JPH09283119A - Negative electrode for nonaqueous electrolyte secondary battery and nonqueous electrolyte secondary battery having this negative electrode - Google Patents

Negative electrode for nonaqueous electrolyte secondary battery and nonqueous electrolyte secondary battery having this negative electrode

Info

Publication number
JPH09283119A
JPH09283119A JP8113095A JP11309596A JPH09283119A JP H09283119 A JPH09283119 A JP H09283119A JP 8113095 A JP8113095 A JP 8113095A JP 11309596 A JP11309596 A JP 11309596A JP H09283119 A JPH09283119 A JP H09283119A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
electrolyte secondary
weight
carbon powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8113095A
Other languages
Japanese (ja)
Inventor
Yoshihiro Shoji
良浩 小路
Mayumi Uehara
真弓 上原
Mikiya Yamazaki
幹也 山崎
Toshiyuki Noma
俊之 能間
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8113095A priority Critical patent/JPH09283119A/en
Publication of JPH09283119A publication Critical patent/JPH09283119A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode and a secondary battery with high electrolyte retainability and high electronic conductivity, and high load characteristics. SOLUTION: This negative electrode for a nonaqueous electrolyte secondary battery is manufactured by applying slurry containing 100 pts.wt. carbon powder having graphite crystal structure, 1-8 pts.wt. amorphous carbon powder having the mean particle size smaller than the above carbon powder, 1-12 pts.wt. binder solution in terms of solid material, and 0.5-2 pts.wt. thickening agent to both surfaces of a current collector, and drying the slurry.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は黒鉛型結晶構造を有
する炭素粉末をリチウム吸蔵材とする非水電解液二次電
池用負極及びこれを備える非水電解液二次電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery, which uses a carbon powder having a graphite type crystal structure as a lithium storage material, and a non-aqueous electrolyte secondary battery including the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
黒鉛型結晶構造を有する炭素材料が、従前のリチウム金
属等の金属材料に代わる新たな非水電解液二次電池用負
極材料として、提案されている。炭素材料を負極材料と
して用いた場合、リチウム金属などを用いた場合に問題
となっていた樹枝状の電析物の成長に起因する内部短絡
の虞れが無く、充放電サイクル特性に優れた非水電解液
二次電池が得られる。
2. Description of the Related Art In recent years,
A carbon material having a graphite type crystal structure has been proposed as a new negative electrode material for a non-aqueous electrolyte secondary battery, which replaces a conventional metal material such as lithium metal. When a carbon material is used as the negative electrode material, there is no fear of internal short circuit due to the growth of dendritic electrodeposits, which was a problem when using lithium metal, etc. A water electrolyte secondary battery is obtained.

【0003】従来、黒鉛型結晶構造を有する炭素材料を
使用した負極は、黒鉛型結晶構造を有する炭素粉末と結
着剤溶液と増粘剤とからなるスラリーを集電体の両面に
塗布し、乾燥することにより作製されていた。
Conventionally, in a negative electrode using a carbon material having a graphite type crystal structure, a slurry consisting of carbon powder having a graphite type crystal structure, a binder solution and a thickener is applied on both sides of a current collector, It was produced by drying.

【0004】しかしながら、この負極には、負荷特性が
良くないという問題があった。
However, this negative electrode has a problem that the load characteristics are not good.

【0005】したがって、本発明の目的は、黒鉛型結晶
構造を有する炭素材料を負極材料とする負荷特性に優れ
た非水電解液二次電池用負極及びこれを備える非水電解
液二次電池を提供することである。
Therefore, an object of the present invention is to provide a negative electrode for a non-aqueous electrolyte secondary battery, which uses a carbon material having a graphite type crystal structure as a negative electrode material and has excellent load characteristics, and a non-aqueous electrolyte secondary battery including the same. Is to provide.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る非水電解液二次電池用負極(本発明電
極)は、黒鉛型結晶構造を有する炭素粉末100重量部
と、これより平均粒径が小さい無定形炭素粉末1〜8重
量部と、結着剤溶液を固形分換算で1〜12重量部と、
増粘剤0.5〜2重量部とを含有するスラリーを集電体
の両面に塗布し、乾燥することにより作製される。
To achieve the above object, a negative electrode for a non-aqueous electrolyte secondary battery according to the present invention (the electrode of the present invention) comprises 100 parts by weight of carbon powder having a graphite type crystal structure. 1 to 8 parts by weight of amorphous carbon powder having a smaller average particle diameter, and 1 to 12 parts by weight of the binder solution in terms of solid content,
It is prepared by applying a slurry containing 0.5 to 2 parts by weight of a thickener on both sides of a current collector and drying.

【0007】また、本発明に係る非水電解液二次電池
(本発明電池)は、本発明電極を備える非水電解液二次
電池である。
The non-aqueous electrolyte secondary battery according to the present invention (the present invention battery) is a non-aqueous electrolyte secondary battery provided with the present electrode.

【0008】[0008]

【発明の実施の形態】本発明における黒鉛型結晶構造を
有する炭素粉末とは、Lc(c軸方向の結晶子の大き
さ)が200Å以上であり、且つd002 〔格子面(00
2)面の面間隔〕が3.37Å以下である六方晶系に属
する炭素粉末である。本発明における無定形炭素粉末と
は、Lcが30Å以下であり、且つd002 が3.45Å
以上である炭素粉末である。その具体例としては、ケッ
チェンブラック(KB)、カーボンブラック、アセチレ
ンブラック、すす、木炭、活性炭が挙げられる。本発明
における結着剤溶液としては、スチレン−ブタジエンゴ
ム、(メタ)アクリルゴム、アクリロニトリルゴムなど
を、水又は非水溶媒に分散させたディスパージョンが例
示される。本発明における増粘剤としては、カルボキシ
メチルセルロース(CMC)、メチルセルロース、ヒド
ロキシメチルセルロース、エチルセルロース、ポリビニ
ルアルコール、ポリアクリル酸及びその塩、酸化スター
チ、リン酸化スターチ、カゼインが例示される。負極の
集電体の具体例としては、銅箔、ニッケル箔が挙げられ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Carbon powder having a graphite type crystal structure in the present invention means that Lc (size of crystallite in the c-axis direction) is 200 Å or more, and d 002 [lattice plane (00
2) The interplanar spacing] is 3.37 Å or less, which is a carbon powder belonging to the hexagonal system. The amorphous carbon powder in the present invention means that Lc is 30 Å or less and d 002 is 3.45 Å
The above is the carbon powder. Specific examples thereof include Ketjen Black (KB), carbon black, acetylene black, soot, charcoal, and activated carbon. Examples of the binder solution in the present invention include dispersions in which styrene-butadiene rubber, (meth) acrylic rubber, acrylonitrile rubber, etc. are dispersed in water or a non-aqueous solvent. Examples of the thickener in the present invention include carboxymethyl cellulose (CMC), methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, polyacrylic acid and salts thereof, oxidized starch, phosphorylated starch, and casein. Specific examples of the negative electrode current collector include copper foil and nickel foil.

【0009】本発明電極は、黒鉛型結晶構造を有する炭
素粉末100重量部と、これより平均粒径が小さい無定
形炭素粉末1〜8重量部と、結着剤(固形分)1〜12
重量部と、増粘剤0.5〜2重量部とを含有する。黒鉛
型結晶構造を有する炭素粉末に対する無定形炭素粉末、
結着剤及び増粘剤の割合が上記各範囲を外れると、負荷
特性が低下する。
The electrode of the present invention comprises 100 parts by weight of carbon powder having a graphite type crystal structure, 1 to 8 parts by weight of amorphous carbon powder having a smaller average particle size, and a binder (solid content) of 1 to 12.
Parts by weight and 0.5 to 2 parts by weight of a thickener. Amorphous carbon powder to carbon powder having a graphite type crystal structure,
If the proportions of the binder and the thickener deviate from the above ranges, the load characteristics will deteriorate.

【0010】無定形炭素粉末として、黒鉛型結晶構造を
有する炭素粉末よりも平均粒径が小さいものを使用する
こととしているのは、含液性を高めるためである。好適
な無定形炭素粉末の平均粒径は、黒鉛型結晶構造を有す
る炭素粉末の平均粒径の1/2以下である。
As the amorphous carbon powder, one having an average particle size smaller than that of the carbon powder having the graphite type crystal structure is used in order to improve the liquid content. The average particle size of the preferred amorphous carbon powder is ½ or less of the average particle size of the carbon powder having the graphite type crystal structure.

【0011】非水電解液は特に限定されず、非水電解液
二次電池用として従来公知のものを使用することができ
る。溶媒の具体例としては、エチレンカーボネート、プ
ロピレンカーボネート、ブチレンカーボネート、ビニレ
ンカーボネート、シクロペンタノン、スルホラン、3−
メチルスルホラン、2,4−ジメチルスルホラン、3−
メチル−1,3−オキサゾリジン−2−オン、γ−ブチ
ロラクトン、ジメチルカーボネート、ジエチルカーボネ
ート、エチルメチルカーボネート、メチルプロピルカー
ボネート、ブチルメチルカーボネート、エチルプロピル
カーボネート、ブチルエチルカーボネート、ジプロピル
カーボネート、1,2−ジメトキシエタン、テトラヒド
ロフラン、2−メチルテトラヒドロフラン、1,3−ジ
オキソラン、酢酸メチル、酢酸エチル及びこれらの2種
以上の混合溶媒が、また溶質の具体例としては、LiP
6 、LiBF4 、LiClO4 、LiCF3 SO3
LiAsF6 、LiN(CF3 SO2 2 及びLiSO
2 (CF2 3 CF3 が、それぞれ挙げられる。
The non-aqueous electrolyte is not particularly limited, and conventionally known ones for non-aqueous electrolyte secondary batteries can be used. Specific examples of the solvent include ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, cyclopentanone, sulfolane, and 3-.
Methylsulfolane, 2,4-dimethylsulfolane, 3-
Methyl-1,3-oxazolidin-2-one, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, butyl ethyl carbonate, dipropyl carbonate, 1,2- Dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, ethyl acetate and a mixed solvent of two or more of these, and specific examples of the solute include LiP.
F 6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 ,
LiAsF 6 , LiN (CF 3 SO 2 ) 2 and LiSO
2 (CF 2 ) 3 CF 3 can be mentioned respectively.

【0012】正極活物質もまた特に限定されず、非水電
解液二次電池用として従来公知のものを使用することが
できる。正極活物質の具体例としては、LiCoO2
LiNiO2 、LiMnO2 、LiVO2 、LiNbO
2 が挙げられる。
The positive electrode active material is also not particularly limited, and conventionally known materials for non-aqueous electrolyte secondary batteries can be used. Specific examples of the positive electrode active material include LiCoO 2 ,
LiNiO 2 , LiMnO 2 , LiVO 2 , LiNbO
2 is mentioned.

【0013】本発明電極は、平均粒径が黒鉛型結晶構造
を有する炭素粉末よりも小さい電導率の高い無定形炭素
粉末を所定量含有しているので、含液性及び電子伝導性
が高い。それゆえ、本発明電極及び本発明電池は、負荷
特性に優れる。なお、負極合剤層の集電体に対する密着
性を高めるべく負極の結着剤量を通常より多くしても、
負極の含液性及び電子伝導性が高いので、負荷特性が低
下しにくい。
Since the electrode of the present invention contains a predetermined amount of amorphous carbon powder having an average particle size smaller than that of carbon powder having a graphite type crystal structure and high electric conductivity, it has high liquid content and high electron conductivity. Therefore, the electrode of the present invention and the battery of the present invention have excellent load characteristics. In addition, even if the amount of the binder of the negative electrode is made larger than usual in order to improve the adhesion of the negative electrode mixture layer to the current collector,
Since the negative electrode has high liquid content and electron conductivity, the load characteristics are unlikely to deteriorate.

【0014】本発明の適用対象の代表例はリチウム二次
電池用負極及びリチウム二次電池であるが、本発明が広
く非水電解液二次電池用負極及び非水電解液二次電池に
適用可能な発明であることは明らかである。
Typical examples of the application target of the present invention are negative electrodes for lithium secondary batteries and lithium secondary batteries, but the present invention is widely applied to negative electrodes for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries. Obviously, it is a possible invention.

【0015】[0015]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲で適宜変更して
実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications can be made without departing from the scope of the invention. Is possible.

【0016】(実験1)黒鉛型結晶構造を有する炭素粉
末に対する無定形炭素粉末の割合と負荷特性の関係を調
べた。
(Experiment 1) The relationship between the ratio of the amorphous carbon powder to the carbon powder having a graphite type crystal structure and the load characteristics was investigated.

【0017】〔正極の作製〕正極活物質としての平均粒
径5μmのLiCoO2 粉末と、導電剤としての人造黒
鉛粉末とを、重量比9:1で混合した。この混合物とP
VdF(ポリフッ化ビニリデン)の5重量%NMP(N
−メチル−2−ピロリドン)とを、重量比95:5で混
練してスラリーを調製した。このスラリーをドクターブ
レード法により正極集電体としてのアルミニウム箔の両
面に塗布し、150°Cで2時間真空乾燥して、各面に
厚さ50μmの正極合剤層を有する極板を作製した。こ
の極板を圧延・スリットして、厚さ0.100mm、幅
40mm、長さ280mmの帯状の正極を作製した。
[Production of Positive Electrode] LiCoO 2 powder having an average particle diameter of 5 μm as a positive electrode active material and artificial graphite powder as a conductive agent were mixed at a weight ratio of 9: 1. This mixture and P
5% by weight of VdF (polyvinylidene fluoride) NMP (N
-Methyl-2-pyrrolidone) was kneaded at a weight ratio of 95: 5 to prepare a slurry. This slurry was applied on both sides of an aluminum foil as a positive electrode current collector by the doctor blade method, and vacuum dried at 150 ° C. for 2 hours to prepare an electrode plate having a positive electrode mixture layer with a thickness of 50 μm on each side. . This electrode plate was rolled and slit to produce a strip-shaped positive electrode having a thickness of 0.100 mm, a width of 40 mm and a length of 280 mm.

【0018】〔負極の作製〕平均粒径20μmの黒鉛粉
末(Lc>1000Å;d002 =3.35Å)100重
量部とSBR(スチレン−ブタジエンゴム)ディスパー
ジョン(樹脂固形分:5重量部)とを水に加えて混合
し、さらに平均粒径0.1μmのケッチェンブラック
(Lc=12Å;d002 =3.50Å)X重量部(X=
0、0.5、1、3、5、8、10又は15)とカルボ
キシメチルセルロース1重量部とを加えて混練して、8
種のスラリーを調製した。これらのスラリーをそれぞれ
ドクターブレード法により負極集電体としての銅箔の両
面に塗布し、150°Cで2時間真空乾燥して、各面に
厚さ50μmの負極合剤層を有する極板を作製した。こ
れらの極板を圧延・スリットして、厚さ0.100m
m、幅42mm、長さ300mmの帯状の負極を作製し
た。
[Preparation of Negative Electrode] 100 parts by weight of graphite powder (Lc>1000Å; d 002 = 3.35Å) having an average particle size of 20 μm and SBR (styrene-butadiene rubber) dispersion (resin solid content: 5 parts by weight) Is added to water and mixed, and further, Ketjen black (Lc = 12Å; d 002 = 3.50Å) having an average particle diameter of 0.1 μm is added in an amount of X parts by weight (X =
0, 0.5, 1, 3, 5, 8, 10 or 15) and 1 part by weight of carboxymethyl cellulose, and kneaded to obtain 8
A seed slurry was prepared. Each of these slurries was applied to both sides of a copper foil as a negative electrode current collector by the doctor blade method, and dried in vacuum at 150 ° C. for 2 hours to form an electrode plate having a negative electrode mixture layer with a thickness of 50 μm on each side. It was made. These electrode plates are rolled and slit to a thickness of 0.100m.
A strip-shaped negative electrode having m, a width of 42 mm, and a length of 300 mm was produced.

【0019】〔非水電解液の調製〕エチレンカーボネー
ト(EC)とジエチルカーボネート(DEC)との体積
比2:3の混合溶媒に、LiPF6 (ヘキサフルオロリ
ン酸リチウム)を1M(モル/リットル)溶かして、非
水電解液を調製した。
[Preparation of Non-Aqueous Electrolyte Solution] LiPF 6 (lithium hexafluorophosphate) was added to 1 M (mol / liter) in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 2: 3. It melt | dissolved and prepared the nonaqueous electrolytic solution.

【0020】〔リチウム二次電池の作製〕上記した正
極、負極及び非水電解液を用いて、正極容量が負極容量
よりも小さい円筒形(AAサイズ)のリチウム二次電池
A1〜A4,B1〜B4を作製した。なお、セパレータ
としてイオン透過性を有するポリプロピレン製の微多孔
膜を用いた。
[Production of Lithium Secondary Battery] Cylindrical (AA size) lithium secondary batteries A1 to A4, B1 to B1 having a positive electrode capacity smaller than the negative electrode capacity, using the above positive electrode, negative electrode and non-aqueous electrolyte solution. B4 was produced. A polypropylene microporous membrane having ion permeability was used as the separator.

【0021】図1は、作製したリチウム二次電池を模式
的に示す断面図であり、図示の非水電解液二次電池A
は、正極1、負極2、これら両電極1,2を互いに離間
するセパレータ3、正極リード4、負極リード5、正極
蓋6、負極缶7などからなる。
FIG. 1 is a cross-sectional view schematically showing the manufactured lithium secondary battery. The illustrated non-aqueous electrolyte secondary battery A is shown in FIG.
Is composed of a positive electrode 1, a negative electrode 2, a separator 3 which separates these electrodes 1 and 2 from each other, a positive electrode lead 4, a negative electrode lead 5, a positive electrode lid 6, a negative electrode can 7 and the like.

【0022】正極1及び負極2は、セパレータ3を間に
介して渦巻き状に巻き取られ、渦巻電極体として負極缶
(電池缶)7内に収納されており、正極1は正極リード
4を介して正極蓋6に、また負極2は負極リード5を介
して負極缶7に接続され、電池Aの内部に生じた化学エ
ネルギーを両端子から電気エネルギーとして外部へ取り
出し得るようになっている。なお、セパレータ3には、
封口前に非水電解液が注液されている。
The positive electrode 1 and the negative electrode 2 are wound in a spiral shape with a separator 3 interposed therebetween and are housed in a negative electrode can (battery can) 7 as a spiral electrode body. The positive electrode 1 is connected via a positive electrode lead 4. Is connected to the positive electrode lid 6 and the negative electrode 2 is connected to the negative electrode can 7 via the negative electrode lead 5 so that the chemical energy generated inside the battery A can be extracted from both terminals as electric energy to the outside. The separator 3 includes
Non-aqueous electrolyte is injected before sealing.

【0023】〈各電池の負荷特性〉各電池を、室温(2
5°C)にて、1Cで4.1Vまで充電した後、2Cで
2.75Vまで放電して、放電容量を求めた。結果を図
2に示す。図2は、黒鉛粉末に対する無定形炭素粉末の
割合と負荷特性の関係を、縦軸に2Cでの放電容量(m
Ah)を、横軸にケッチェンブラックの重量部数をとっ
て示したグラフである。
<Load Characteristics of Each Battery> Each battery is stored at room temperature (2
At 5 ° C), the battery was charged to 4.1V at 1C and then discharged to 2.75V at 2C to obtain the discharge capacity. The results are shown in FIG. FIG. 2 shows the relationship between the ratio of the amorphous carbon powder to the graphite powder and the load characteristics, with the vertical axis indicating the discharge capacity (m
3 is a graph showing Ah) with the horizontal axis representing the number of parts by weight of Ketjenblack.

【0024】図2に示すように、電池A1〜A4は、電
池B1〜B4に比べて、2Cでの放電容量が大きく、負
荷特性に優れている。この事実から、黒鉛粉末100重
量部に対する無定形炭素粉末の割合を、1〜8重量部と
した場合に、負荷特性に優れたリチウム二次電池が得ら
れることが分かる。電池A1〜A4が負荷特性に優れる
のは、負極の含液性が高く、しかも黒鉛粒子間及び黒鉛
粒子と集電体との間に充分な電子通路が形成されていた
ためと考えられる。また、電池B1,B2の負荷特性が
良くないのは、負極の含液性が低く、また黒鉛粒子間及
び黒鉛粒子と集電体との間に充分な電子通路が形成され
ていなかったためと考えられる。電池B3,B4の負荷
特性が良くないのは、無定形炭素を過剰に添加したため
に、無定形炭素の粒子表面で非水電解液(溶媒)が分解
したためと推察される。
As shown in FIG. 2, the batteries A1 to A4 have a larger discharge capacity at 2C than the batteries B1 to B4 and are excellent in load characteristics. From this fact, it is understood that when the ratio of the amorphous carbon powder to 100 parts by weight of the graphite powder is 1 to 8 parts by weight, a lithium secondary battery having excellent load characteristics can be obtained. It is considered that the batteries A1 to A4 were excellent in load characteristics because the negative electrode had a high liquid content and a sufficient electron passage was formed between the graphite particles and between the graphite particles and the current collector. Further, the reason why the load characteristics of the batteries B1 and B2 were not good is considered to be that the liquid content of the negative electrode was low, and that sufficient electron passages were not formed between the graphite particles and between the graphite particles and the current collector. To be The reason why the load characteristics of the batteries B3 and B4 were not good is supposed to be that the non-aqueous electrolyte (solvent) was decomposed on the surface of the particles of the amorphous carbon due to the excessive addition of the amorphous carbon.

【0025】(実験2)黒鉛型結晶構造を有する炭素粉
末に対する結着剤の割合と負荷特性の関係を調べた。
(Experiment 2) The relationship between the ratio of the binder to the carbon powder having a graphite type crystal structure and the load characteristics was investigated.

【0026】平均粒径20μmの黒鉛粉末(Lc>10
00Å;d002 =3.35Å)100重量部とSBR
(スチレン−ブタジエンゴム)ディスパージョン(固形
分:0.5、1、5、10、12、13又は15重量
部)とを水に加えて混合し、さらに平均粒径0.1μm
のケッチェンブラック(Lc=12Å;d002 =3.5
0Å)5重量部とカルボキシメチルセルロース1重量部
とを加えて混練して、7種のスラリーを調製した。これ
らのスラリーをそれぞれドクターブレード法により負極
集電体としての銅箔の両面に塗布し、150°Cで2時
間真空乾燥して、各面に厚さ50μmの負極合剤層を有
する極板を作製した。これらの極板を圧延・スリットし
て、厚さ0.100mm、幅42mm、長さ300mm
の帯状の負極を作製した。これらの負極を用いたこと以
外は実験1と同様にして、リチウム二次電池A5〜A
8,B5〜B7を作製し、実験1と同じ条件で充放電し
て、放電容量を求めた。ただし、電池A6は電池A3と
同仕様の電池である。結果を図3に示す。図3は、黒鉛
粉末に対する結着剤の割合と負荷特性の関係を、縦軸に
2Cでの放電容量(mAh)を、横軸に結着剤の重量部
数をとって示したグラフである。
Graphite powder having an average particle size of 20 μm (Lc> 10)
00Å; d 002 = 3.35Å) 100 parts by weight and SBR
(Styrene-butadiene rubber) dispersion (solid content: 0.5, 1, 5, 10, 12, 13 or 15 parts by weight) was added to water and mixed, and the average particle diameter was 0.1 μm.
Ketjen Black (Lc = 12Å; d 002 = 3.5
0 Å) 5 parts by weight and 1 part by weight of carboxymethyl cellulose were added and kneaded to prepare 7 kinds of slurries. Each of these slurries was applied to both sides of a copper foil as a negative electrode current collector by the doctor blade method, and dried in vacuum at 150 ° C. for 2 hours to form an electrode plate having a negative electrode mixture layer with a thickness of 50 μm on each side. It was made. These electrode plates are rolled and slit to have a thickness of 0.100 mm, a width of 42 mm, and a length of 300 mm.
A strip-shaped negative electrode was prepared. Lithium secondary batteries A5 to A were prepared in the same manner as in Experiment 1 except that these negative electrodes were used.
8, B5 to B7 were produced, charged and discharged under the same conditions as in Experiment 1, and the discharge capacity was obtained. However, the battery A6 has the same specifications as the battery A3. The results are shown in FIG. FIG. 3 is a graph showing the relationship between the ratio of the binder to the graphite powder and the load characteristic, the discharge capacity (mAh) at 2 C on the vertical axis, and the number of parts by weight of the binder on the horizontal axis.

【0027】図3に示すように、電池A5〜A8は、電
池B5〜B7に比べて、2Cでの放電容量が大きく、負
荷特性に優れている。この事実から、黒鉛粉末100重
量部に対する結着剤の割合を、1〜12重量部とした場
合に、負荷特性に優れたリチウム二次電池が得られるこ
とが分かる。電池B5の負荷特性が良くないのは、負極
合剤と集電体との結着性が充分でなったために、黒鉛粉
末が均一に利用されなかったためと考えられる。電池B
6,B7の負荷特性が良くないのは、過剰の結着剤の存
在により充分な電子通路が形成されなかったために、負
極での充放電が均一に起こらなかったためと考えられ
る。
As shown in FIG. 3, the batteries A5 to A8 have a large discharge capacity at 2C and excellent load characteristics as compared with the batteries B5 to B7. From this fact, it is understood that when the ratio of the binder to 100 parts by weight of graphite powder is 1 to 12 parts by weight, a lithium secondary battery having excellent load characteristics can be obtained. The reason why the load characteristic of the battery B5 was not good is considered that the graphite powder was not used uniformly because the binding property between the negative electrode mixture and the current collector was insufficient. Battery B
The reason why the load characteristics of 6 and B7 are not good is considered to be that the charge and discharge at the negative electrode did not occur uniformly because the sufficient electron passage was not formed due to the presence of the excessive binder.

【0028】(実験3)黒鉛型結晶構造を有する炭素粉
末に対する増粘剤の割合と負荷特性の関係を調べた。
(Experiment 3) The relationship between the ratio of the thickening agent to the carbon powder having the graphite type crystal structure and the load characteristic was investigated.

【0029】平均粒径20μmの黒鉛粉末(Lc>10
00Å;d002 =3.35Å)100重量部とSBR
(スチレン−ブタジエンゴム)ディスパージョン(固形
分:5重量部)とを水に加えて混合し、さらに平均粒径
0.1μmのケッチェンブラック(Lc=12Å;d
002 =3.50Å)5重量部とカルボキシメチルセルロ
ースZ重量部(Z=0.25、0.5、1、1.5、
2、2.5又は3)とを加えて混練して、7種のスラリ
ーを調製した。これらのスラリーをそれぞれドクターブ
レード法により負極集電体としての銅箔の両面に塗布
し、150°Cで2時間真空乾燥して、各面に厚さ50
μmの負極合剤層を有する極板を作製した。これらの極
板を圧延・スリットして、厚さ0.100mm、幅42
mm、長さ300mmの帯状の負極を作製した。これら
の負極を用いたこと以外は実験1と同様にして、リチウ
ム二次電池A9〜A12,B8〜B10を作製し、実験
1と同じ条件で充放電して、放電容量を求めた。ただ
し、電池A10は電池A3と同仕様の電池である。結果
を図4に示す。図4は、黒鉛粉末に対する増粘剤の割合
と負荷特性の関係を、縦軸に2Cでの放電容量(mA
h)を、横軸に増粘剤の重量部数をとって示したグラフ
である。
Graphite powder having an average particle size of 20 μm (Lc> 10)
00Å; d 002 = 3.35Å) 100 parts by weight and SBR
(Styrene-butadiene rubber) dispersion (solid content: 5 parts by weight) was added to water and mixed, and Ketjen black (Lc = 12Å; d) having an average particle diameter of 0.1 μm.
002 = 3.50Å) 5 parts by weight and carboxymethyl cellulose Z parts by weight (Z = 0.25, 0.5, 1, 1.5,
2, 2.5 or 3) was added and kneaded to prepare 7 kinds of slurries. Each of these slurries was applied to both sides of a copper foil as a negative electrode current collector by a doctor blade method, and vacuum dried at 150 ° C. for 2 hours to give a thickness of 50 on each side.
An electrode plate having a negative electrode mixture layer of μm was prepared. These electrode plates are rolled and slit to a thickness of 0.100 mm and a width of 42
A band-shaped negative electrode having a length of 300 mm and a length of 300 mm was produced. Lithium secondary batteries A9 to A12 and B8 to B10 were produced in the same manner as in Experiment 1 except that these negative electrodes were used, charged and discharged under the same conditions as in Experiment 1, and the discharge capacity was obtained. However, the battery A10 has the same specifications as the battery A3. FIG. 4 shows the results. FIG. 4 shows the relationship between the ratio of the thickener to the graphite powder and the load characteristics, with the vertical axis representing the discharge capacity (mA) at 2C.
3 is a graph showing h) in which the abscissa represents the number of parts by weight of the thickener.

【0030】図4に示すように、電池A9〜A12は、
電池B8〜B10に比べて、2Cでの放電容量が大き
く、負荷特性に優れている。この事実から、黒鉛粉末1
00重量部に対する増粘剤の割合を、0.5〜2重量部
とした場合に、負荷特性に優れたリチウム二次電池が得
られることが分かる。電池B8の負荷特性が良くないの
は、スラリーの粘度不足のために均質で且つ平滑な負極
が得られず、その結果負極での充放電が均一に起こらな
かったためと考えられる。電池B9,B10の負荷特性
が良くないのは、過剰の結着剤の存在により充分な電子
通路が形成されなかったために、負極での充放電が均一
に起こらなかったためと考えられる。
As shown in FIG. 4, the batteries A9 to A12 are
Compared with batteries B8 to B10, the discharge capacity at 2C is large and the load characteristics are excellent. From this fact, graphite powder 1
It can be seen that when the ratio of the thickener to 00 parts by weight is 0.5 to 2 parts by weight, a lithium secondary battery having excellent load characteristics can be obtained. The reason why the load characteristic of the battery B8 was not good is considered to be that a homogeneous and smooth negative electrode could not be obtained due to insufficient viscosity of the slurry, and as a result, charge / discharge at the negative electrode did not occur uniformly. The reason why the load characteristics of the batteries B9 and B10 were not good is considered to be that the charge and discharge at the negative electrode did not occur uniformly because a sufficient electron path was not formed due to the presence of the excessive binder.

【0031】(実験4)無定形炭素の好適な平均粒径を
調べた。
(Experiment 4) A suitable average particle diameter of amorphous carbon was investigated.

【0032】平均粒径20μmの黒鉛粉末(Lc>10
00Å;d002 =3.35Å)100重量部とSBR
(スチレン−ブタジエンゴム)ディスパージョン(固形
分:5重量部)とを水に加えて混合し、さらに平均粒径
Dμm(D=0.1、1、8、10、12又は15)の
ケッチェンブラック(Lc=12Å;d002 =3.50
Å)5重量部とカルボキシメチルセルロース1重量部と
を加えて混練して、6種のスラリーを調製した。これら
のスラリーをそれぞれドクターブレード法により負極集
電体としての銅箔の両面に塗布し、150°Cで2時間
真空乾燥して、各面に厚さ50μmの負極合剤層を有す
る極板を作製した。これらの極板を圧延・スリットし
て、厚さ0.100mm、幅42mm、長さ300mm
の帯状の負極を作製した。これらの負極を用いたこと以
外は実験1と同様にして、リチウム二次電池A13〜A
18を作製し、実験1と同じ条件で充放電して、放電容
量を求めた。ただし、電池A13は電池A3と同仕様の
電池である。結果を図5に示す。図5は、ケッチェンブ
ラックの平均粒径と負荷特性の関係を、縦軸に2Cでの
放電容量(mAh)を、横軸にケッチェンブラックの平
均粒径(μm)をとって示したグラフである。
Graphite powder having an average particle size of 20 μm (Lc> 10)
00Å; d 002 = 3.35Å) 100 parts by weight and SBR
(Styrene-butadiene rubber) dispersion (solid content: 5 parts by weight) was added to water and mixed, and further ketjen having an average particle diameter D μm (D = 0.1, 1, 8, 10, 12 or 15). Black (Lc = 12Å; d 002 = 3.50
Å) 5 parts by weight and 1 part by weight of carboxymethyl cellulose were added and kneaded to prepare 6 kinds of slurries. Each of these slurries was applied to both sides of a copper foil as a negative electrode current collector by a doctor blade method, and dried in vacuum at 150 ° C. for 2 hours to obtain an electrode plate having a negative electrode mixture layer with a thickness of 50 μm on each side. It was made. These electrode plates are rolled and slit to have a thickness of 0.100 mm, a width of 42 mm, and a length of 300 mm.
A strip-shaped negative electrode was prepared. Lithium secondary batteries A13 to A were manufactured in the same manner as in Experiment 1 except that these negative electrodes were used.
Sample No. 18 was produced and charged and discharged under the same conditions as in Experiment 1 to obtain the discharge capacity. However, the battery A13 has the same specifications as the battery A3. Results are shown in FIG. FIG. 5 is a graph showing the relationship between the average particle size of Ketjen black and the load characteristics, with the vertical axis representing the discharge capacity at 2 C (mAh) and the horizontal axis representing the average particle size of Ketjen black (μm). Is.

【0033】図5に示すように、電池A13〜A16
は、電池A17,A18に比べて、2Cでの放電容量が
大きく、負荷特性に優れている。この事実から、負荷特
性に優れたリチウム二次電池を得る上で、無定形炭素粉
末の平均粒径を、黒鉛粉末の平均粒径の1/2以下とす
ることが好ましいことが分かる。電池A17,A18の
負荷特性が比較的良くないのは、充分な電子通路が形成
されなかったために、黒鉛が充放電に充分に利用されな
かったためと推察される。
As shown in FIG. 5, batteries A13 to A16 are used.
Has a larger discharge capacity at 2C than the batteries A17 and A18 and is excellent in load characteristics. From this fact, it is understood that the average particle size of the amorphous carbon powder is preferably 1/2 or less of the average particle size of the graphite powder in order to obtain a lithium secondary battery having excellent load characteristics. It is inferred that the reason why the load characteristics of the batteries A17 and A18 were relatively poor was that graphite was not fully utilized for charging / discharging because a sufficient electron passage was not formed.

【0034】[0034]

【発明の効果】本発明電極は、含液性及び電子伝導性が
高い。このため、本発明電極及び本発明電池は、負荷特
性に優れる。
EFFECT OF THE INVENTION The electrode of the present invention has high liquid content and electron conductivity. Therefore, the electrode of the present invention and the battery of the present invention have excellent load characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で作製したリチウム二次電池の断面図で
ある。
FIG. 1 is a cross-sectional view of a lithium secondary battery manufactured in an example.

【図2】黒鉛粉末に対する無定形炭素粉末の割合と負荷
特性の関係を示したグラフである。
FIG. 2 is a graph showing the relationship between the ratio of amorphous carbon powder to graphite powder and load characteristics.

【図3】黒鉛粉末に対する結着剤の割合と負荷特性の関
係を示したグラフである。
FIG. 3 is a graph showing a relationship between a ratio of a binder to graphite powder and a load characteristic.

【図4】黒鉛粉末に対する増粘剤の割合と負荷特性の関
係を示したグラフである。
FIG. 4 is a graph showing the relationship between the ratio of a thickener to graphite powder and load characteristics.

【図5】無定形炭素粉末の平均粒径と負荷特性の関係を
示したグラフである。
FIG. 5 is a graph showing the relationship between the average particle size of amorphous carbon powder and load characteristics.

【符号の説明】[Explanation of symbols]

A リチウム二次電池(非水電解液二次電池) 1 正極 2 負極 3 セパレータ A lithium secondary battery (non-aqueous electrolyte secondary battery) 1 positive electrode 2 negative electrode 3 separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiyuki Noma 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-chome Keihanhondori, Moriguchi-shi, Osaka No. 5-5 in Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】黒鉛型結晶構造を有する炭素粉末100重
量部と、これより平均粒径が小さい無定形炭素粉末1〜
8重量部と、結着剤溶液を固形分換算で1〜12重量部
と、増粘剤0.5〜2重量部とを含有するスラリーを集
電体の両面に塗布し、乾燥することにより作製された非
水電解液二次電池用負極。
1. 100 parts by weight of a carbon powder having a graphite type crystal structure, and an amorphous carbon powder having an average particle size smaller than 1 part by weight
A slurry containing 8 parts by weight, a binder solution of 1 to 12 parts by weight in terms of solid content, and a thickener of 0.5 to 2 parts by weight is applied to both sides of a current collector and dried. The produced negative electrode for a non-aqueous electrolyte secondary battery.
【請求項2】前記無定形炭素粉末の平均粒径が、前記黒
鉛型結晶構造を有する炭素粉末の平均粒径の1/2以下
である請求項1記載の非水電解液二次電池用負極。
2. The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the average particle size of the amorphous carbon powder is 1/2 or less of the average particle size of the carbon powder having the graphite type crystal structure. .
【請求項3】請求項1又は2記載の非水電解液二次電池
用負極を備える非水電解液二次電池。
3. A non-aqueous electrolyte secondary battery comprising the negative electrode for non-aqueous electrolyte secondary battery according to claim 1.
JP8113095A 1996-04-10 1996-04-10 Negative electrode for nonaqueous electrolyte secondary battery and nonqueous electrolyte secondary battery having this negative electrode Pending JPH09283119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8113095A JPH09283119A (en) 1996-04-10 1996-04-10 Negative electrode for nonaqueous electrolyte secondary battery and nonqueous electrolyte secondary battery having this negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8113095A JPH09283119A (en) 1996-04-10 1996-04-10 Negative electrode for nonaqueous electrolyte secondary battery and nonqueous electrolyte secondary battery having this negative electrode

Publications (1)

Publication Number Publication Date
JPH09283119A true JPH09283119A (en) 1997-10-31

Family

ID=14603359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8113095A Pending JPH09283119A (en) 1996-04-10 1996-04-10 Negative electrode for nonaqueous electrolyte secondary battery and nonqueous electrolyte secondary battery having this negative electrode

Country Status (1)

Country Link
JP (1) JPH09283119A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100496274B1 (en) * 1998-08-24 2005-09-09 삼성에스디아이 주식회사 Method of processing electrode used in secondary li-ion battery
KR100553728B1 (en) * 1999-01-22 2006-02-17 삼성에스디아이 주식회사 Method for processing electrode used in secondary battery
KR101006212B1 (en) * 2002-11-19 2011-01-07 히다치 막셀 가부시키가이샤 NEGATIVE ELECTRODE FOR NON-AQUEOUS SECONDARY CELL, NON-AQUEOUS SECONDARY CELL COMPRISING THE SAME, METHOD FOR PRODUCING THE SAME AND ELECTRONIC DEVICE COMPRISING NON-x
JP2015032369A (en) * 2013-07-31 2015-02-16 トヨタ自動車株式会社 Method for manufacturing graphite paste

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100496274B1 (en) * 1998-08-24 2005-09-09 삼성에스디아이 주식회사 Method of processing electrode used in secondary li-ion battery
KR100553728B1 (en) * 1999-01-22 2006-02-17 삼성에스디아이 주식회사 Method for processing electrode used in secondary battery
KR101006212B1 (en) * 2002-11-19 2011-01-07 히다치 막셀 가부시키가이샤 NEGATIVE ELECTRODE FOR NON-AQUEOUS SECONDARY CELL, NON-AQUEOUS SECONDARY CELL COMPRISING THE SAME, METHOD FOR PRODUCING THE SAME AND ELECTRONIC DEVICE COMPRISING NON-x
JP2015032369A (en) * 2013-07-31 2015-02-16 トヨタ自動車株式会社 Method for manufacturing graphite paste

Similar Documents

Publication Publication Date Title
JP5166356B2 (en) Lithium battery
JP3316412B2 (en) Lithium secondary battery
JP5228576B2 (en) Lithium ion secondary battery and electric vehicle power supply
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
JP3286516B2 (en) Non-aqueous electrolyte secondary battery
JP2002117844A (en) Solid electrolyte battery
WO2014010526A1 (en) Non-aqueous electrolyte secondary battery
JP2004014405A (en) Non-aqueous electrolyte secondary battery
WO2011065538A1 (en) Non-aqueous electrolyte rechargeable battery
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JP3363738B2 (en) Battery pack for electric vehicles
JP2014165038A (en) Electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP4320526B2 (en) Nonaqueous electrolyte secondary battery
WO2019065196A1 (en) Nonaqueous electrolyte secondary battery
JP4270904B2 (en) Non-aqueous lithium secondary battery
JPH09283119A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonqueous electrolyte secondary battery having this negative electrode
CN108258299B (en) Lithium ion power battery
JP4075180B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2010027386A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same
CN114270571A (en) Battery system, method of using the same, and battery pack including the same
JP2003331847A (en) Nonaqueous secondary battery and method for manufacturing paint of positive electrode
JPH09213306A (en) Secondary battery with non-aqueous electrolyte
JP2006344395A (en) Cathode for lithium secondary battery and utilization and manufacturing method of the same
JP2022513678A (en) Method for manufacturing negative electrode active material for secondary battery, negative electrode for secondary battery and lithium secondary battery containing it
JP4839518B2 (en) Non-aqueous electrolyte secondary battery