]

【発明の効果】以上のように、本発明によれば、比表面
積の大きな炭素系導電材を水素吸蔵合金に添加すること
により、電極−電解液間の電気二重層容量が大きくかつ
電極反応抵抗の低い水素吸蔵合金電極が得られた。この
水素吸蔵合金電極を負極として用いることにより、低温
の高率パルス放電特性に優れたニッケル水素蓄電池を提
供することができる。
As described above, according to the present invention, by adding the carbon-based conductive material having a large specific surface area to the hydrogen storage alloy, the electric double layer capacity between the electrode and the electrolytic solution is large and the electrode reaction resistance is large. A low hydrogen storage alloy electrode was obtained. By using this hydrogen storage alloy electrode as the negative electrode, it is possible to provide a nickel-hydrogen storage battery excellent in low-temperature, high-rate pulse discharge characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】カーボンブラックの添加量を変えた水素吸蔵合
金電極を備えたニッケル水素電池の放電特性を示す図
FIG. 1 is a diagram showing discharge characteristics of a nickel-hydrogen battery provided with a hydrogen storage alloy electrode in which the amount of carbon black added is changed.

【図2】カーボンブラックの添加量を変えた水素吸蔵合
金電極を備えたニッケル水素電池のパルス放電特性を示
す図
FIG. 2 is a diagram showing pulse discharge characteristics of a nickel-hydrogen battery equipped with a hydrogen storage alloy electrode in which the amount of carbon black added is changed.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニッケルを主体とする正極と、活
物質である水素を電気化学的に吸収・放出することが可
能な水素吸蔵合金粉末を主構成材料とする負極と、セパ
レータと、アルカリ電解液とからなる蓄電池において、
前記負極は水素吸蔵合金粉末100重量部当たり0.3
〜3.0重量部の比表面積が500〜3000m2/g
の炭素系導電材を混入していて電極全体の比表面積が
1.2〜20m2/gであるアルカリ蓄電池。
1. A positive electrode containing nickel hydroxide as a main component, a negative electrode containing hydrogen storage alloy powder as a main constituent material capable of electrochemically absorbing and releasing hydrogen as an active material, a separator, and an alkali. In a storage battery consisting of an electrolytic solution,
The negative electrode is 0.3 per 100 parts by weight of hydrogen storage alloy powder.
~ 3.0 parts by weight of specific surface area is 500 ~ 3000 m 2 / g
Alkaline storage battery in which the carbon-based conductive material is mixed and the specific surface area of the entire electrode is 1.2 to 20 m 2 / g.
【請求項2】 炭素系導電材が活性炭粉末、活性炭繊
維、カーボンブラックまたはそれらの混合物のいずれか
である請求項1記載のアルカリ蓄電池。
2. The alkaline storage battery according to claim 1, wherein the carbon-based conductive material is any one of activated carbon powder, activated carbon fiber, carbon black or a mixture thereof.
JP09649196A 1996-04-18 1996-04-18 Alkaline storage battery Expired - Lifetime JP3572794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09649196A JP3572794B2 (en) 1996-04-18 1996-04-18 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09649196A JP3572794B2 (en) 1996-04-18 1996-04-18 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH09283148A true JPH09283148A (en) 1997-10-31
JP3572794B2 JP3572794B2 (en) 2004-10-06

Family

ID=14166558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09649196A Expired - Lifetime JP3572794B2 (en) 1996-04-18 1996-04-18 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3572794B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329500A (en) * 1998-05-14 1999-11-30 Sony Corp Solid state electrolyte battery
KR100362278B1 (en) * 2000-04-10 2002-11-23 삼성에스디아이 주식회사 Lithium secondary battery
JP2006252902A (en) * 2005-03-10 2006-09-21 Kawasaki Heavy Ind Ltd Hybrid battery
JP2018041562A (en) * 2016-09-05 2018-03-15 Fdk株式会社 Negative electrode for nickel hydrogen secondary battery and nickel hydrogen secondary battery including the negative electrode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329500A (en) * 1998-05-14 1999-11-30 Sony Corp Solid state electrolyte battery
KR100362278B1 (en) * 2000-04-10 2002-11-23 삼성에스디아이 주식회사 Lithium secondary battery
JP2006252902A (en) * 2005-03-10 2006-09-21 Kawasaki Heavy Ind Ltd Hybrid battery
JP2012064590A (en) * 2005-03-10 2012-03-29 Kawasaki Heavy Ind Ltd Hybrid battery
JP2018041562A (en) * 2016-09-05 2018-03-15 Fdk株式会社 Negative electrode for nickel hydrogen secondary battery and nickel hydrogen secondary battery including the negative electrode

Also Published As

Publication number Publication date
JP3572794B2 (en) 2004-10-06

Similar Documents

Publication Publication Date Title
JP3097347B2 (en) Nickel-metal hydride battery
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP3042043B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JPH11176436A (en) Alkaline storage battery
US5529857A (en) Hydrogen-absorbing alloy electrode and process for producing the same
JPH1186853A (en) Lithium secondary battery
JPH11283623A (en) Lithium ion battery and its manufacture
Geng et al. Characteristics of the High‐Rate Discharge Capability of a Nickel/Metal Hydride Battery Electrode
JPH1140189A (en) Nickel-hydrogen storage battery
JPH01204361A (en) Secondary battery
JP2001118568A (en) Nonaqueous secondary battery
JP3572794B2 (en) Alkaline storage battery
JP3079303B2 (en) Activation method of alkaline secondary battery
JP4747233B2 (en) Alkaline storage battery
JP2004296394A (en) Nickel-hydrogen storage battery and battery pack
JP4561040B2 (en) Nonaqueous electrolyte secondary battery
JP3048953B2 (en) Non-aqueous electrolyte secondary battery
JP3198896B2 (en) Nickel-metal hydride battery
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH09223500A (en) Nickel hydrogen battery
JP4622014B2 (en) Nonaqueous electrolyte secondary battery
JP4536209B2 (en) Method for producing hydrogen storage alloy electrode
JP2623413B2 (en) Paste nickel electrode for alkaline storage batteries
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JPH10172550A (en) Alkaline battery with nickel positive electrode and its activating method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

EXPY Cancellation because of completion of term