JPH09281034A - Optical concentration measuring apparatus - Google Patents
Optical concentration measuring apparatusInfo
- Publication number
- JPH09281034A JPH09281034A JP9497696A JP9497696A JPH09281034A JP H09281034 A JPH09281034 A JP H09281034A JP 9497696 A JP9497696 A JP 9497696A JP 9497696 A JP9497696 A JP 9497696A JP H09281034 A JPH09281034 A JP H09281034A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- concentration
- measurement
- optical path
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Measuring Cells (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、上水、下水等の分
野で使用される、ある特定波長の光の吸収や散乱による
減衰に基づいて水中の目的物質濃度を計測する装置に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device used in the fields of tap water, sewage, etc., for measuring the concentration of a target substance in water on the basis of attenuation due to absorption or scattering of light having a specific wavelength.
【0002】[0002]
【従来の技術】上水道関連で配水水質モニタに組み込ま
れたり、浄水場での水質監視等に多用される計測器とし
ては、例えば濁色度計がある。配水水質モニタは、上水
道の配水施設(配水池、配水管網内)での配水水質(p
H、残塩、濁度、色度、導電率、水圧、温度)を連続計
測する装置である。この装置で濁度と色度を計測する計
測器は、本発明で関係する光の吸収、散乱を測定原理と
するものである。2. Description of the Related Art A turbidity meter is an example of a measuring instrument that is often incorporated in a water quality monitor for water supply related to water supply and used for monitoring water quality at a water purification plant. The distribution water quality monitor is used to measure the distribution water quality (p in a distribution reservoir or distribution pipe network)
H, residual salt, turbidity, chromaticity, conductivity, water pressure, temperature) are continuously measured. The measuring instrument for measuring turbidity and chromaticity with this device is based on the principle of absorption and scattering of light related to the present invention.
【0003】この濁色度計は濁度と色度を一つの検出部
で同時に計測するものである。すなわち濁度を波長66
0nmの光で測定し、色度は濁度補正した波長390n
m前後の光で同時連続計測する水質計測器であり、その
測定範囲は対象が水道水であるため、濁度0〜4度、色
度0〜10度と低濃度範囲である。This turbidity meter measures turbidity and chromaticity at the same time with a single detecting section. That is, the turbidity is set to a wavelength of 66
Measured with 0 nm light, chromaticity is 390 n wavelength with turbidity correction
It is a water quality measuring instrument that simultaneously and continuously measures light of around m, and its measurement range is a low concentration range of turbidity 0 to 4 degrees and chromaticity 0 to 10 degrees because the target is tap water.
【0004】図3は濁色度計の構成を示しており、1a
は計測セル本体である。この計測セル本体1aは、計測
光透過ガラス窓1b1,1b2、検水流入口1c、検水流出
口1dを有している。2は光源、3は光を2光路に分割
するハーフミラー、4はリファレンス(基準)信号計測
用光電変換素子、5はサンプル信号計測用光電変換素子
である。6は前記各光電変換素子4,5で計測された2
種類の信号を差し引いて対数増幅する増幅回路である。
7は、増幅回路6においてリファレンス信号を基準とし
て物理量に比例する信号に変換された信号を演算処理し
て濁度や色度などの物理量に置き換える演算処理部であ
る。FIG. 3 shows the structure of the turbidity meter, which is 1 a
Is the measuring cell body. The measuring cell body 1a includes the measurement light transmitting glass window 1 b1, 1 b2, test water inlet 1 c, the test water outlet 1 d. Reference numeral 2 is a light source, 3 is a half mirror that divides light into two optical paths, 4 is a reference (reference) signal measurement photoelectric conversion element, and 5 is a sample signal measurement photoelectric conversion element. 6 is 2 measured by the photoelectric conversion elements 4 and 5
This is an amplifier circuit that performs logarithmic amplification by subtracting the types of signals.
Reference numeral 7 denotes an arithmetic processing unit that arithmetically processes a signal converted into a signal proportional to a physical quantity with reference to the reference signal in the amplifier circuit 6 and replaces it with a physical quantity such as turbidity or chromaticity.
【0005】また、光源2、ハーフミラー3、計測光透
過ガラス窓1b1,1b2、サンプル信号計測用光電変換素
子5は同一軸線上に配置されて、光源2からの光束も同
一線上となるようにハーフミラー3、計測光透過ガラス
窓1b1,1b2の角度が調整される。Further, the light source 2, the half mirror 3, the measurement light transmitting glass windows 1 b1 and 1 b2 , and the sample signal measuring photoelectric conversion element 5 are arranged on the same axis, and the light flux from the light source 2 is also on the same line. Thus, the angles of the half mirror 3 and the measurement light transmitting glass windows 1 b1 and 1 b2 are adjusted.
【0006】検水は連続的に検水流入口1cから計測セ
ル本体1aに流入し、検水流出口1dから流出する。計測
セル内の検水には光源2から測定光線が照射され、検水
を通る光線によるサンプル光信号と、検水を通過しない
光線によるリファレンス光信号の2種類の計測信号をも
とに、演算処理によって濁度、色度が求められる。[0006] the test water flows continuously from the test water inlet 1 c in the measurement cell body 1 a, and flows out from the test water outlet 1 d. The test light in the measuring cell is irradiated with a measuring light beam from the light source 2, and calculation is performed based on two kinds of measurement signals, a sample light signal of a light beam passing through the test water and a reference light signal of a light beam not passing through the test water. Turbidity and chromaticity are obtained by the treatment.
【0007】また、下水の処理水およびその他の排出水
などの有機汚濁物質量の連続計測用に使用されているU
V計(有機汚濁モニタ)などは、次の測定原理に基づ
く。無機物の紫外吸光度は、250nm以上の波長では
ほとんど認められないが、これに対して、有機物は25
4nm程度の波長でもある程度の吸収を示す。従って2
54nm以上の波長での吸収は殆ど有機物に基づく。こ
の原理を利用して有機性汚濁濃度を測定することが可能
となる。このUV計も構成は図3と同様の構成となる。U used for continuous measurement of the amount of organic pollutants such as sewage treated water and other discharged water.
The V meter (organic pollution monitor) is based on the following measurement principle. Ultraviolet absorption of inorganic substances is hardly observed at wavelengths of 250 nm or more, while that of organic substances is 25
It exhibits some absorption even at a wavelength of about 4 nm. Therefore 2
Absorption at wavelengths above 54 nm is mostly organic. It is possible to measure the organic pollutant concentration using this principle. This UV meter also has the same structure as in FIG.
【0008】[0008]
【発明が解決しようとする課題】前述した濁色度計やU
V計のような、ある特定波長の光の吸収や光の散乱によ
る減衰に基づいて水中の目的物質濃度を計測する装置の
測定原理は、吸光光度法による。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The absorptiometric method is used as the measuring principle of an apparatus that measures the concentration of a target substance in water based on the absorption of light of a certain specific wavelength and the attenuation due to the scattering of light, such as a V meter.
【0009】吸光光度法とは、一連の異なった濃度の標
準液について、その吸光度と濃度との関係を検量線とし
て予め求めておき、検水の吸光度を測定して検量線から
検水の目的物質の濃度を求める方法である。The absorptiometric method is to obtain the relationship between the absorbance and the concentration of a standard solution having a series of different concentrations as a calibration curve in advance, measure the absorbance of the test water, and determine the purpose of the test water from the calibration curve. This is a method of determining the concentration of a substance.
【0010】計測装置では演算処理部7に検量線により
濃度を演算する機能を持たせている。この検量線は低濃
度から高濃度まで幅広く適用できるものではなく、図4
に示すようにある濃度(a)を越えると計測信号と標準
液濃度との間に直線関係が成立しなくなる。したがっ
て、検水濃度がa値以上になると誤差が大きくなり、結
果として計測不可能となる。In the measuring device, the arithmetic processing unit 7 is provided with a function of calculating the concentration using a calibration curve. This calibration curve is not widely applicable from low concentration to high concentration.
As shown in (4), when a certain concentration (a) is exceeded, a linear relationship between the measurement signal and the standard solution concentration is not established. Therefore, when the test water concentration is equal to or higher than the value a, the error becomes large, and as a result, measurement becomes impossible.
【0011】さらにこの濃度a値以上の計測を必要とす
る場合には、計測セルの長さで規定される検水中を透過
する光路の長さを小さくすることにより対応できる。こ
れは、ランバート・ベールの法則により、検水の濃度が
同じであれば、光路の長さを1/2にすれば計測信号も
1/2となる。すなわち、光路の長さを1/2とするこ
とにより計測濃度範囲が2倍に広がり、濃度2・a値ま
で計測できることになる。Further, when the measurement of the concentration a or more is required, it can be dealt with by reducing the length of the optical path that passes through the test water defined by the length of the measuring cell. According to Lambert-Beer's law, if the concentration of the sample water is the same, if the length of the optical path is halved, the measurement signal will also be halved. That is, when the length of the optical path is halved, the measured density range is doubled, and the density 2 · a value can be measured.
【0012】従来、測定対象とする検水濃度の範囲が広
く、その計測精度が低濃度レベルにおいても、水質管理
や制御のために必要な場合には、計測セルの長さが異な
る計測器を複数設置して、低レベルから高レベルまで測
定しなければならない問題点があった。Conventionally, even if the range of test water concentration to be measured is wide and its measurement accuracy is required for water quality management and control even at a low concentration level, measuring instruments with different measuring cell lengths are used. There was a problem that it was necessary to install multiple units and measure from low level to high level.
【0013】本発明は上記の点に鑑みてなされたもので
その目的は、測定濃度範囲が広く、かつ精度が要求され
る場合に、計測セルの長さが異なる計測器を複数設置す
ることなく、一つの計測セルにおいて計測することがで
きる光学式濃度計測装置を提供することにある。The present invention has been made in view of the above points, and an object thereof is to provide a measuring cell having a wide measuring concentration range and high accuracy without installing a plurality of measuring instruments having different measuring cell lengths. An object of the present invention is to provide an optical density measuring device capable of measuring in one measuring cell.
【0014】[0014]
【課題を解決するための手段】この発明は上記の目的を
達成するために、(1)検水に光を投射し、該検水を透
過したサンプル光信号と基準光信号とを比較して濃度計
測を行う光学式濃度計測装置において、同一光源から投
射される光を通過させるための光路であって、長さの異
なる複数の光路を有し、検水が通流される計測セルを設
け、濃度計測値に応じて前記複数の光路を切り換えて濃
度計測を行うことを特徴とし、(2)前記複数の光路を
切り換える手段は、各光路毎に設けた光電変換素子によ
り得たサンプル光信号を切り換えて行うことを特徴と
し、(3)前記複数の光路を切り換える手段は、前記計
測セルを移動させて、前記複数の光路のうち所望の光路
を、各光路毎に設けた光電変換素子のうち1個の光電変
換素子と光源を結ぶ経路に合致させることにより行うこ
とを特徴とし、(4)前記複数の光路の切り換えは、濃
度計測値が所定値以下のときは長い光路に、所定値以上
のときは短い光路に切り換えることを特徴としている。In order to achieve the above-mentioned object, the present invention (1) projects light onto a test water and compares the sample optical signal transmitted through the test water with a reference optical signal. In an optical concentration measuring device that performs concentration measurement, an optical path for passing light projected from the same light source, having a plurality of optical paths of different lengths, and providing a measuring cell through which the test water flows, The density is measured by switching the plurality of optical paths in accordance with the density measurement value. (2) The means for switching the plurality of optical paths is configured to convert a sample optical signal obtained by a photoelectric conversion element provided for each optical path. (3) The means for switching the plurality of optical paths is configured to move the measurement cell to select a desired optical path among the plurality of optical paths from among photoelectric conversion elements provided for each optical path. Connect one photoelectric conversion element and light source (4) Switching of the plurality of optical paths is performed by switching to a long optical path when the concentration measurement value is equal to or less than a predetermined value and switching to a short optical path when the concentration measurement value is equal to or more than a predetermined value. I am trying.
【0015】[0015]
【発明の実施の形態】以下図面を参照しながら本発明の
実施の形態を説明する。図1において図3と同一部分は
同一符号をもって示している。図1において図3と異な
る点は、計測セル本体11aを、短光路xと長光路yが
平行して形成されるように、計測光透過ガラス窓1
1b1,11b2,11b3、検水流入口11c、検水流出口
11dで構成し、短光路xの線上にハーフミラー13a
および光電変換素子15aを、長光路yの線上にハーフ
ミラー13bおよび光電変換素子15bを各々配設した
ことにある。Embodiments of the present invention will be described below with reference to the drawings. 1, the same parts as those in FIG. 3 are indicated by the same reference numerals. 1 is different from FIG. 3 in that the measurement cell main body 11a is formed so that the short optical path x and the long optical path y are formed in parallel with each other.
1 b1 , 11 b2 , 11 b3 , a test water inlet 11 c , and a test water outlet 11 d , and a half mirror 13a on the line of the short optical path x.
The photoelectric conversion element 15a and the half mirror 13b and the photoelectric conversion element 15b are arranged on the line of the long optical path y.
【0016】8は光源光束を平行にするレンズ、13
a,13bは短光路x側、長光路y側で各々平行化した
光を各々2光路に分割するハーフミラーである。14
a,14bは計測演算のための基準信号(リファレンス
信号)を計測する光電変換素子、15a,15bは検水
の計測信号(サンプル信号)を計測する光電変換素子で
ある。16はリファレンス信号計測用光電変換素子14
a,14bとサンプル信号計測用光電変換素子15a,
15bで計測される2種類の信号を各々差し引いて対数
増幅する増幅回路である。17はリファレンス信号を基
準として増幅回路16において物理量に比例する信号に
変換された信号を演算処理して濁度や色度などの物理量
に置き換える演算処理部である。Reference numeral 8 is a lens for collimating the light flux of the light source, and 13
Reference numerals a and 13b denote half mirrors for splitting the parallelized light on the short optical path x side and the long optical path y side into two optical paths. 14
Reference numerals a and 14b are photoelectric conversion elements that measure a reference signal (reference signal) for measurement calculation, and reference numerals 15a and 15b are photoelectric conversion elements that measure a measurement signal (sample signal) of water detection. Reference numeral 16 is a photoelectric conversion element 14 for measuring a reference signal.
a, 14b and the photoelectric conversion element 15a for measuring the sample signal,
It is an amplifier circuit that performs logarithmic amplification by subtracting each of the two types of signals measured at 15b. Reference numeral 17 denotes an arithmetic processing unit that arithmetically processes the signal converted into a signal proportional to the physical quantity in the amplifier circuit 16 with the reference signal as a reference and replaces it with a physical quantity such as turbidity or chromaticity.
【0017】前記ハーフミラー13a、計測光透過ガラ
ス窓11b1,11b3、サンプル信号計測用光電変換素子
15aは、短光路xの同一軸線上に配置されて、光源2
からレンズ8以降の光束は同一線上となるように、ハー
フミラー13a、計測光透過窓11b1,11b3の各々の
角度は調整される。The half mirror 13a, the measurement light transmitting glass windows 11b1 and 11b3 , and the sample signal measuring photoelectric conversion element 15a are arranged on the same axis of the short optical path x, and the light source 2
The angles of the half mirror 13a and the measurement light transmitting windows 11b1 and 11b3 are adjusted so that the light beams from the lens 8 onward are on the same line.
【0018】またハーフミラー13b、計測光透過ガラ
ス窓11b1,11b2、サンプル信号計測用光電変換素子
15bは、長光路yの同一軸線上に配置されて、光源2
からレンズ8以降の光束は同一線上となるように、ハー
フミラー13b、計測光透過窓11b1,11b2の各々の
角度は調整される。Further half mirror 13b, the measuring light transmitting glass window 11 b1, 11 b2, the sample signal measuring photoelectric conversion element 15b is disposed on the same axis of Nagamitsuro y, the light source 2
The angles of the half mirror 13b and the measurement light transmission windows 11b1 and 11b2 are adjusted so that the light beams from the lens 8 onward are on the same line.
【0019】図1の装置において、図4の検量線で示す
比例限界値a値以下の範囲での通常計測では、長光路y
側で計測した結果を出力とする判断を演算処理部17が
行う。万一、計測値出力がa値以上となった場合には、
ランバート・ベールの法則により光路長比較で計算され
る最大計測可能値(y/x)×aの短光路xでの計測レ
ンジで計測され出力される。また短光路x側での計測値
が(x/y)×a以下となったならば、再び長光路yで
の計測が可能となるため、長光路y側での計測に切り換
える動作を行う。In the apparatus of FIG. 1, in the normal measurement in the range of the proportional limit value a value or less shown by the calibration curve of FIG. 4, the long optical path y
The arithmetic processing unit 17 determines that the result measured on the side is output. In the unlikely event that the measured value output exceeds the a value,
According to the Lambert-Beer law, the maximum measurable value (y / x) calculated by comparing the optical path lengths (y / x) × a is measured and output in the measuring range on the short optical path x. If the measurement value on the short optical path x side becomes (x / y) × a or less, the measurement on the long optical path y becomes possible again, and the operation is switched to the measurement on the long optical path y side.
【0020】[0020]
【実施例】また前記短光路x、長光路yの切り換えは図
2のように外部駆動用モータ19によって計測セル本体
11aを移動させても良い。すなわちハーフミラー1
3、光電変換素子15は各々1個設け、演算処理部27
の指令によって外部駆動用モータ19を駆動制御し計測
セル本体11aを移動させるものである。EXAMPLE The switching between the short optical path x and the long optical path y may be accomplished by moving the measuring cell body 11a by the external drive motor 19 as shown in FIG. That is, half mirror 1
3, one photoelectric conversion element 15 is provided, and the arithmetic processing unit 27
Is used to drive and control the external drive motor 19 to move the measurement cell body 11a.
【0021】図2において図1と同一部分は同一符号を
もって示している。13は光源を2光路に分割するハー
フミラー、14は計測演算のための基準信号(リファレ
ンス信号)を計測する光電変換素子である。15は検水
の計測信号(サンプル信号)を計測する光電変換素子で
あり、前記光源2とハーフミラー13を結ぶ線の延長線
上に配設されている。26はリファレンス信号計測用光
電変換素子14とサンプル信号計測用光電変換素子15
で計測される2種類の信号を差し引いて対数増幅する増
幅回路である。27はリファレンス信号を基準として増
幅回路26において物理量に比例する信号に変換された
信号を演算処理して濁度や色度などの物理量に置き換え
る演算処理部である。In FIG. 2, the same parts as those in FIG. 1 are designated by the same reference numerals. Reference numeral 13 is a half mirror that divides the light source into two optical paths, and 14 is a photoelectric conversion element that measures a reference signal (reference signal) for measurement calculation. Reference numeral 15 denotes a photoelectric conversion element that measures a measurement signal (sample signal) of water detection, and is arranged on an extension of a line connecting the light source 2 and the half mirror 13. Reference numeral 26 denotes a photoelectric conversion element 14 for measuring a reference signal and a photoelectric conversion element 15 for measuring a sample signal.
This is an amplifier circuit that performs logarithmic amplification by subtracting the two types of signals measured in. An arithmetic processing unit 27 performs arithmetic processing on the signal converted into a signal proportional to the physical quantity in the amplifier circuit 26 with reference to the reference signal and replaces it with a physical quantity such as turbidity or chromaticity.
【0022】また、光源2、ハーフミラー13、計測光
透過ガラス窓11b1と11b2または11b3、サンプル信
号計測用光電変換素子15は、各々の光路において同一
軸線上に配置されて、光源2からの光束は同一線上とな
るようにハーフミラー13、計測光透過ガラス窓11b1
と11b2または11b3の角度が各々調整される。The light source 2, the half mirror 13, the measurement light transmitting glass windows 11 b1 and 11 b2 or 11 b3 , and the sample signal measuring photoelectric conversion element 15 are arranged on the same axis line in each optical path, and the light source 2 From the half mirror 13 and the measurement light transmitting glass window 11 b1 so that the light flux from
And 11 b2 or 11 b3 are adjusted respectively.
【0023】また光路を長、短2経路持つ計測セル本体
11aは、外部駆動用モータ19で演算処理部27の出
力結果により測定光路をxまたはy側に切り替えて計測
できる機能を持つ。The measuring cell body 11a having two long and short optical paths has a function of switching the measuring optical path to the x or y side according to the output result of the arithmetic processing unit 27 by the external drive motor 19 to perform measurement.
【0024】このように構成した場合も、前記比例限界
値a値以下の範囲での通常計測では、長光路y側で計測
するよう外部駆動用モータ19で位置の制御を演算処理
部27が行う。万一、計測値出力がa値以上となった場
合には、ランバート・ベールの法則により光路長比較で
計算される最大計測可能値(y/x)×aの短光路xの
計測レンジで計測できるように、演算処理部27からの
制御信号により外部駆動用モータ19を速やかに動かし
て短光路x測定経路とする。Even in the case of such a configuration, in the normal measurement within the range of the proportional limit value a value or less, the arithmetic processing unit 27 controls the position by the external drive motor 19 so as to measure on the long optical path y side. . Should the measured value output exceed the a value, the maximum measurable value (y / x) calculated by comparing the optical path lengths according to Lambert-Beer's law (y / x) x measured in the measurement range of the short optical path x As possible, the external drive motor 19 is swiftly moved by the control signal from the arithmetic processing unit 27 to form the short optical path x measurement path.
【0025】また短光路x側での計測値が(x/y)×
a以下となったならば、再び長光路y側での計測が可能
となるため、外部駆動用モータ19によって計測セル本
体11aを移動し、長光路y側での計測に切り換える。The measured value on the short optical path x side is (x / y) ×
If it becomes a or less, measurement on the long optical path y side becomes possible again, so the measurement cell body 11a is moved by the external drive motor 19 to switch to measurement on the long optical path y side.
【0026】[0026]
【発明の効果】以上述べたように、この発明によれば、
次のような優れた効果が得られる。As described above, according to the present invention,
The following excellent effects can be obtained.
【0027】(1)複数の光路長を計測セル内にもつこ
とにより、通常の計測範囲を越えた広い範囲の計測を低
レベルから高レベルまで精度を落とすことなく測定する
ことができる。例えば通常の濁度の計測範囲が0〜4度
の場合に、光路長1/10の光路を持たせることによ
り、最大濁度40度まで計測可能となる。(1) By having a plurality of optical path lengths in the measuring cell, it is possible to measure a wide range beyond the normal measuring range from low level to high level without degrading the accuracy. For example, when the normal measurement range of turbidity is 0 to 4 degrees, the maximum turbidity of 40 degrees can be measured by providing an optical path with an optical path length of 1/10.
【0028】(2)本発明の計測装置により、従来では
計測濃度範囲制限により上水道と下水用に使い分けてい
た濁度計、色度計、UV計等を共通装置仕様とすること
ができる。(2) With the measuring device of the present invention, a turbidity meter, a chromaticity meter, a UV meter, etc., which have conventionally been used separately for water supply and sewerage due to the limitation of the measurement concentration range, can be used as common equipment specifications.
【0029】(3)浄水場濾過池の逆洗時の洗浄効果確
認と洗浄水通水時間制御ならびに汚濁負荷量演算等に、
本発明の計測装置で対応することができる。(3) For confirming the cleaning effect at the time of backwashing the water purification plant filtration tank, controlling the cleaning water passage time, calculating the pollution load, etc.
The measuring device of the present invention can be used.
【図1】本発明の一実施例を示す構成図。FIG. 1 is a configuration diagram showing one embodiment of the present invention.
【図2】本発明の他の実施例を示す構成図。FIG. 2 is a configuration diagram showing another embodiment of the present invention.
【図3】従来の濁色度計の一例を示す構成図。FIG. 3 is a configuration diagram showing an example of a conventional turbidity meter.
【図4】計測装置の検量線を示す特性図。FIG. 4 is a characteristic diagram showing a calibration curve of a measuring device.
2…光源 8…レンズ 11a…計測セル本体 13,13a,13b…ハーフミラー 14,14a,14b,15,15a,15b…光電変
換素子 16,26…増幅回路 17,27…演算処理部2 ... Light source 8 ... Lens 11a ... Measuring cell main body 13, 13a, 13b ... Half mirror 14, 14a, 14b, 15, 15a, 15b ... Photoelectric conversion element 16, 26 ... Amplification circuit 17, 27 ... Arithmetic processing section
Claims (6)
ンプル光信号と基準光信号とを比較して濃度計測を行う
光学式濃度計測装置において、 同一光源から投射される光を通過させるための光路であ
って、長さの異なる複数の光路を有し、検水が通流され
る計測セルを設け、 濃度計測値に応じて前記複数の光路を切り換えて濃度計
測を行うことを特徴とする光学式濃度計測装置。1. An optical concentration measuring device for projecting light onto a sample water and comparing the sample optical signal transmitted through the sample water with a reference optical signal to measure the concentration. It is an optical path for passing, has a plurality of optical paths of different lengths, provides a measurement cell through which the test water flows, and switches the plurality of optical paths according to the concentration measurement value to perform concentration measurement. Characteristic optical density measuring device.
光路毎に設けた光電変換素子により得たサンプル光信号
を切り換えて行うことを特徴とする請求項1に記載の光
学式濃度計測装置。2. The optical density measuring device according to claim 1, wherein the means for switching the plurality of optical paths is performed by switching a sample optical signal obtained by a photoelectric conversion element provided for each optical path.
記計測セルを移動させて、前記複数の光路のうち所望の
光路を、各光路毎に設けた光電変換素子のうち1個の光
電変換素子と光源を結ぶ経路に合致させることにより行
うことを特徴とする請求項1に記載の光学式濃度計測装
置。3. The means for switching the plurality of optical paths is configured to move the measurement cell so that one of the photoelectric conversion elements provided with a desired optical path among the plurality of optical paths. The optical density measuring device according to claim 1, wherein the optical density measuring device is performed by matching with a path connecting the light source and the light source.
値が所定値以下のときは長い光路に、所定値以上のとき
は短い光路に切り換えることを特徴とする請求項1又は
2又は3に記載の光学式濃度計測装置。4. The switching of the plurality of optical paths is performed by switching to a long optical path when the density measurement value is a predetermined value or less and switching to a short optical path when the density measurement value is a predetermined value or more. The optical density measuring device described.
光路の2光路であることを特徴とする請求項1又は2又
は3又は4に記載の光学式濃度計測装置。5. The optical concentration measuring device according to claim 1, wherein the plurality of optical paths of the measuring cell are two optical paths, a long optical path and a short optical path.
ータを用いることを特徴とする請求項3に記載の光学式
濃度計測装置。6. The optical density measuring apparatus according to claim 3, wherein an external driving motor is used as the moving unit of the measuring cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9497696A JPH09281034A (en) | 1996-04-17 | 1996-04-17 | Optical concentration measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9497696A JPH09281034A (en) | 1996-04-17 | 1996-04-17 | Optical concentration measuring apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09281034A true JPH09281034A (en) | 1997-10-31 |
Family
ID=14124948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9497696A Pending JPH09281034A (en) | 1996-04-17 | 1996-04-17 | Optical concentration measuring apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09281034A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006153543A (en) * | 2004-11-26 | 2006-06-15 | Yazaki Corp | Device for supporting optical path length setting, and concentration measuring system |
JP2010112961A (en) * | 1998-11-20 | 2010-05-20 | Waters Investments Ltd | Flow cell |
JP2011022083A (en) * | 2009-07-17 | 2011-02-03 | Fuji Clean Co Ltd | Water quality sensor, waste water treating device, and waste water treating system |
WO2011102315A1 (en) * | 2010-02-16 | 2011-08-25 | 浜松ホトニクス株式会社 | Gas concentration calculation device, gas concentration measurement module, and light detector |
JP2011169633A (en) * | 2010-02-16 | 2011-09-01 | Hamamatsu Photonics Kk | Gas concentration calculation device and gas concentration measurement module |
JP2011174852A (en) * | 2010-02-25 | 2011-09-08 | Nippon Instrument Kk | Mercury atomic absorption spectrometer and mercury analyzing system |
WO2017144607A1 (en) * | 2016-02-23 | 2017-08-31 | Ge Healthcare Bio-Sciences Ab | A method and a measuring device for measuring the absorbance of a substance in at least one solution |
CN110426359A (en) * | 2019-08-09 | 2019-11-08 | 山东省科学院海洋仪器仪表研究所 | A kind of detection device and method of concentration self-adapting seawater total nitrogen/total phosphorus |
-
1996
- 1996-04-17 JP JP9497696A patent/JPH09281034A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010112961A (en) * | 1998-11-20 | 2010-05-20 | Waters Investments Ltd | Flow cell |
JP2006153543A (en) * | 2004-11-26 | 2006-06-15 | Yazaki Corp | Device for supporting optical path length setting, and concentration measuring system |
JP4641410B2 (en) * | 2004-11-26 | 2011-03-02 | 矢崎総業株式会社 | Optical path length setting support device and concentration measurement system |
JP2011022083A (en) * | 2009-07-17 | 2011-02-03 | Fuji Clean Co Ltd | Water quality sensor, waste water treating device, and waste water treating system |
WO2011102315A1 (en) * | 2010-02-16 | 2011-08-25 | 浜松ホトニクス株式会社 | Gas concentration calculation device, gas concentration measurement module, and light detector |
JP2011169633A (en) * | 2010-02-16 | 2011-09-01 | Hamamatsu Photonics Kk | Gas concentration calculation device and gas concentration measurement module |
JP2011174852A (en) * | 2010-02-25 | 2011-09-08 | Nippon Instrument Kk | Mercury atomic absorption spectrometer and mercury analyzing system |
WO2017144607A1 (en) * | 2016-02-23 | 2017-08-31 | Ge Healthcare Bio-Sciences Ab | A method and a measuring device for measuring the absorbance of a substance in at least one solution |
US11499913B2 (en) | 2016-02-23 | 2022-11-15 | Cytiva Sweden Ab | Method and device for measuring absorbance of a substance in solution with multiple light rays |
CN110426359A (en) * | 2019-08-09 | 2019-11-08 | 山东省科学院海洋仪器仪表研究所 | A kind of detection device and method of concentration self-adapting seawater total nitrogen/total phosphorus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3306079B2 (en) | Optical analyzer and calibration method thereof | |
CA1104370A (en) | Oil concentration detector | |
DE69409009T2 (en) | OPTICAL SENSOR FOR DETECTING CHEMICAL SPECIES | |
US3713743A (en) | Forward scatter optical turbidimeter apparatus | |
US4265535A (en) | Oil-in-water method and detector | |
US6791092B2 (en) | Transmission meter, a method of measuring transmittance and a disinfection apparatus | |
FI75675C (en) | A method for determining the hydrocarbon content of liquids containing its α. | |
JP2520212B2 (en) | Concentration measuring device | |
US20030020907A1 (en) | Methods and systems for controlling the concentration of a component in a composition with absorption spectroscopy | |
CN106226257A (en) | COD on-Line Monitor Device and monitoring method thereof in a kind of water | |
JPH09281034A (en) | Optical concentration measuring apparatus | |
KR920006030B1 (en) | Method for analyzing impurities in liquid and apparatus therefor | |
JPH09273987A (en) | Method and apparatus for measuring particle size, count concentration or turbidity of fine particle in liquid | |
CN110736723A (en) | method and system for online simultaneous detection of low turbidity and high turbidity | |
JP4487197B2 (en) | Turbidity / colorimeter | |
US5672874A (en) | Infrared oil-concentration meter | |
JPH01244341A (en) | Light absorbing type ozone concentration measuring device | |
CN116148200B (en) | Water quality analyzer | |
GB2059574A (en) | Absorption cell gas monitor | |
JP2000146833A (en) | Abnormality detecting method of test water passage in continuous organic pollution monitor | |
US3706497A (en) | Method and apparatus for determining colorimetric concentrations | |
JPH0493638A (en) | Continuous measurement device of low density absorbance | |
JP2953904B2 (en) | Analyzer for silica component in water | |
JP2945050B2 (en) | Method for determining performance degradation of zero gas generator in ozone concentration measurement device | |
JP3139628B2 (en) | Spectrophotometer |