JPH09280946A - Laser-beam measuring apparatus - Google Patents

Laser-beam measuring apparatus

Info

Publication number
JPH09280946A
JPH09280946A JP8115774A JP11577496A JPH09280946A JP H09280946 A JPH09280946 A JP H09280946A JP 8115774 A JP8115774 A JP 8115774A JP 11577496 A JP11577496 A JP 11577496A JP H09280946 A JPH09280946 A JP H09280946A
Authority
JP
Japan
Prior art keywords
distribution
spatial filter
laser
transmittance
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8115774A
Other languages
Japanese (ja)
Inventor
Yasushi Oki
裕史 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP8115774A priority Critical patent/JPH09280946A/en
Publication of JPH09280946A publication Critical patent/JPH09280946A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a laser-beam measuring apparatus in which stray light is shielded and in which an influence on a laser beam to be measured is reduced to a minimum by using a spatial filter in which the Fourier transform of an optical amplitude transmittance distribution does not take a negative value. SOLUTION: A spatial filter 6 has a Gaussian distribution-shaped optical transmittance distribution in which a Fourier transform does not take a negative value, and its transmittance peak position is made to agree with the intensity peak position of a laser spot 7. In addition, the transmittance of the filter 6 is set in such a way that the transmittance becomes sufficiently low in a position in which a ghost spot 8 is incident. Consequently, stray light due to the rear reflection of a semitransparent mirror 2 can be suppressed sufficiently by the filter 6. The spot 7 which is transmitted through the filter 6 is changed into a parallel beam by a lens 9 so as to be incident on a CCD camera 10. The cross-sectional intensity distribution (the diffraction pattern) of a laser beam which is taken into by the camera 10 is displayed on a monitor 11. Since the filter 6 has the Gaussian distribution-shaped optical transmittance distribution, an undulation is not generated in the diffraction pattern, and high-reliability data is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はレーザー光の断面強
度分布を測定する計測装置に関する。
TECHNICAL FIELD The present invention relates to a measuring device for measuring a cross-sectional intensity distribution of laser light.

【0002】[0002]

【従来の技術】レーザー光は各種の測定装置に用いられ
ているが、最終的に測定する対象は、レーザー光の断面
強度分布であることが多い。レーザー光の断面強度分布
を測定する際には、ハーフミラーの裏面反射など光学系
内の迷光の影響が問題になることがある。この迷光を取
り除くため、従来はレーザー光をレーザースポットに集
光させ、集光位置に微小なピンホールを配置し、このピ
ンホールを通過した光のみを計測していた。迷光がピン
ホールから若干ずれた位置に集光するようにしておけ
ば、これら迷光はピンホールによって遮光される。
2. Description of the Related Art Laser light is used in various measuring devices, but the object to be finally measured is often the cross-sectional intensity distribution of the laser light. When measuring the cross-sectional intensity distribution of laser light, the influence of stray light in the optical system, such as the back reflection of a half mirror, may be a problem. In order to remove this stray light, conventionally, a laser beam was focused on a laser spot, a minute pinhole was arranged at the focusing position, and only the light that passed through this pinhole was measured. If the stray light is condensed at a position slightly displaced from the pinhole, the stray light is blocked by the pinhole.

【0003】[0003]

【発明が解決しようとする課題】しかし最終的に計測し
ようとする対象がレーザービーム断面の強度分布である
場合には、ピンホールの挿入は大きな問題がある。すな
わちピンホールによる回折パターンが、ピンホール通過
後のレーザービーム断面強度分布に重畳されてしまう。
ピンホールの回折パターンの振幅分布は正負の値をとる
ため、これが重畳されることによって、レーザービーム
断面強度分布に細かな周期のうねりが発生し、測定に顕
著な障害となる。したがって本発明は、迷光を十分に遮
光することができ、しかも測定しようとするレーザー光
への影響を最小限にとどめることができるレーザー光計
測装置を提供することを課題とする。
However, when the object to be finally measured is the intensity distribution of the laser beam cross section, there is a big problem in inserting the pinhole. That is, the diffraction pattern due to the pinhole is superimposed on the laser beam cross-sectional intensity distribution after passing through the pinhole.
Since the amplitude distribution of the diffraction pattern of the pinhole has positive and negative values, superposition thereof causes a fine periodic undulation in the laser beam cross-sectional intensity distribution, which is a significant obstacle to measurement. Therefore, it is an object of the present invention to provide a laser beam measuring device capable of sufficiently blocking stray light and minimizing the influence on the laser beam to be measured.

【0004】[0004]

【課題を解決するための手段】上記課題解決のために本
発明では、ピンホールに代えて、光振幅透過率分布のフ
ーリエ変換が負の値を取らない空間フィルタを用いた。
フーリエ変換が負の値を取らない分布としては、例えば
ガウス分布をあげることができる。
In order to solve the above problems, the present invention uses a spatial filter in which the Fourier transform of the optical amplitude transmittance distribution does not take a negative value in place of the pinhole.
A Gaussian distribution can be given as an example of a distribution in which the Fourier transform does not take a negative value.

【0005】次に本発明の原理を図1によって波動光学
的に説明する。空間フィルタに入射する直前でのレーザ
ースポットの振幅分布をu(x,y)とし、空間フィルタ
の振幅透過率分布をp(x,y)とする。空間フィルタを
通過した直後のレーザースポットの振幅分布v(x,y)
は、 v(x,y)=u(x,y)・p(x,y) ‥‥(1) で与えられる。
Next, the principle of the present invention will be described in terms of wave optics with reference to FIG. Let u (x, y) be the amplitude distribution of the laser spot immediately before entering the spatial filter, and p (x, y) be the amplitude transmittance distribution of the spatial filter. Amplitude distribution v (x, y) of the laser spot immediately after passing through the spatial filter
Is given by v (x, y) = u (x, y) .p (x, y) ... (1).

【0006】このスポットの遠視野回折パターンをf
(ξ,η)とすると、f(ξ,η)はv(x,y)のフーリエ変
換で与えられる。したがってフーリエ変換をFTで表す
と、 f(ξ,η)=FT[v(x,y)] =FT[u(x,y)・p(x,y)] =FT[u(x,y)]*FT[p(x,y)] ‥‥(2) となる。ここで記号*は接合積を意味する。また、座標
(ξ,η)は瞳座標で、回折パターン上の位置を、焦点位
置から回折パターン上の各点を結ぶ直線の方向余弦の光
軸に直交する成分で表したものである。
The far-field diffraction pattern of this spot is f
If (ξ, η), f (ξ, η) is given by the Fourier transform of v (x, y). Therefore, when the Fourier transform is expressed by FT, f (ξ, η) = FT [v (x, y)] = FT [u (x, y) · p (x, y)] = FT [u (x, y) )] * FT [p (x, y)] (2) Here, the symbol * means a junction product. Also, coordinates
(ξ, η) is a pupil coordinate and represents the position on the diffraction pattern by a component orthogonal to the optical axis of the direction cosine of the straight line connecting the focal point and each point on the diffraction pattern.

【0007】(2)式より、空間フィルタを通過した後
の回折パターンは、通過前の回折パターンに、空間フィ
ルタのフーリエ変換に相当する分布が接合積の形で重畳
していることがわかる。これによって回折パターンは変
形をうける。
From the equation (2), it can be seen that the diffraction pattern after passing through the spatial filter has a distribution corresponding to the Fourier transform of the spatial filter superimposed on the diffraction pattern before passing in the form of a junction product. This causes the diffraction pattern to be deformed.

【0008】従来例のように空間フィルタが半径aのピ
ンホールである場合、p(x,y)は半径内で1、半径外
で0であるような関数となる。このような関数のフーリ
エ変換は一般に、C,Dを定数、J1を1次のベッセル
関数として、 D・J1[C・(ξ2+η21/2]/[C・(ξ2+η21/2] ‥‥(3) となり、これはほぼ周期的に正負の値をとる関数であ
る。(2)式から明らかなようにこのような場合、回折
パターンには(3)式から決まる周期的なうねりが重畳
され、測定上非常に不都合である。
When the spatial filter is a pinhole having a radius a as in the conventional example, p (x, y) is a function such that it is 1 within the radius and 0 outside the radius. The Fourier transform of such a function is generally D · J 1 [C · (ξ 2 + η 2 ) 1/2 ] / [C · (ξ 2 where C and D are constants and J 1 is a first-order Bessel function. + Η 2 ) 1/2 ] ... (3), which is a function that takes positive and negative values almost periodically. As is clear from the equation (2), in such a case, the periodic undulation determined by the equation (3) is superimposed on the diffraction pattern, which is very inconvenient in measurement.

【0009】ここで空間フィルタをガウス分布状の振幅
透過率を有するものに変えてみる。ガウス分布のフーリ
エ変換はやはりガウス分布であり、かつガウス分布は負
の値を取らない。よって(2)式から明らかなように、
遠視野回折パターンf(ξ,η)における細かな周期的
うねりは発生しない。もちろんこの場合でも、得られる
回折パターンは、空間フィルタがないときのパターンと
厳密に等しくなるわけではない。しかし細かなうねりが
なくなるため、実際の測定においてはデータのばらつき
が激減し、非常に信頼性の高いデータが得られる。
Here, the spatial filter is changed to one having a Gaussian distribution-like amplitude transmittance. The Fourier transform of the Gaussian distribution is also Gaussian, and the Gaussian distribution does not have a negative value. Therefore, as is clear from the equation (2),
No fine periodic waviness occurs in the far-field diffraction pattern f (ξ, η). Of course, even in this case, the obtained diffraction pattern is not exactly equal to the pattern without the spatial filter. However, since the fine undulations are eliminated, the variation in the data in actual measurement is drastically reduced, and highly reliable data can be obtained.

【0010】なお空間フィルタのガウス分布の半値幅w
は、迷光防止が達成できる範囲でできるだけ広くした方
が、本来の回折パターンを変形させる度合いが少なくな
る。またここではガウス分布状の振幅透過率を有する空
間フィルタと述べたが、ガウス分布状の光強度透過率分
布を有する空間フィルタと定義してもまったく同値であ
る。またここではガウス分布状の振幅透過率を有する空
間フィルタを例として説明したが、遠視野回折パターン
f(ξ,η)における細かな周期的うねりを防止するた
めには、必ずしもガウス分布に限定されず、光振幅透過
率分布のフーリエ変換が負の値を取らなければよい。
The half-value width w of the Gaussian distribution of the spatial filter
Is less likely to deform the original diffraction pattern if it is made as wide as possible to prevent stray light. Although the spatial filter having the Gaussian distribution-like amplitude transmittance is described here, the spatial filter having the Gaussian distribution-like light intensity transmittance distribution has the same value. Although the spatial filter having the Gaussian distribution-like amplitude transmittance is described as an example here, in order to prevent a fine periodic undulation in the far-field diffraction pattern f (ξ, η), the spatial filter is not necessarily limited to the Gaussian distribution. First, the Fourier transform of the light amplitude transmittance distribution does not have to take a negative value.

【0011】[0011]

【発明の実施の形態】本発明の実施の形態を説明する。
図2は、試料面で反射したレーザースポットの遠視野回
折パターンを観察する装置に、本発明を適用した一実施
例を示す。レーザー光源1を出たレーザービームは、ハ
ーフミラー2を透過して、対物レンズ3に入射してい
る。対物レンズ3で集光されたレーザービームは、試料
面4上で回折限界のスポットを形成している。試料面4
で回折・反射して戻ってきたレーザービームは、再び対
物レンズ3を通過し、ハーフミラー2の表面で反射した
後、集光レンズ5によって空間フィルタ6上にレーザー
スポット7を形成している。このとき、ハーフミラー2
の裏面で反射した不要なレーザービームもまた集光レン
ズ5に入射し、ゴーストスポット8を生じてしまう。し
かしハーフミラー2の表面と裏面にくさび角θを設けて
おけば、この不要なゴーストスポット8は、空間フィル
タ6上でレーザースポット7とは離れた位置に形成され
る。
Embodiments of the present invention will be described.
FIG. 2 shows an embodiment in which the present invention is applied to an apparatus for observing a far field diffraction pattern of a laser spot reflected on a sample surface. The laser beam emitted from the laser light source 1 passes through the half mirror 2 and enters the objective lens 3. The laser beam focused by the objective lens 3 forms a diffraction-limited spot on the sample surface 4. Sample surface 4
The laser beam diffracted and reflected by the laser beam passes through the objective lens 3 again, is reflected by the surface of the half mirror 2, and then forms a laser spot 7 on the spatial filter 6 by the condenser lens 5. At this time, the half mirror 2
The unnecessary laser beam reflected on the back surface of the laser also enters the condenser lens 5 and produces a ghost spot 8. However, if the wedge angle θ is provided on the front surface and the back surface of the half mirror 2, the unnecessary ghost spot 8 is formed on the spatial filter 6 at a position apart from the laser spot 7.

【0012】空間フィルタ6はガウス分布状の光透過率
分布を有しており、その透過率ピーク位置は、レーザー
スポット7の強度ピーク位置に一致させてある。さらに
空間フィルタ6の透過率は、ゴーストスポット8が入射
する位置においては、十分透過率が低くなるように設定
してある。したがってこの空間フィルタ6により、ハー
フミラーの裏面反射による迷光は十分に抑えられる。空
間フィルタ6を通過したスポット7は、レンズ9で平行
ビームとなり、CCDカメラ10に入射している。CC
Dカメラ10で取り込まれたレーザービームの断面強度
分布(回折パターン)は、モニタ11に表示される。こ
こで空間フィルタ6はガウス分布状の光透過率分布を有
しているため、既述の通り観測される回折パターンには
うねりが発生せず、信頼性の高いデータが得られる。
The spatial filter 6 has a light transmittance distribution in the form of a Gaussian distribution, and its transmittance peak position coincides with the intensity peak position of the laser spot 7. Further, the transmittance of the spatial filter 6 is set to be sufficiently low at the position where the ghost spot 8 is incident. Therefore, the spatial filter 6 can sufficiently suppress the stray light due to the back surface reflection of the half mirror. The spot 7 passing through the spatial filter 6 becomes a parallel beam by the lens 9 and is incident on the CCD camera 10. CC
The cross-sectional intensity distribution (diffraction pattern) of the laser beam captured by the D camera 10 is displayed on the monitor 11. Here, since the spatial filter 6 has a Gaussian distribution-like light transmittance distribution, no waviness occurs in the diffraction pattern observed as described above, and highly reliable data can be obtained.

【0013】次に空間フィルタ6の光透過率分布の広が
りについて説明する。すでに述べたように、空間フィル
タ6のガウス分布広がりが小さくなるほど、回折パター
ンは変形される。空間フィルタ6の光強度透過率半値幅
wが、入射するレーザースポットの強度分布半値幅sよ
りも小さくなると、この変形は甚だしく大きくなり、観
測・測定に支障をきたす。したがって、 s<w となるように形成することが好ましい。
Next, the spread of the light transmittance distribution of the spatial filter 6 will be described. As described above, the smaller the Gaussian distribution spread of the spatial filter 6, the more the diffraction pattern is deformed. If the light intensity transmittance half-width w of the spatial filter 6 becomes smaller than the intensity distribution half-width s of the incident laser spot, this deformation becomes extremely large, which hinders observation and measurement. Therefore, it is preferable to form so that s <w.

【0014】他方、空間フィルタ6の光強度透過率半値
幅wが、入射するレーザースポットの強度分布半値幅s
よりも甚だしく大きくなると、迷光防止の機能が低下し
てしまう。ここで再びピンホールを用いた場合を考える
と、回折パターンに発生するうねりの数は、およそピン
ホール直径2aをレーザースポット径sで割った値2a
/sになる。したがって通常の2次元CCDカメラの画
素数から考えて、この値2a/sが500を越えれば、
解像力の関係上影響は出なくなると考えられる。すなわ
ち、このような場合には、ピンホールを用いても観測・
測定にうねりによる不都合は生じない。したがってガウ
ス分布型の空間フィルタ6を用いる必要があるのは、 w/s<500 の場合であるといえる。
On the other hand, the half width w of the light intensity transmittance of the spatial filter 6 is the half width s of the intensity distribution of the incident laser spot.
If it is much larger than this, the function of preventing stray light will deteriorate. Considering again the case of using the pinhole, the number of undulations generated in the diffraction pattern is approximately 2a obtained by dividing the pinhole diameter 2a by the laser spot diameter s.
/ S. Therefore, considering the number of pixels of a normal two-dimensional CCD camera, if this value 2a / s exceeds 500,
It is considered that there will be no effect due to the relationship of resolution. In other words, in such a case, observation /
Inconvenience due to undulation does not occur in measurement. Therefore, it can be said that it is necessary to use the Gaussian distribution type spatial filter 6 when w / s <500.

【0015】よって本発明によるガウス分布空間フィル
タ6が効果的なのは、光強度透過率半値幅wが、入射す
るレーザースポット7の強度分布半値幅sの1〜500
倍の範囲、すなわち、 s<w<500s であると結論できる。もちろん、ゴーストスポット8の
位置により、この範囲で適当な大きさを見つけることが
好ましい。
Therefore, the Gaussian distribution spatial filter 6 according to the present invention is effective in that the light intensity transmittance half width w is 1 to 500 of the intensity distribution half width s of the incident laser spot 7.
It can be concluded that there is a double range, ie, s <w <500s. Of course, it is preferable to find an appropriate size in this range depending on the position of the ghost spot 8.

【0016】[0016]

【発明の効果】以上の通り本発明によれば、迷光を十分
に遮光することができ、しかも測定しようとするレーザ
ー光への影響を最小限にとどめることができるレーザー
光計測装置が得られる。
As described above, according to the present invention, it is possible to obtain a laser beam measuring device capable of sufficiently shielding stray light and minimizing the influence on the laser beam to be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理を示す説明図FIG. 1 is an explanatory diagram showing the principle of the present invention.

【図2】本発明の一実施例を示す構成図FIG. 2 is a configuration diagram showing one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…レーザー光源 2…ハーフミラー 3…対物レンズ 4…試料面 5…集光レンズ 6…空間フィルタ 7…レーザースポット 8…ゴーストスポッ
ト 9…レンズ 10…CCDカメラ 11…モニタ
1 ... Laser light source 2 ... Half mirror 3 ... Objective lens 4 ... Sample surface 5 ... Condensing lens 6 ... Spatial filter 7 ... Laser spot 8 ... Ghost spot 9 ... Lens 10 ... CCD camera 11 ... Monitor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】レーザー光の集光位置に空間フィルタを配
置し、該空間フィルタを透過した後の集束光束若しくは
発散光束又は平行光束の断面強度分布を測定するレーザ
ー光計測装置において、 前記空間フィルタとして、光振幅透過率分布のフーリエ
変換が負の値を取らない空間フィルタを用いたことを特
徴とするレーザー光計測装置。
1. A laser beam measuring apparatus, wherein a spatial filter is arranged at a position where a laser beam is focused, and a cross-sectional intensity distribution of a focused beam, a divergent beam or a parallel beam after passing through the spatial filter is measured. As a laser beam measuring device, a spatial filter that does not take a negative value in the Fourier transform of the optical amplitude transmittance distribution is used.
【請求項2】前記空間フィルタは、光振幅透過率がガウ
ス分布状に分布するものである、請求項1記載のレーザ
ー光計測装置。
2. The laser light measuring device according to claim 1, wherein the spatial filter has a light amplitude transmittance distributed in a Gaussian distribution.
【請求項3】前記集光位置におけるレーザースポットの
強度分布の半値幅をsとし、前記空間フィルタの光振幅
透過率の半値幅をwとしたとき、 s<w<500s となるように形成した、請求項1又は2記載のレーザー
光計測装置。
3. When the full width at half maximum of the intensity distribution of the laser spot at the focus position is s and the full width at half maximum of the optical amplitude transmittance of the spatial filter is w, it is formed so that s <w <500s. The laser light measuring device according to claim 1 or 2.
JP8115774A 1996-04-11 1996-04-11 Laser-beam measuring apparatus Pending JPH09280946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8115774A JPH09280946A (en) 1996-04-11 1996-04-11 Laser-beam measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8115774A JPH09280946A (en) 1996-04-11 1996-04-11 Laser-beam measuring apparatus

Publications (1)

Publication Number Publication Date
JPH09280946A true JPH09280946A (en) 1997-10-31

Family

ID=14670732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8115774A Pending JPH09280946A (en) 1996-04-11 1996-04-11 Laser-beam measuring apparatus

Country Status (1)

Country Link
JP (1) JPH09280946A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107356197A (en) * 2016-05-09 2017-11-17 南京理工大学 A kind of spot location method of four-quadrant photo detector based on Gaussian Profile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107356197A (en) * 2016-05-09 2017-11-17 南京理工大学 A kind of spot location method of four-quadrant photo detector based on Gaussian Profile
CN107356197B (en) * 2016-05-09 2019-10-18 南京理工大学 A kind of spot location method of the four-quadrant photo detector based on Gaussian Profile

Similar Documents

Publication Publication Date Title
JP2946466B2 (en) Microscopy method and apparatus
JP5170084B2 (en) 3D microscope and 3D image acquisition method
US8089620B2 (en) Method for measuring optical characteristics of diffraction optical element and apparatus for measuring optical characteristics of diffraction optical element
EP0476931B1 (en) Phase shift device and laser apparatus utilizing the same
EP3100011B1 (en) Beam propagation camera and method for light beam analysis
KR20050119672A (en) Apparatus and method for joint measurement of fields of scattered/reflected or transmitted orthogonally polarized beams by an object in interferometry
JPH05203878A (en) Scanning type laser microscope
JPH0723844B2 (en) Surface shape measuring instrument
US20020159070A1 (en) Method and apparatus for measuring diameter, distribution and so forth of micro gas bubbles and micro liquid droplets and optical system for measuring diameter, distribution and so forth of micro bubbles and micro liquid drop
EP0981776B1 (en) High resolution confocal microscope
JP2022528003A (en) Methods and devices for detecting displacement of a sample with respect to an objective lens
JP4582762B2 (en) Microscope observation method and microscope for using the same
JPH09280946A (en) Laser-beam measuring apparatus
US8520191B2 (en) Slit aperture for diffraction range finding system
JPH095046A (en) Three-dimensional shape measuring apparatus
JPS5845526A (en) Talbot interferometer
EP0901639B1 (en) Method and device for determining the direction in which an object is located
JP3217097B2 (en) High resolution microscope
US20100110445A1 (en) Slit aperture for diffraction range finding system and method for using the slit aperture to form a focused image
JP2886691B2 (en) Confocal laser scanning microscope
JPH04204032A (en) Lens optical performance measuring device
JPH0827431B2 (en) Scanning optical microscope
JP3267706B2 (en) Optical joint conversion correlator
JP2005147966A (en) Interferometer and pinhole plate
JPS60177207A (en) Strain measuring device