JPH09283108A - Alkaline storage battery - Google Patents

Alkaline storage battery

Info

Publication number
JPH09283108A
JPH09283108A JP8096498A JP9649896A JPH09283108A JP H09283108 A JPH09283108 A JP H09283108A JP 8096498 A JP8096498 A JP 8096498A JP 9649896 A JP9649896 A JP 9649896A JP H09283108 A JPH09283108 A JP H09283108A
Authority
JP
Japan
Prior art keywords
separator
battery
negative electrode
alkaline storage
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8096498A
Other languages
Japanese (ja)
Inventor
Takuma Iida
琢磨 飯田
Ko Gomikawa
香 五味川
Koji Yuasa
浩次 湯浅
Hideo Kaiya
英男 海谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8096498A priority Critical patent/JPH09283108A/en
Publication of JPH09283108A publication Critical patent/JPH09283108A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To stabilize the structure of a spiral electrode group at the time of forming a battery so that internal short-circuiting is hard to be caused by providing a separator, which is formed of a hydrophilic porous film made of polyolefine and having the vein-like open hole structure, between a positive and a negative electrodes, which are spirally wound. SOLUTION: A negative electrode 1 made of hydrogen storage alloy and a positive electrode 2, which includes nickel hydroxide as an active material thereof, are spirally wound through a separator 3, and inserted into a case 4, which works as a negative electrode terminal. The separator 3 has tensile strength at 2kgf/5cm width or more and tensile ductility at 5-100%. Structure of a spiral electrode group of a battery is thereby stabilized, and an alkaline storage battery, in which internal short-circuit is hard to be caused, is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はアルカリ蓄電池の改
良、特にそのセパレータの改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved alkaline storage battery, and more particularly to an improved separator thereof.

【0002】[0002]

【従来の技術】近年、電気機器の軽薄短小化に伴い、そ
の電源として小型高容量電池の要望が高まってきてい
る。高信頼性電池であるアルカリ蓄電池においてもこの
流れに沿って、ニカド電池の高容量化や、負極にエネル
ギー密度の高い水素吸蔵合金を用いた金属酸化物−水素
蓄電池の開発、改良が進められている。この種のアルカ
リ蓄電池は、一般に負極と正極との間にセパレータを介
在させ、電解液としてアルカリ水溶液を所定量注入して
構成されている。セパレータとしては、ポリアミドまた
はポリオレフィン製不織布が通常用いられている。電池
のさらなる高容量化を目指して電池反応には本来関与し
ないセパレータの薄型化や改良が検討されている。しか
しながら、セパレータを単純に薄型化するとセパレータ
の空間体積が減少し、電解液の保液性能が低下してしま
う。その結果、電池の内部抵抗が上昇して放電性能が低
下する。
2. Description of the Related Art In recent years, as electric devices have become lighter, thinner, shorter, and smaller, there has been an increasing demand for small high-capacity batteries as their power sources. In line with this trend, alkaline storage batteries, which are highly reliable batteries, have been developed in line with this trend, and the development and improvement of metal oxide-hydrogen storage batteries using hydrogen storage alloys with a high energy density for the negative electrode have been promoted. I have. This type of alkaline storage battery is generally constructed by interposing a separator between a negative electrode and a positive electrode and injecting a predetermined amount of an alkaline aqueous solution as an electrolytic solution. A polyamide or polyolefin nonwoven fabric is usually used as the separator. With the aim of further increasing the capacity of batteries, thinning and improvement of separators that are not originally involved in battery reactions are being studied. However, if the separator is simply thinned, the space volume of the separator is reduced and the electrolyte retaining performance is deteriorated. As a result, the internal resistance of the battery increases and the discharge performance decreases.

【0003】この課題を解決するために、セパレータの
単位面積当たりの繊維量(目付重量)を減少させて、空
間体積を確保する必要がある。しかし、不織布の場合に
は、繊維量を減らすとセパレータの表面積の減少、厚み
や目付重量のバラツキが大きくなるため、空間体積は確
保できるものの逆に電池構成時に内部短絡不良が発生し
やすくなる。従って不織布に代わり、均一で薄型化が可
能なフィルム状の多孔膜からなるセパレータの開発、改
良も検討されている。
In order to solve this problem, it is necessary to reduce the fiber amount (weight per unit area) of the separator to secure a space volume. However, in the case of a non-woven fabric, when the amount of fibers is reduced, the surface area of the separator is reduced, and variations in thickness and weight are large, so that a space volume can be secured, but conversely, an internal short circuit defect is likely to occur during battery construction. Therefore, in place of the non-woven fabric, development and improvement of a separator made of a film-like porous film which is uniform and can be made thin are also under study.

【0004】[0004]

【発明が解決しようとする課題】これらの多孔膜とし
て、特開平3−105851号公報には、ポリエチレン
製多孔膜が、また、特開平3−219552号公報には
ポリオレフィンを二軸延伸した多孔膜が開示されている
が、これらの多孔膜の細孔はいずれも貫通孔タイプであ
る。これらの貫通孔タイプの細孔をもつ多孔膜では、薄
型化した場合に機械的強度が低下する。また正極および
負極の極端に生じ易いバリやクラックが孔を貫通して内
部短絡を起こしやすくなるという問題が生じることが懸
念される。
As these porous membranes, a polyethylene porous membrane is disclosed in JP-A-3-105851, and a polyolefin biaxially stretched polyolefin membrane is disclosed in JP-A-3-219552. However, the pores of these porous membranes are all of the through-hole type. A porous film having these through-hole type pores has a reduced mechanical strength when it is made thin. Further, there is a concern that burrs and cracks on the positive electrode and the negative electrode, which are extremely likely to occur, easily penetrate the holes to cause an internal short circuit.

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を解決
するために、正、負の極板間に、ポリオレフィンからな
り、葉脈状の開孔構造を有する多孔膜を親水化処理した
セパレータを備えたもので、好ましくはこのセパレータ
の引張強度が2kgf/5cm幅以上であり、引張伸度
は5〜100%としたものである。
In order to solve the above-mentioned problems, the present invention provides a separator obtained by hydrophilizing a porous membrane made of polyolefin and having a vein-like open structure between positive and negative electrode plates. The separator preferably has a tensile strength of 2 kgf / 5 cm width or more and a tensile elongation of 5 to 100%.

【0006】これにより、電池構成時の多孔膜の強度特
性が改善でき、電池として、内部短絡不良の発生率が低
減できる。
As a result, the strength characteristics of the porous film in the battery construction can be improved, and the occurrence rate of defective internal short circuit in the battery can be reduced.

【0007】[0007]

【発明の実施の形態】請求項1に記載の発明は、少なく
とも葉脈状の開孔構造を有するポリオレフィン系樹脂を
親水化処理したものである。フィルム材質のポリオレフ
ィンとしては、ポリエチレン(PE),ポリプロピレン
(PP)、これらの混合物、あるいはそれらの複合多孔
膜のいずれかで構成されていればよい。またフィルムの
厚みは10μm〜120μm、多孔度は20〜90%が
好ましく、親水化処理としてはスルホン化が好ましい
が、請求項2に記した引張強度及び伸度を有するもので
あれば、他の放電加工、グラフト処理、界面活性剤によ
る処理であっても構よい。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 is one in which a polyolefin-based resin having at least a leaf vein-like opening structure is subjected to a hydrophilic treatment. The polyolefin of the film material may be any one of polyethylene (PE), polypropylene (PP), a mixture thereof, or a composite porous membrane thereof. The thickness of the film is preferably 10 μm to 120 μm, the porosity is preferably 20 to 90%, and sulfonation is preferable as the hydrophilic treatment. However, as long as it has the tensile strength and elongation described in claim 2, other It may be electrical discharge machining, graft treatment, or treatment with a surfactant.

【0008】[0008]

【実施例】【Example】

(実施例1)以下本発明の詳細を、PE多孔膜をセパレ
ータとして用いたニッケル水素蓄電池を例にとり説明す
る。
(Example 1) Hereinafter, the present invention will be described in detail with reference to a nickel-hydrogen storage battery using a PE porous membrane as a separator.

【0009】本例で用いた多孔膜の引張強度および伸度
については、JIS L1096の6.12.1.A項
に準じ、島津製オートグラフAG−500Aにより、以
下の手順で測定した。
The tensile strength and elongation of the porous film used in this example are described in JIS L1096, 6.12.1. According to the item A, the measurement was carried out by the following procedure using Autograph AG-500A manufactured by Shimadzu.

【0010】50×200mmの試験片をチャック間隔
100mm、引張速度300mm/分で引張強度(引張
時の最大荷重値)を測定するとともに、破断時の伸びを
測定し、(数1)より引張伸度を算出した。
A 50 × 200 mm test piece was measured for tensile strength (maximum load value during tension) at a chuck interval of 100 mm and a tension rate of 300 mm / min, and the elongation at break was measured. The degree was calculated.

【0011】[0011]

【数1】 [Equation 1]

【0012】葉脈状の開孔構造を有する多孔膜の素材に
は、厚み35μm,目付重量10g/m2,多孔度75
%の三井石油化学(株)製PEフィルムを用いた。まず
このPE多孔膜に濡れ性を付与するために花王(株)製
のKAOエマルゲン709により界面活性剤処理を施し
た。次に、このPE多孔膜表面へのスルホン基の導入を
行い、スルホン化PE多孔膜aを作成した。これは、多
孔膜を60℃にて25%発煙硫酸中に10分間浸漬した
後発煙硫酸を除去し、KOHでアルカリ洗浄し、過剰な
アルカリを水洗して除去した。また、比較のために親水
化スルホン化処理を施さないaと同等のPEフィルム製
多孔膜bと、同一の条件でスルホン化処理を行った貫通
孔タイプのPE多孔膜cも用意した。(表1)にこの
a,b,cの多孔膜の諸元を示した。
The material for the porous membrane having a leaf vein-like opening structure has a thickness of 35 μm, a basis weight of 10 g / m 2 , and a porosity of 75.
% PE film manufactured by Mitsui Petrochemical Co., Ltd. was used. First, a surfactant treatment was performed with KAO Emulgen 709 manufactured by Kao Corporation in order to impart wettability to this PE porous film. Next, a sulfo group was introduced into the surface of this PE porous membrane to prepare a sulfonated PE porous membrane a. The porous membrane was prepared by immersing the porous membrane in 25% fuming sulfuric acid for 10 minutes at 60 ° C., removing fuming sulfuric acid, washing with KOH with an alkali, and washing excess alkali with water. For comparison, a PE film-made porous membrane b equivalent to a that was not subjected to hydrophilization and sulfonation treatment and a through-hole type PE porous membrane c that was subjected to sulfonation treatment under the same conditions were also prepared. Table 1 shows the specifications of the porous films a, b and c.

【0013】[0013]

【表1】 [Table 1]

【0014】このセパレータと組合せる正極には発泡状
ニッケル基板に水酸化ニッケルを主成分とした活物質を
充填したものを用いた。負極には、組成MmNi3.55
0. 75Mn0.4Al0.3(Mmは希土類元素の混合物を表
す)の水素吸蔵合金を、湿式ボールミルにて粉砕して、
平均粒径が約30μmのものを用いた。この合金粉末
を、80℃のKOH水溶液中で攪拌処理した後、水素吸
蔵合金粉末100重量部に対してカルボキシメチルセル
ロースを0.15重量部、カーボンブラックを0.3重
量部、スチレン−ブタジエン共重合体を0.8重量部加
え、分散剤として水を添加してペーストを作成した。こ
のペーストをパンチングメタルに塗布、乾燥した後、所
定の厚みにプレスした。これらの極板を所定の寸法に切
断し、図1に示す密閉型アルカリ蓄電池を製作した。
As a positive electrode to be combined with this separator, a foamed nickel substrate filled with an active material containing nickel hydroxide as a main component was used. The composition of the negative electrode is MmNi 3.55 C
The o hydrogen storage alloy of 0. 75 Mn 0.4 Al 0.3 (Mm represents a mixture of rare earth elements), and pulverized in a wet ball mill,
An average particle size of about 30 μm was used. This alloy powder was stirred in a KOH aqueous solution at 80 ° C., and then 0.15 parts by weight of carboxymethyl cellulose, 0.3 part by weight of carbon black and 100 parts by weight of styrene-butadiene co-weight with respect to 100 parts by weight of hydrogen storage alloy powder. 0.8 parts by weight of the combined product was added, and water was added as a dispersant to prepare a paste. This paste was applied to a punching metal, dried, and then pressed to a predetermined thickness. These electrode plates were cut into a predetermined size to manufacture the sealed alkaline storage battery shown in FIG.

【0015】図1において、水素吸蔵合金からなる負極
1と、水酸化ニッケルを活物質とする正極2はセパレー
タ3を介して渦巻状に巻回され、負極端子を兼ね備える
ケース4に挿入される。このような方法により4/5A
サイズのABCの3種類の電池を各1000個ずつ作製
した。
In FIG. 1, a negative electrode 1 made of a hydrogen storage alloy and a positive electrode 2 having nickel hydroxide as an active material are spirally wound via a separator 3 and inserted in a case 4 which also serves as a negative electrode terminal. 4 / 5A by such a method
Three kinds of size ABC batteries were prepared for each 1000 pieces.

【0016】上記A,B,Cの電池を用い電池構成後の
内部短絡の有無の評価を行った。評価の方法としては、
電解液注液前の構成電池の正極と負極に500Vの電圧
を印加した時の内部抵抗値が5MΩ以上のものを良品、
それ以下のものを内部短絡電池として、その短絡数を調
べた。その結果を(表2)に示した。
Using the batteries A, B and C, the presence or absence of internal short circuit after the battery was constructed was evaluated. As an evaluation method,
A non-defective product having an internal resistance value of 5 MΩ or more when a voltage of 500 V is applied to the positive electrode and the negative electrode of the constituent battery before injecting the electrolytic solution,
The number of short-circuits was examined by using those below that as internal short-circuit batteries. The results are shown in (Table 2).

【0017】[0017]

【表2】 [Table 2]

【0018】(表2)の結果から明らかなように、スル
ホン化処理を行ったPE多孔膜をセパレータとして用い
た電池Aは、無処理のPE多孔膜をセパレータとして用
いた電池Bと比較し、電池の短絡数が極端に減少した。
これは(表1)に示すように親水化処理により引張伸度
が低下したために電池構成時にセパレータの伸びや破断
による短絡がなくなったことによる。
As is clear from the results of (Table 2), Battery A using the sulfonation-treated PE porous membrane as the separator was compared with Battery B using the untreated PE porous membrane as the separator. The number of short circuits in the battery has decreased dramatically.
This is because, as shown in (Table 1), the tensile elongation was reduced by the hydrophilization treatment, so that the short circuit due to the elongation and breakage of the separator was eliminated when the battery was constructed.

【0019】この原因は、以下の様に推測した。一般
に、渦巻状極板群を構成する場合には群の巻回に伴って
セパレータはある程度の力で引っ張られるため、一定以
上の強度と伸度が必要となる。引張強度が十分でないと
電池の構成時にセパレータが破断し、内部短絡が発生す
る。また、引張強度が十分でも伸度が大きすぎる場合に
は、セパレータの伸びが発生し、厚みや目付重量にムラ
を生じるため正極および負極のバリやクラックがセパレ
ータを突き破りやすく、短絡が発生しやすくなる。
The cause of this is presumed as follows. Generally, in the case of forming a spiral electrode plate group, the separator is pulled with a certain amount of force as the group is wound, so that a certain strength and elongation are required. If the tensile strength is not sufficient, the separator will break during the construction of the battery, causing an internal short circuit. Further, if the tensile strength is sufficient but the elongation is too large, the separator is stretched, and the burrs and cracks of the positive electrode and the negative electrode easily break through the separator because the thickness and the weight per unit area are uneven, and a short circuit is likely to occur. Become.

【0020】従って、伸度の大きい無処理の多孔膜をセ
パレータとして用いた場合は、構成時にその伸びが大き
く、厚みや目付重量にムラが発生し、正極のバリおよび
クラックが多孔膜を突き破って短絡が発生する。
Therefore, when an untreated porous film having a high elongation is used as the separator, the elongation is large during the constitution, and the thickness and the weight per unit area are uneven, and the burrs and cracks of the positive electrode penetrate the porous film. A short circuit occurs.

【0021】これに対しスルホン化処理を施すことによ
り伸びが低減できて、厚みや目付ムラも発生しにくくな
り、バリやクラックによる短絡を防ぐことが可能となっ
たと推測される。
On the other hand, it is presumed that the sulfonation treatment can reduce the elongation, make it less likely to cause unevenness in thickness and basis weight, and prevent short circuits due to burrs and cracks.

【0022】また貫通孔タイプの多孔膜は、葉脈状のそ
れに比べ電池の短絡数が多かった。これは、貫通孔タイ
プの多孔膜では、正極のバリやクラックが多孔膜を貫通
しやすいためと推定している。これに対し葉脈状の開孔
構造を有する多孔膜は孔が表裏で単純に貫通していない
ため正、負極のバリやクラックがセパレータを貫通しに
くくなり電池の短絡がなかったと推定している。
In addition, the through-hole type porous membrane had a larger number of battery short circuits than the leaf vein type. This is presumed to be because, in the through-hole type porous film, burrs and cracks of the positive electrode easily penetrate the porous film. On the other hand, it is presumed that in the porous membrane having a leaf vein-like open structure, the pores did not simply penetrate through the front and back sides, and positive and negative electrode burrs and cracks did not easily penetrate through the separator, resulting in no battery short circuit.

【0023】(実施例2)スルホン化PE多孔膜を実施
例1と同様な手法で、このPE多孔膜(厚み40μm)
の目付重量及びスルホン化処理時の温度および発煙硫酸
中への浸漬時間を変更することにより、引張強度を1〜
30kgf/5cm幅および引張伸度を150%まで変
化させたセパレータを作製し、これらのセパレータを用
いて(表3)に示すように実施例1と同様のニッケル・
水素蓄電池を1000個作製した。
(Example 2) A sulfonated PE porous film was prepared in the same manner as in Example 1 by using this PE porous film (thickness 40 μm).
The tensile strength can be adjusted to 1 to 1 by changing the weight per unit area, the temperature at the time of sulfonation treatment, and the immersion time in fuming sulfuric acid
A separator having a width of 30 kgf / 5 cm and a tensile elongation changed to 150% was produced, and using these separators, as shown in (Table 3), nickel similar to that of Example 1 was formed.
1000 hydrogen storage batteries were produced.

【0024】[0024]

【表3】 [Table 3]

【0025】上記電池を実施例1と同様に電池の構成後
の内部短絡評価を行った。その結果を(表4)に示す。
In the same manner as in Example 1, the battery was evaluated for internal short circuit after the battery was constructed. The results are shown in (Table 4).

【0026】[0026]

【表4】 [Table 4]

【0027】(表4)から明らかなように、電池E,
F,Gの様に、引張強度が2kgf/5cm幅以上であ
れば渦巻状極板群構成時のセパレータの破断による内部
短絡を防ぐことが可能であることがわかった。但し電池
Gの様に30kgf/5cm幅と大きくても引張伸度が
150%であると、電池Dなどの低強度セパレータより
も内部短絡不良が減少するものの、若干不良電池が発生
した。このことから引張伸度の上限としては、100%
程度が望ましい。これは、極板群構成時の伸びによる厚
みや目付重量のムラが抑制できるため、正極のバリやク
ラックによる突き破りが抑制できるためと推定される。
しかし、伸度が低下しすぎると電池を構成する際にハン
ドリング等に支障を生じる。種々検討の結果、実用上の
極板群の構成のしやすさを確保するには、引張伸度が5
%以上であることが望ましかった。
As is clear from (Table 4), battery E,
It has been found that if the tensile strength is 2 kgf / 5 cm width or more like F and G, it is possible to prevent an internal short circuit due to breakage of the separator when the spiral electrode plate group is configured. However, when the tensile elongation was 150% even when the width was as large as 30 kgf / 5 cm like the battery G, internal short circuit defects were reduced as compared with the low strength separators such as the battery D, but some defective batteries were generated. From this, the upper limit of tensile elongation is 100%
A degree is desirable. It is presumed that this is because unevenness in thickness and weight per unit area due to elongation when the electrode plate assembly is configured can be suppressed, and thus breakthrough due to burrs and cracks on the positive electrode can be suppressed.
However, if the elongation is too low, handling and the like will be hindered when constructing the battery. As a result of various studies, in order to ensure the practical ease of constructing the electrode plate group, the tensile elongation is 5
It was desired to be at least%.

【0028】以上の結果より、実用的な多孔膜の引張強
度は、2kgf/5cm幅が望ましく、引張伸度は5〜
100%であることが望ましい。
From the above results, the practical tensile strength of the porous film is preferably 2 kgf / 5 cm width, and the tensile elongation is 5 to 5.
Desirably, it is 100%.

【0029】上記の実施例では、ニッケル水素蓄電池を
例にとり説明を行ったが、電池をスパイラル状に構成
し、アルカリ電解液を用いる他のアルカリ蓄電池でも本
発明の多孔膜をセパレータとして用いることにより同様
の効果を得ることができる。
In the above-mentioned embodiments, the nickel-hydrogen storage battery has been described as an example. However, the battery is constructed in a spiral shape and other porous alkaline storage batteries using an alkaline electrolyte can also be used by using the porous membrane of the present invention as a separator. The same effect can be obtained.

【0030】また本発明の電池に用いた正極および負極
の形状は、発泡メタル式、シンター式および塗着式等の
いずれであってもよく、同様の効果を得ることができ
る。
The shape of the positive electrode and the negative electrode used in the battery of the present invention may be any of a foam metal type, a sinter type and a coating type, and similar effects can be obtained.

【0031】[0031]

【発明の効果】以上のように本発明は、渦巻状に巻回し
た正、負極板間にポリオレフィンからなり、葉脈状の開
孔構造を有する多孔膜を親水化処理したセパレータを備
えたもので、電池の渦巻状極板群の構成が安定し、内部
短絡の生じにくいアルカリ蓄電池を得ることができる。
INDUSTRIAL APPLICABILITY As described above, the present invention is provided with a separator obtained by hydrophilizing a porous film made of a polyolefin between positive and negative electrode plates wound in a spiral shape and having a vein-like open structure. It is possible to obtain an alkaline storage battery in which the configuration of the spiral electrode plate group of the battery is stable and an internal short circuit is unlikely to occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による電池の破断断面図FIG. 1 is a cutaway sectional view of a battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ニッケル正極板 2 水素吸蔵合金負極板 3 セパレータ 4 電池ケース DESCRIPTION OF SYMBOLS 1 Nickel positive electrode plate 2 Hydrogen storage alloy negative electrode plate 3 Separator 4 Battery case

───────────────────────────────────────────────────── フロントページの続き (72)発明者 海谷 英男 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideo Kaitani 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】渦巻状に巻回した正、負極板間にポリオレ
フィンからなり、葉脈状の開孔構造を有する多孔膜を親
水化処理したセパレータを備えたことを特徴とするアル
カリ蓄電池。
1. An alkaline storage battery comprising a separator made of polyolefin between a positive electrode plate and a negative electrode plate wound in a spiral shape and having a hydrophilic treatment applied to a porous film having a leaf vein-like opening structure.
【請求項2】前記セパレータはその引張強度が2kgf
/5cm幅以上であり、引張伸度が5〜100%である
請求項1記載のアルカリ蓄電池。
2. The tensile strength of the separator is 2 kgf.
The alkaline storage battery according to claim 1, which has a width of / 5 cm or more and a tensile elongation of 5 to 100%.
JP8096498A 1996-04-18 1996-04-18 Alkaline storage battery Pending JPH09283108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8096498A JPH09283108A (en) 1996-04-18 1996-04-18 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8096498A JPH09283108A (en) 1996-04-18 1996-04-18 Alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH09283108A true JPH09283108A (en) 1997-10-31

Family

ID=14166767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8096498A Pending JPH09283108A (en) 1996-04-18 1996-04-18 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH09283108A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137346A1 (en) * 2005-06-21 2006-12-28 Dainippon Ink And Chemicals, Inc. Separator for fuel cell, process for producing the same, and fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137346A1 (en) * 2005-06-21 2006-12-28 Dainippon Ink And Chemicals, Inc. Separator for fuel cell, process for producing the same, and fuel cell
US7960065B2 (en) 2005-06-21 2011-06-14 Dainippon Ink And Chemicals, Inc. Separator for fuel cell, method for producing the same, and fuel cell

Similar Documents

Publication Publication Date Title
US7112389B1 (en) Batteries including improved fine fiber separators
TWI287888B (en) Separator for lithium ion secondary battery
US7790306B2 (en) Nickel hydrogen storage battery
JP3040041B2 (en) Alkaline secondary battery and method of manufacturing the same
US6994935B2 (en) Process for producing separator for batteries, the separator for batteries, and alkaline storage batteries using the same
JP4307020B2 (en) Alkaline storage battery
US7033704B2 (en) Alkaline storage battery having a separator with pores
JPH09283108A (en) Alkaline storage battery
JP6440474B2 (en) Battery separator and battery equipped with the same
JPH10106545A (en) Organic electrolyte secondary battery and manufacture of electrode thereof
JP3209071B2 (en) Alkaline storage battery
EP1022790A2 (en) Alkaline storage battery and manufacturing method of the same
JP3006371B2 (en) Battery
JP3436058B2 (en) Alkaline storage battery
US7052800B2 (en) Separator for nickel-metal hydride storage battery and nickel-metal hydride storage battery
US6235430B1 (en) Alkaline storage battery
JP3438901B2 (en) Battery separator
JP5128035B2 (en) Battery separator and battery using the same
JP2764378B2 (en) Nickel-hydrogen storage alloy storage battery
JP3031156B2 (en) Alkaline storage battery
JPH10284116A (en) Alkaline storage battery
JPH07130392A (en) Alkaline storage battery
JPH10199502A (en) Separator and battery using the same
JP2004296356A (en) Separator for battery and battery
JPH10106525A (en) Sealed alkaline storage battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20070403

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070524

A02 Decision of refusal

Effective date: 20071002

Free format text: JAPANESE INTERMEDIATE CODE: A02