JP2764378B2 - Nickel-hydrogen storage alloy storage battery - Google Patents

Nickel-hydrogen storage alloy storage battery

Info

Publication number
JP2764378B2
JP2764378B2 JP7046045A JP4604595A JP2764378B2 JP 2764378 B2 JP2764378 B2 JP 2764378B2 JP 7046045 A JP7046045 A JP 7046045A JP 4604595 A JP4604595 A JP 4604595A JP 2764378 B2 JP2764378 B2 JP 2764378B2
Authority
JP
Japan
Prior art keywords
separator
nickel
nonwoven fabric
microporous membrane
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7046045A
Other languages
Japanese (ja)
Other versions
JPH08236097A (en
Inventor
哲男 境
勉 岩城
誠一郎 松井
豊晃 兵庫
彰 三浦
勇 松本
真樹 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP7046045A priority Critical patent/JP2764378B2/en
Publication of JPH08236097A publication Critical patent/JPH08236097A/en
Application granted granted Critical
Publication of JP2764378B2 publication Critical patent/JP2764378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル−水素吸蔵合
金蓄電池(ニッケル−水素吸蔵合金を必要によりNi−
MHと略記する)に好適なセパレータ及び該セパレータ
を装着した蓄電池(蓄電池を必要により電池と略記す
る)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-hydrogen storage alloy
The present invention relates to a separator suitable for MH (abbreviated as MH) and a storage battery provided with the separator (a storage battery is abbreviated as a battery if necessary).

【0002】[0002]

【従来の技術と解決課題】各種の電源として使われる蓄
電池には鉛電池とアルカリ電池がある。信頼性を高め、
小型軽量化を可能にした事から、小型電池が各種ポータ
ブル機器用に、大型は産業用に広く使われてきた。まず
アルカリ蓄電池においては、負極としてはカドミウム極
と共に水素極が使われている。正極としては、殆どの場
合ニッケル極である。ポケット式から焼結式に変わって
特性が向上し、更に密閉化が可能となると共に用途も広
がった。また発泡式や繊維式ニッケル極が実用化して高
容量化が進み、機器側の要望に対応してきた。また高容
量化の達成の為に、非水性電解買を用いたリチウム系の
蓄電池が開発され使用され始めた。
2. Description of the Related Art Lead-acid batteries and alkaline batteries are used as storage batteries used as various power sources. Improve reliability,
Small batteries have been widely used for various portable devices, and large batteries have been widely used for industrial purposes because of their small size and light weight. First, in an alkaline storage battery, a hydrogen electrode is used as a negative electrode together with a cadmium electrode. In most cases, the positive electrode is a nickel electrode. The characteristics have been improved from the pocket type to the sintered type, and the sealing has become possible and the use has been expanded. In addition, foaming type and fiber type nickel electrodes have been put into practical use, and the capacity has been increased. Further, in order to achieve high capacity, lithium-based storage batteries using non-aqueous electrolysis have been developed and started to be used.

【0003】ところで、これらの電池系に用いられるセ
パレータとしては、耐電解液性、耐酸化性、電解液の保
持性、取扱いの容易性、低抵抗、低コスト、厚さが薄
い、強度、ガス吸収が必要な密閉系ではガス透過性等様
々な観点で総合評価を基に採用されている。その結果現
在最も普及している密閉型ニッケル−カドミウム蓄電池
ではポリアミド系不織布が採用されて、最近特に耐アル
カリ性や耐酸化性の点でポリオレフィン系不織布が一部
用いられている。また密閉型Ni−MH蓄電池ではポリ
アミド系不織布が自己放電加速の原因になる処から親水
処理したポリオレフィン系不織布が採用されている。何
れにしても不織布が採用されているのは、電解液の保持
性に優れ、ガス透過性に優れ、低コストであることが主
な理由である。これに対して、リチウム系の蓄電池で
は、電解液溶媒として有機系が使われるので電解液の浸
透性の優れたセパレータの電解液保持性に問題はなく、
密閉形でも充電時にガスは発生させないのでセパレータ
中でのガスの透過は不要である。ところが電解質の抵抗
が水系電解質より約一桁高いので極間距離を小さくする
必要がある。これらの観点から主にポリオレフィン系の
薄型微孔性フィルム状セパレータが用いられている。
[0003] By the way, separators used in these battery systems include electrolyte resistance, oxidation resistance, electrolyte retention, ease of handling, low resistance, low cost, thin thickness, strength, and gas. In a closed system that requires absorption, it is adopted based on comprehensive evaluation from various viewpoints such as gas permeability. As a result, a polyamide-based nonwoven fabric is used in the most widely used sealed nickel-cadmium storage battery at present, and recently, a polyolefin-based nonwoven fabric has been partially used particularly in terms of alkali resistance and oxidation resistance. Further, in the sealed Ni-MH storage battery, a polyolefin-based nonwoven fabric which has been subjected to hydrophilic treatment from a place where the polyamide-based nonwoven fabric causes self-discharge acceleration is employed. In any case, the reason why a nonwoven fabric is adopted is mainly that the nonwoven fabric is excellent in the retention of the electrolyte, the gas permeability is excellent, and the cost is low. On the other hand, in lithium-based storage batteries, since organic solvents are used as the electrolyte solvent, there is no problem with the electrolyte retention of a separator having excellent electrolyte permeability.
Gas is not generated at the time of charging even in the sealed type, so that gas transmission through the separator is unnecessary. However, since the resistance of the electrolyte is about one digit higher than that of the aqueous electrolyte, it is necessary to reduce the distance between the electrodes. From these viewpoints, a polyolefin-based thin microporous film separator is mainly used.

【0004】Ni−MH蓄電池がリチウム系と競合して
いく為には、更に高エネルギー密度化が必要である。そ
の為には、正極、負極共に利用率の向上、添加剤の減少
等により、高容量化が図られている。特にセパレータは
電池容量の向上には全く寄与しないので薄く体積が小さ
い方がよい。しかし不織布の厚さを薄くすると活物質の
脱落物や電極の端部等により短絡が生ずる事がある。従
って短絡防止の為、繊維径を更に小さくすると共に均一
性を向上させたり、多孔度を小さくする手段が取られて
いるが、薄くし得る限界は180−200μmであっ
た。またリチウム系の蓄電池に用いられているポリオレ
フィンの薄型微孔性フィルム状セパレータは厚さが薄い
点では好ましいが、電解液の保持量が少なく、強度にも
問題があるので、電極の端部等により破壊し短絡が生ず
ることがある。
[0004] In order for Ni-MH storage batteries to compete with lithium-based batteries, it is necessary to further increase the energy density. For this purpose, a higher capacity has been achieved for both the positive electrode and the negative electrode by improving the utilization factor and reducing the amount of additives. In particular, since the separator does not contribute to the improvement of the battery capacity at all, it is preferable that the separator be thin and have a small volume. However, when the thickness of the non-woven fabric is reduced, a short-circuit may occur due to the falling off of the active material or the end of the electrode. Therefore, in order to prevent short-circuiting, measures have been taken to further reduce the fiber diameter and improve the uniformity and to reduce the porosity, but the limit of thinning was 180-200 μm. Further, a thin microporous film separator made of polyolefin used for lithium-based storage batteries is preferable in terms of a small thickness, but has a small amount of holding electrolyte and has a problem in strength. May cause breakage and short circuit.

【0005】本発明者等は先に特開平2−276153
(特願平1−86079)及び特開平4−141951
(特願平2−266075)において、アルカリ電池に
使用するセパレータの機能を実質的に負担するポリスル
フォン樹脂の微孔膜を湿式製膜法でつくるに当たり、製
膜ドープにノニオン界面活性剤(界面活性剤を必要によ
り活性剤と略記する)、又はノニオンとアニオン活性剤
を併用し添加して、これらの活性剤で処理されたポリス
ルフォン微孔膜が湿式製膜で生成される様にする事によ
り、該微孔膜のセパレータとしての界面及び微孔膜内部
の抵抗を低下させることを提案した。
The inventors of the present invention have previously described Japanese Patent Application Laid-Open No. 2-276153.
(Japanese Patent Application No. 1-86079) and JP-A-4-141951.
In Japanese Patent Application No. 2-26675, when a microporous membrane of a polysulfone resin which substantially bears the function of a separator used in an alkaline battery is formed by a wet film forming method, a nonionic surfactant (an interface The activator may be abbreviated as activator if necessary), or a nonionic and anionic activator may be used in combination so that the polysulfone microporous membrane treated with these activators is formed by wet film formation. Proposed to reduce the resistance of the interface between the microporous membrane as a separator and the inside of the microporous membrane.

【0006】このポリスルフォン微孔膜は、活性剤で親
水化処理されたものであり、この膜は概ね20−30μ
mの厚さで所望の微孔を有する膜として得られるが、そ
の機械的強度を補強すること、及びその含有する活性剤
をなるべく電解液中に放散しない様にするには、該微孔
膜を他の微孔平面材料と複合乃至積層する必要がある。
The polysulfone microporous membrane has been subjected to a hydrophilizing treatment with an activator.
The thickness of m is obtained as a film having desired micropores, but in order to reinforce its mechanical strength and to prevent the contained activator from being diffused into the electrolyte as much as possible, the microporous membrane is used. Need to be composited or laminated with another microporous planar material.

【0007】[0007]

【課題解決の手段と効果の概要】しかし前記の親水化処
理されたポリスルフォン微孔膜と、親水化処理されたポ
リオレフィン系不織布複合乃至積層体は、上記の欠点を
補い厚さが80−140μmでニッケル−水素電池のセ
パレータとして提供し得ることが判ったことから本発明
に到達した。尚後記する様にポリスルフォン樹脂膜の親
水化処理は活性剤の他、ポリビニルピロリドンの様な親
水性樹脂を用いても行い得る。本発明は、親水化処理し
たポリオレフィン不織布と、親水化処理したポリスルフ
ォン樹脂微孔膜とを積層したことを特徴とするニッケル
−水素蓄電池用セパレータに関する。
SUMMARY OF THE INVENTION However, the above-mentioned microporous polysulfone membrane subjected to the hydrophilic treatment and the polyolefin nonwoven fabric composite or laminate subjected to the hydrophilic treatment compensate for the above-mentioned disadvantages and have a thickness of 80 to 140 μm. It has been found that the present invention can be provided as a separator for a nickel-metal hydride battery. As described later, the hydrophilic treatment of the polysulfone resin film can be performed by using a hydrophilic resin such as polyvinylpyrrolidone in addition to the activator. The present invention relates to a separator for a nickel-hydrogen storage battery, comprising a laminate of a hydrophilized polyolefin nonwoven fabric and a hydrophilized polysulfone resin microporous membrane.

【0008】即ち、後記する様にポリスルフォン微孔膜
は厚さ20−30μmで得られるが、親水化ポリオレフ
ィン系不織布は厚さ60−110μmの厚さを有するも
ので複合乃至積層化したものが、即ち厚さで80−14
0μmのものが、セパレータとして適用出来るのであ
る。更に、ポリオレフィン系不織布を構成する繊維とし
て、繊維径が更に細い場合には、特に1.0デニール以
下の所謂”極細繊維”を用いた不織布の場合には、上記
より更に不織布の厚さは減少し得る。図1、2、3はポ
リスルフォン微孔膜の電子顕微鏡写真(模写)である
が、図1(断面を示す)の表面が目的とする微孔を構成
した側であり、(図2に、この微孔を示す)その裏面は
前記微孔に連通する孔を有する(図3に、この準微孔を
示す)。そして不織布は微孔膜の表面又は裏面側に積層
される。
That is, as described later, a polysulfone microporous membrane is obtained with a thickness of 20-30 μm, while a hydrophilized polyolefin-based nonwoven fabric having a thickness of 60-110 μm is a composite or laminated one. Ie, 80-14 in thickness
One having a thickness of 0 μm can be used as a separator. Further, when the fiber constituting the polyolefin-based non-woven fabric has a smaller fiber diameter, especially in the case of a non-woven fabric using so-called "ultra-fine fibers" having a density of 1.0 denier or less, the thickness of the non-woven fabric further decreases. I can do it. FIGS. 1, 2, and 3 are electron micrographs (similar) of the polysulfone microporous membrane. The surface of FIG. 1 (showing a cross section) is the side on which the target micropores are formed. The back surface has a hole communicating with the fine hole (shown in FIG. 3). Then, the nonwoven fabric is laminated on the front or back side of the microporous membrane.

【0009】本発明に使用し得るポリオレフィン系不織
布の親水化処理は、不織布繊維素材(例えば ポリプロ
ピレン繊維)の表面にスルフォン基等の親水性官能基を
化学的に付加したり、高周波グロー放電により酸素を結
合させたり、フッ素気体処理又は界面活性剤等により親
水性改質処理を施す手段を包含する。本発明に使用し得
るポリスルフォン樹脂は、ジクロロジフェニルスルフォ
ン塩とビスフェノールAとの縮合重合に依って得られる
芳香族スルフォン樹脂で、米国ユニオンカーバイド社
(現アモコ社)のユーデル(Udel、商品名)がその
代表的なものである。
The hydrophilic treatment of the polyolefin nonwoven fabric which can be used in the present invention is performed by chemically adding a hydrophilic functional group such as a sulfone group to the surface of a nonwoven fabric material (for example, polypropylene fiber), or by applying a high-frequency glow discharge to oxygen. And means for performing a hydrophilicity modification treatment with a fluorine gas treatment or a surfactant or the like. The polysulfone resin that can be used in the present invention is an aromatic sulfone resin obtained by condensation polymerization of dichlorodiphenylsulfone salt and bisphenol A, and is Udel (trade name) of Union Carbide Co. (now Amoco Co., USA). Is a typical example.

【0010】本発明に使用し得るノニオン活性剤を例示
すると、ソルビタンエステル又はアセチレングリコール
のエチレンオキシド付加物(例、ソルビタン・モノ脂肪
酸エステル・エチレンオキシド付加物)、その他ポリオ
キシエチレン・アルキルエーテル、ポリオキシエチレン
・アリルエーテル、ポリオキシエチレンアルキルアリル
エーテル等がある。本発明に使用し得るアニオン活性剤
を例示すると、高級アルコール硫酸エステル塩(例:ラ
ウリル・アルコール硫酸ナトリューム塩)、アルキルス
ルフォン酸塩(例:ドデシル・ベンゼン・スルフォン酸
ナトリューム塩)、アルキル燐酸エステル塩(例:ジ・
エチル・ヘキサノール燐酸ナトリューム塩)があり、そ
の活性剤の添加量(ドライベース)は、対ポリスルフォ
ン(ポリスルフォンを必要によりPSUと略記する)樹
脂で1.0%以上30%以下が適当である。本発明に使
用し得る親水性樹脂としては、ポリビニルピロリドン
(PVP)が挙げられる。PVPの添加量は、対PSU
樹脂5−50%(ドライベース)の範囲が適当である。
Examples of the nonionic activator which can be used in the present invention include sorbitan esters or ethylene oxide adducts of acetylene glycol (eg, sorbitan / monofatty acid esters / ethylene oxide adducts), other polyoxyethylene / alkyl ethers, polyoxyethylene -Allyl ether, polyoxyethylene alkyl allyl ether and the like. Illustrative examples of anionic surfactants that can be used in the present invention include higher alcohol sulfates (eg, lauryl alcohol sodium sulfate), alkyl sulfonates (eg, dodecyl benzene sodium sulfonate), and alkyl phosphates. (Example:
Ethyl hexanol phosphate sodium salt), and the addition amount of the activator (dry base) is preferably 1.0% or more and 30% or less with respect to polysulfone (polysulfone is abbreviated as PSU if necessary) resin. . Examples of the hydrophilic resin that can be used in the present invention include polyvinyl pyrrolidone (PVP). The amount of PVP added is
The range of resin 5-50% (dry base) is appropriate.

【0011】また不織布原料のポリオレフィン系樹脂と
しては、ポリエチレン、ポリプロピレン、その他エチレ
ン、又はプロピレンを含むオレフィン系共重合樹脂があ
る。以下では実施例により本発明を説明する。
The polyolefin resin as a raw material of the nonwoven fabric includes polyethylene, polypropylene, and other olefin copolymer resins containing ethylene or propylene. Hereinafter, the present invention will be described by way of examples.

【0012】[0012]

【セパレータ及び電池に関する説明】本発明のセパレー
タは、前記の通り、ポリスルフォン(PSU)微孔膜と
ポリオレフィン系(ポリオレフィン系を必要によりPO
Lと略記する)不織布から成る複合乃至積層体である、
そしてPSU微孔膜は前記の通り湿式製膜法で得られる
が、POL不織布との積層体の製造方法としては、下記
の方法が実施し得る。 直接塗布法 POL不織布(乾式、湿式を問わず)上に、PSU湿式
製膜用ドープを塗工し、次いで凝固→水洗→乾燥の処理
で微孔膜と不織布の複合体を直接つくる方法。
Description of Separator and Battery As described above, the separator of the present invention comprises a polysulfone (PSU) microporous membrane and a polyolefin-based (polyolefin-based PO
L) (abbreviated as L).
The PSU microporous film is obtained by the wet film forming method as described above, and the following method can be performed as a method of manufacturing a laminate with the POL nonwoven fabric. Direct coating method A method in which a dope for PSU wet film formation is coated on a POL nonwoven fabric (whether dry or wet), and then a coagulation → washing → drying process is used to directly produce a composite of a microporous film and a nonwoven fabric.

【0013】塗工−貼合−凝固法 ポリエチレンテレフタレート(PET)又はポリプロピ
レン(PP)フィルム、若しくは他の離型紙上に、PS
U湿式製膜用ドープを塗布し、次いで凝固工程に入る直
前でPOL不織布をラミネート(積層、貼合)して複合
状態で凝固及び後続の処理を行う方法。 後貼合法 上記の離型紙上にPSU湿式製膜用ドープを塗布し、
(POL不織布とラミネートせずに)凝固→水洗→乾燥
の処理で微孔膜(PSU膜のみの膜をを単体膜と云う)
を得てから、POL不織布と貼合する方法。尚、貼合の
前にPOL不織布には、PSU微孔膜との熱融着を可能
にする為、オレフィン−エチレン共重合樹脂の塗料を塗
布し、接着剤層を設ける。以下には、この方法による実
施例を示す。
Coating, laminating, and coagulating methods A polyethylene terephthalate (PET) or polypropylene (PP) film or other release paper is coated with PS.
A method in which a dope for U wet film formation is applied, and then the POL nonwoven fabric is laminated (laminated and bonded) immediately before entering a coagulation step, and coagulation and subsequent processing are performed in a composite state. Post-lamination method A dope for PSU wet film formation is applied on the release paper,
(Without lamination with POL non-woven fabric) Microporous membrane by coagulation → washing → drying process (PSU only membrane is called single membrane)
And then laminating it with a POL nonwoven fabric. Before the lamination, the POL nonwoven fabric is coated with an olefin-ethylene copolymer resin paint to provide heat bonding with the PSU microporous membrane, and an adhesive layer is provided. Hereinafter, an example according to this method will be described.

【0014】[0014]

【実施例1】 §後貼合法によるセパレータの製造例 (1)基材不織布 組成:ポリプロピレン(PP)系不織布 厚み:60−110μm(実施例1では90μm) 目付:18−55g/平方m(実施例1では30g/平
方m) 多孔度:50−70%(実施例1では約60%) (2)基材親水化処理剤 処理剤:ジエチルヘキサノール燐酸エステルNa塩 付量:3g/平方m(ドライベース) (3)基材上の接着剤塗布(これはPSU微孔膜との接
着に必要) 組成:オレフィン・エチレンベース系共重合体 付量:4g/平方m(ドライベース)
Example 1 § Example of manufacturing separator by post-lamination method (1) Nonwoven fabric of base material Composition: polypropylene (PP) nonwoven fabric Thickness: 60-110 μm (90 μm in Example 1) Weight: 18-55 g / sq. Porosity: 50-70% (about 60% in Example 1) (2) Hydrophilizing treatment agent for base material Treatment agent: Na salt of diethylhexanol phosphate ester Weight: 3 g / sq. (Dry base) (3) Application of adhesive on base material (This is necessary for adhesion to PSU microporous membrane) Composition: Olefin / ethylene base copolymer Coating weight: 4 g / m 2 (dry base)

【0015】(4)PSU微孔膜用ドープの調製 樹脂:PSU樹脂(重合度:1200−3600のもの
が適当である) 溶剤:ジメチルフォルムアルデヒド(DMF)、その他
ジメチルスルオキシド(DMSO)、ジメチルアセトア
ミド(DMAC)、1−メチル−2−ピロリドン(NM
P)等親水性有機溶剤が使用し得る。樹脂濃度の範囲は
5−30%(ドライベース)が適当である。 樹脂濃度:5−40部(実施例1ではユーデルP350
0:10部、DMF:90部) 活性剤:オクチル燐酸塩系アニオン活性剤、対PSU樹
脂2部(ドライベース)。活性剤の添加量は対PSU樹
脂0.05−12部が適当である。 親水性樹脂:PVPの添加量は対PSU樹脂5−50%
(ドライベース)の範囲が適当である。 ドープ塗布量:10g/平方m(ドライベース)
(4) Preparation of dope for PSU microporous membrane Resin: PSU resin (polymerization degree: 1200-3600 is suitable) Solvent: dimethylformaldehyde (DMF), other dimethylsulfoxide (DMSO), dimethyl Acetamide (DMAC), 1-methyl-2-pyrrolidone (NM
Hydrophilic organic solvents such as P) can be used. The appropriate range of the resin concentration is 5 to 30% (dry base). Resin concentration: 5 to 40 parts (Udel P350 in Example 1)
(0:10 parts, DMF: 90 parts) Activator: Octyl phosphate anion activator, 2 parts with respect to PSU resin (dry base). The addition amount of the activator is suitably 0.05 to 12 parts with respect to the PSU resin. Hydrophilic resin: The amount of PVP added is 5-50% of PSU resin
(Dry base) is appropriate. Dope coating amount: 10 g / m2 (dry base)

【0016】(5)製膜 以上の処方によるドープをPETフィルム上に流延し、
次いでDMF10%、水90%の凝固浴に浸漬して得た
PSU微孔膜と、前記(1)及び(2)に記述の不織布
基材を接着貼合し複合体セパレータを得た。前記した様
に、PSU単体膜の電子顕微鏡写真(写真を模写したも
の)を図1、2、3に示す。図1は、PSU単体膜の断
面を示し、図1に示す断面の表面側の微孔が図2に示さ
れており、裏面側の準微孔が図3に示されている。この
裏面側が製膜時に離型紙に接触していた側であり、此の
面に不織布を積層する。
(5) Film formation The dope according to the above formulation is cast on a PET film.
Next, the PSU microporous membrane obtained by immersion in a coagulation bath of 10% DMF and 90% water and the nonwoven fabric substrate described in the above (1) and (2) were bonded and bonded to obtain a composite separator. As described above, electron micrographs (simulated photographs) of the PSU single film are shown in FIGS. FIG. 1 shows a cross section of the single PSU film. FIG. 2 shows micropores on the front side of the cross section shown in FIG. 1, and FIG. 3 shows quasi-micropores on the back side. The back side is the side that was in contact with the release paper during film formation, and a nonwoven fabric is laminated on this side.

【0017】(6)PSU単体膜及びセパレータ膜(複
合体)の性質 (6−1)単体膜 目付重量(g/平方m) 9 厚さ(μm) 32 透気度(秒/10立方cm) 1.1 (単体の透気度は0.3−5秒/10立方cmが適当で
ある) (6−2)複合体 目付重量(g/平方m) 46 厚さ(μm) 116 透気度(秒/10立方cm) 1.2 (複合体の透気度は0.3−5秒/10立方cmが適当
である) 表面孔径面積率(%) 10.6 吸液速度(cm/30分) 8.3 電気抵抗(mΩ・d平方m/枚) 0.5
(6) Properties of PSU single membrane and separator membrane (composite) (6-1) Single membrane Membrane weight (g / square m) 9 Thickness (μm) 32 Air permeability (sec / 10 cm 3) 1.1 (Appropriate air permeability of a single unit is 0.3-5 seconds / 10 cubic cm) (6-2) Composite weight per unit area (g / square m) 46 Thickness (μm) 116 Air permeability (Second / 10 cubic cm) 1.2 (Appropriate air permeability of the composite is 0.3-5 sec / 10 cm3) Surface pore area ratio (%) 10.6 Liquid absorption rate (cm / 30) Min) 8.3 Electric resistance (mΩ · d square m / sheet) 0.5

【0018】(7)上記6−2の複合体をセパレータと
して組み込んだNi−MH電池の性能試験条件と結果 a)負極:LmNiCoMnAl合金(#100通過
粉) (ニッケル繊維+3%PVA+水素吸蔵合金) 放電容量:約1200mAh b)正極:焼結式正極 (サイズ30mm x 40m
m) 放電容量:約400mAh c)電解液:6M−KOH水溶液 約300cc
(7) Performance test conditions and results of a Ni-MH battery incorporating the above composite of 6-2 as a separator a) Negative electrode: LmNiCoMnAl alloy (# 100 passing powder) (nickel fiber + 3% PVA + hydrogen storage alloy) Discharge capacity: about 1200 mAh b) Positive electrode: Sintered positive electrode (size 30 mm x 40 m)
m) Discharge capacity: about 400 mAh c) Electrolyte solution: about 300 cc of 6M-KOH aqueous solution

【0019】d)セパレータ:前記の複合体セパレータ
(厚さ:約100μm)、及び市販のセパレータ用親水
化PP不織布のみ(厚さ:約220μm。これは従来品
で比較対照の為のもの) e)電池構成:正極規制−開放型電池を構成(テフロン
板2枚+負極2枚+正極で構成しクリップで挟み込
む。) f)試験条件 f−1)セパレータ構成 cp1:複合体、複合セパレータの不織布側の面(これ
を保液面という場合がある)を正極に向けて装着。 cp2:複合体、複合セパレータの不織布側の面(保液
面)を負極に向けて装着。 cp3:親水化PP不織布
D) Separator: Only the above-mentioned composite separator (thickness: about 100 μm) and a commercially available hydrophilic non-woven PP non-woven fabric for a separator only (thickness: about 220 μm; this is a conventional product for comparison) e ) Battery configuration: Positive electrode regulation-Construct an open type battery (composed of two Teflon plates + two negative electrodes + positive electrode and sandwiched between clips) f) Test conditions f-1) Separator configuration cp1: Composite, nonwoven fabric of composite separator The surface on the side (this may be called the liquid retention surface) is installed facing the positive electrode. cp2: The surface of the nonwoven fabric side (liquid holding surface) of the composite and the composite separator was mounted facing the negative electrode. cp3: hydrophilized PP non-woven fabric

【0020】f−2)充放電試験 (雰囲気温度20
℃、充放電試験装置を使用) 試験1(初期活性化、各サンプルは低電流(40mA)
で充放電を行った):40mA x 15hr充電、
0.5hr休止、40mAで0.8V迄放電。 試験2(急速充電による活性化及びサイクル):400
mA x 2.5hr充電、0.5hr休止、40mA
で0.8V迄放電。 試験3(低電流サイクル):100mA x 7.5h
r充電、0.5hr休止、50mAで0.8V迄放電 試験4(高率放電特性、各サンプルを各条件で約55サ
イクル経過した後の大電流放電):100mA x
7.5hr充電、0.5hr休止 50,100,200,300,400,500,70
0,800、900mAで0.8V迄放電。 各電流で放電後、引き続き50mAで0.8V迄放電を
行った。
F-2) Charge / discharge test (atmospheric temperature 20)
℃, using a charge and discharge test device) Test 1 (initial activation, each sample is low current (40mA)
Was charged and discharged at 40 mA x 15 hours.
0.5 hour pause, discharge to 0.8V at 40mA. Test 2 (activation by rapid charging and cycle): 400
mA x 2.5 hr charge, 0.5 hr pause, 40 mA
Discharge to 0.8V. Test 3 (low current cycle): 100 mA x 7.5 h
r charge, 0.5 hr pause, discharge at 50 mA to 0.8 V Test 4 (high rate discharge characteristics, large current discharge after approximately 55 cycles of each sample under each condition): 100 mA x
7.5 hr charge, 0.5 hr pause 50, 100, 200, 300, 400, 500, 70
Discharge to 0.8V at 0,800,900mA. After discharging at each current, discharging was continued at 50 mA to 0.8 V.

【0021】g)結果 複合体セパレータ装着時の不織布側の保液面の装着方向
の相異による有意差は無く、又他の性能面での有意差も
従来品セパレータと比べて発見されなかった。複合体セ
パレータ厚さの減少が電池容量の向上等に寄与する。具
体的データ(表1)と図表(図4)を示す。
G) Results There was no significant difference due to the difference in the mounting direction of the liquid retaining surface on the nonwoven fabric side when the composite separator was mounted, and no significant difference in other performance aspects was found compared to the conventional separator. . The reduction in the thickness of the composite separator contributes to an improvement in battery capacity and the like. Specific data (Table 1) and charts (FIG. 4) are shown.

【0022】 [0022]

【0023】 [0023]

【0024】 [0024]

【0025】[0025]

【実施例2】親水性樹脂を使用したPSU微孔膜の製造
例 PSU樹脂:ユーデル3500 16部 溶剤:DMF 84部 活性剤:オクチル燐酸塩系アニオン活性剤 3部 親水性樹脂:PVP 2部 ドープ塗布量:12g/平方m(ドライベース) 製膜:上記実施例1の(5)と同等条件 PSU単体膜の性質 目付重量:10g/平方m 厚さ:25μm 透気度:2.5秒/10立法cm 尚、複合体(セパレータ)の性質及び電池に装着して行
った試験結果は実施例1と同等であった。
Example 2 Production Example of PSU Microporous Membrane Using Hydrophilic Resin PSU resin: Udel 3500 16 parts Solvent: DMF 84 parts Activator: Octyl phosphate anion activator 3 parts Hydrophilic resin: PVP 2 parts Dope Coating amount: 12 g / square m (dry base) Film formation: the same conditions as in (5) of Example 1 Properties of PSU single membrane Weight per unit area: 10 g / square m Thickness: 25 μm Air permeability: 2.5 seconds / 10 cubic cm The properties of the composite (separator) and the test results obtained by mounting the battery on the battery were equivalent to those in Example 1.

【0026】[0026]

【実施例3】水酸化ニッケル粉末、コバルト粉末、それ
にニッケル粉末を充填した公知の発泡式ニッケル極を正
極とし、ペースト式MmNi系水素吸蔵合金を負極と
し、セパレータとしては、その構成要素である不織布は
発煙硫酸処理で親水化した不織布を用いて、PSU膜と
積層したもの(厚さ130μm)を用いた。該セパレー
タの電池装着はセパレータの不織布面(保液面)が正極
に接する様にして密閉形Ni−MH蓄電池を構成した。
電解液として比重1.30の苛性カリ水溶液に30g/
lの水酸化リチウムを溶解して用いた。電池はSubC
型である。この電池をAとする。また公知の厚さ190
μmの発煙硫酸処理を行ったPP製不織布製単独のセパ
レータを用いた電池をBとして加えた。
Example 3 Nickel hydroxide powder, cobalt powder, and a known foamed nickel electrode filled with nickel powder as a positive electrode, a paste-type MmNi-based hydrogen storage alloy as a negative electrode, and a separator as a nonwoven fabric Used a non-woven fabric hydrophilicized by fuming sulfuric acid treatment and laminated with a PSU film (thickness: 130 μm). When the separator was mounted on the battery, a sealed Ni-MH storage battery was configured such that the nonwoven fabric surface (liquid retention surface) of the separator was in contact with the positive electrode.
As an electrolyte, an aqueous solution of caustic potassium having a specific gravity of 1.30 g / 30 g /
l of lithium hydroxide was dissolved and used. Battery is SubC
Type. This battery is designated as A. A known thickness of 190
A battery using a single separator made of nonwoven fabric made of PP and subjected to a fuming sulfuric acid treatment of μm was added as B.

【0027】まず初期の放電電圧と容量を比較した。各
電池は10セルづつ用い5時間率で容量の130%定電
流充電−1.0Aで0.9Vまでの定電流放電を行った
ところ、平均電圧はいずれも1.22−1.23Vで差
はなく、放電容量はAは2.97−3.02Ahであっ
たのに対し、Bは2.54−2.61Ahであった。ま
た、急速充電特性として雰囲気温度0℃、充電電流2.
5Aで1.5時間充電後の電池内圧を調べた処、Aは
2.6kg/平方cmであった。Bでは2.8kg/平
方cmとなった。次に本願セパレータの最も主要な目的
である寿命について調べた。各電池をやはり10セルづ
つ用い、この充放電の条件で寿命特性を比較した。その
結果、放電容量が初期の85%迄劣化するサイクル数
は、Aは912−1004サイクルであり、Bが887
−925サイクルでありAが優れていた。この結果から
Aは高容量化が可能になると共に寿命特性に優れ、急速
充電性も良いことが判った。
First, the initial discharge voltage and the capacity were compared. Each battery was used at a constant current charge of 130% of capacity -1.0 A at a constant current discharge of 0.9 V at a rate of 5 hours at a rate of 5 hours, and the average voltage was 1.22 to 1.23 V. The discharge capacity A was 2.97-3.02 Ah, whereas the discharge capacity B was 2.54-2.61 Ah. The rapid charging characteristics include an ambient temperature of 0 ° C., a charging current of 2.
When the internal pressure of the battery after charging at 5 A for 1.5 hours was examined, A was 2.6 kg / cm 2. In B, it was 2.8 kg / square cm. Next, the life of the separator of the present invention, which is the most important purpose, was examined. Each battery was also used for 10 cells, and the life characteristics were compared under the conditions of charge and discharge. As a result, the number of cycles at which the discharge capacity deteriorates to 85% of the initial value is 912 to 1004 cycles for A and 887 for B.
-925 cycles and A was excellent. From these results, it was found that A can be increased in capacity, has excellent life characteristics, and has good quick chargeability.

【図面の簡単な説明】[Brief description of the drawings]

図1、2、3は本発明のポリスルフォン微孔膜の電子顕
微鏡写真を模写したものである。
FIGS. 1, 2, and 3 are electron micrographs of the polysulfone microporous membrane of the present invention.

【図1】ポリスルフォン微孔膜の断面を示す。FIG. 1 shows a cross section of a polysulfone microporous membrane.

【図2】図1における表面を示す。FIG. 2 shows the surface in FIG.

【図3】図1における裏面を示す。FIG. 3 shows the back surface in FIG.

【図4】電池試験結果を示す。FIG. 4 shows battery test results.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 兵庫 豊晃 大阪府泉南市樽井6丁目29番1号、東洋 クロス株式会社内 (72)発明者 三浦 彰 大阪府泉南市樽井6丁目29番1号、東洋 クロス株式会社内 (72)発明者 松本 勇 大阪府泉南市樽井6丁目29番1号、東洋 クロス株式会社内 (72)発明者 松永 真樹 大阪府泉南市樽井6丁目29番1号、東洋 クロス株式会社内 審査官 板谷 一弘 (56)参考文献 特開 平2−276153(JP,A) 特開 平2−87459(JP,A) 特開 平5−82115(JP,A) 実開 平5−1162(JP,U) (58)調査した分野(Int.Cl.6,DB名) H01M 2/16,10/30──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toyoaki Hyogo 6-29-1, Tarui, Sennan-shi, Osaka, Toyo Cross Co., Ltd. (72) Inventor Akira Miura 6-29-1, Tarui, Sennan-shi, Osaka , Toyo Cross Co., Ltd. (72) Inventor Isamu Matsumoto 6-29-1, Tarui, Sennan-shi, Osaka, Toyo Cross Co., Ltd. (72) Maki Matsunaga 6-29-1, Tarui, Sennan-shi, Osaka, Toyo Examiner in Cross Co., Ltd. Kazuhiro Itaya (56) References JP-A-2-276153 (JP, A) JP-A-2-87459 (JP, A) JP-A-5-82115 (JP, A) -1162 (JP, U) (58) Field surveyed (Int. Cl. 6 , DB name) H01M 2/16, 10/30

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 親水化処理したポリオレフィン系不織布
と親水化処理したポリスルフォン樹脂微孔膜とを積層し
たニッケル−水素吸蔵合金蓄電池用セパレータであっ
て、親水化処理したポリオレフィン系不織布は、ポリオ
レフィン系不織布繊維素材にスルフォン基等の親水性官
能基を化学的に付加すること、高周波グロー放電等によ
り酸素を結合させること、フッ素気体で処理すること、
又は界面活性剤で処理することの何れか1つ以上を用い
て、ポリオレフィン系不織布に親水性を付与したもので
あり、該ポリオレフィン系不織布はポリスルフォン樹脂
微孔膜の裏面に積層されることを特徴とするニッケル−
水素吸蔵合金蓄電池用セパレータ。
1. A separator for a nickel-hydrogen storage alloy storage battery comprising a polyolefin nonwoven fabric subjected to a hydrophilic treatment and a microporous polysulfone resin membrane subjected to a hydrophilic treatment. Chemically adding a hydrophilic functional group such as a sulfone group to the nonwoven fiber material, binding oxygen by high-frequency glow discharge, etc., treating with a fluorine gas,
Or a polyolefin-based nonwoven fabric provided with hydrophilicity by using at least one of a treatment with a surfactant and a polysulfone resin.
Nickel laminated on the back surface of the microporous membrane
Separator for hydrogen storage alloy storage batteries.
【請求項2】 親水化処理したポリスルフォン樹脂微孔
膜は、界面活性剤又はポリビニルピロリドン等の親水性
樹脂の何れか1つ以上を用いて湿式製膜したポリスルフ
ォン樹脂微孔膜であることを特徴とする請求項1に記載
のニッケル−水素吸蔵合金蓄電池用セパレータ。
2. The polysulfone resin microporous membrane subjected to the hydrophilic treatment is a polysulfone resin microporous membrane wet-formed using at least one of a surfactant or a hydrophilic resin such as polyvinylpyrrolidone. The nickel-hydrogen storage alloy storage battery separator according to claim 1, wherein:
【請求項3】 ポリオレフィン系不織布とポリスルフォ
ン微孔膜の積層体の厚さが80−140μmである請求
項1に記載のニッケル−水素吸蔵合金蓄電池用セパレー
タ。
3. The separator for a nickel-hydrogen storage alloy storage battery according to claim 1, wherein the laminate of the polyolefin-based nonwoven fabric and the polysulfone microporous membrane has a thickness of 80 to 140 μm.
【請求項4】 請求項1に記載のセパレータを装着した
ニッケル−水素吸蔵合金蓄電池。
4. A nickel-hydrogen storage alloy storage battery equipped with the separator according to claim 1.
JP7046045A 1995-01-27 1995-01-27 Nickel-hydrogen storage alloy storage battery Expired - Fee Related JP2764378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7046045A JP2764378B2 (en) 1995-01-27 1995-01-27 Nickel-hydrogen storage alloy storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7046045A JP2764378B2 (en) 1995-01-27 1995-01-27 Nickel-hydrogen storage alloy storage battery

Publications (2)

Publication Number Publication Date
JPH08236097A JPH08236097A (en) 1996-09-13
JP2764378B2 true JP2764378B2 (en) 1998-06-11

Family

ID=12736067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7046045A Expired - Fee Related JP2764378B2 (en) 1995-01-27 1995-01-27 Nickel-hydrogen storage alloy storage battery

Country Status (1)

Country Link
JP (1) JP2764378B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6723052B2 (en) * 2016-03-31 2020-07-15 旭化成株式会社 Storage device separator
CN114069155A (en) * 2021-10-25 2022-02-18 浙江浙能技术研究院有限公司 Method for manufacturing composite diaphragm paper for nickel-hydrogen low self-discharge battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287459A (en) * 1988-09-22 1990-03-28 Matsushita Electric Ind Co Ltd Battery
JP2799501B2 (en) * 1989-04-05 1998-09-17 東洋クロス株式会社 Alkaline battery separator

Also Published As

Publication number Publication date
JPH08236097A (en) 1996-09-13

Similar Documents

Publication Publication Date Title
WO2006123811A1 (en) Separator for lithium ion secondary battery and lithium ion secondary battery
JP2001118558A (en) Partially coated separator
US20180233727A1 (en) Separator for a non-aqueous secondary battery and non-aqueous secondary battery
JP6166575B2 (en) Electrode integrated separator and method for manufacturing the same
KR20180093288A (en) Separator, Method for Preparing the Same and Lithium Secondary Battery Comprising the Same
JP4230592B2 (en) Partially hydrophilic polyolefin microporous membrane
JPH08273653A (en) Separator for alkaline battery and alkaline battery
JP2764378B2 (en) Nickel-hydrogen storage alloy storage battery
WO1992012544A1 (en) Separator for alkali zinc battery
JP4091294B2 (en) Alkaline storage battery
WO2021181815A1 (en) Separator for batteries
JP2001110449A (en) Ion conductive sheet
US20230275320A1 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
JPH1186828A (en) Battery separator and its manufacture
JP2981238B2 (en) Battery separator
EP3920266B1 (en) Separator for non-aqueous secondary cell, and non-aqueous secondary cell
JP4193923B2 (en) Alkaline storage battery
JP7482935B2 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
CN116826312B (en) High-adhesion heat-resistant diaphragm and preparation method and application thereof
JP3332139B2 (en) Sealed alkaline storage battery
JP3436058B2 (en) Alkaline storage battery
JPH07130392A (en) Alkaline storage battery
JPH09330692A (en) Separator for alkaline storage battery, its manufacture and alkaline storage battery
JPH06181068A (en) Sealed type alkaline storage battery
JP2590519B2 (en) Sealed alkaline storage battery separator and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees