JPH09280868A - Tuning fork type angular velocity detection sensor - Google Patents

Tuning fork type angular velocity detection sensor

Info

Publication number
JPH09280868A
JPH09280868A JP8095120A JP9512096A JPH09280868A JP H09280868 A JPH09280868 A JP H09280868A JP 8095120 A JP8095120 A JP 8095120A JP 9512096 A JP9512096 A JP 9512096A JP H09280868 A JPH09280868 A JP H09280868A
Authority
JP
Japan
Prior art keywords
electrode
detection
leg
tuning fork
fork type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8095120A
Other languages
Japanese (ja)
Other versions
JP3665131B2 (en
Inventor
Motoyasu Hanji
元康 判治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP09512096A priority Critical patent/JP3665131B2/en
Publication of JPH09280868A publication Critical patent/JPH09280868A/en
Application granted granted Critical
Publication of JP3665131B2 publication Critical patent/JP3665131B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently obtain a large detection signal by juxtaposing an excitation electrode and a detection electrode in a same distance on one leg of tuning fork type oscillators at least making the neighborhood of the slide edge of a leg part as a starting point, and performing excitation and detection in the neighborhood of the slide edge where distortion is the largest. SOLUTION: A first excitation electrode 5 and a first detection electrode 7 are juxtaposed in a same distance making the neighborhood of the slide edge of a leg part 4-1 of a crystal oscillator as a starting point. A second excitation electrode 6 and a second detection electrode 8 are juxtaposed in a same distance making the neighborhood of the side edge of a leg part 4-2 as a starting point. Then, the leg parts 4-1 and 4-2 vibrate right and left when applying an alternating voltage. When a turning angle velocity acts around the direction of the expansion and contraction, the Coriolis force produces a vibrational component in the orthogonal direction, and voltage signal is obtained corresponding to the Coriolis force, and the signal value makes it possible tow know a size of the turning angle velocity acting around the direction of the expansion and the contraction by the size. Since the electrodes 5 and 6 are formed near the slide edge, a detection signal is obtained in a sufficient size.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、励振電極に交流
電圧を印加することによって音叉型振動子が振動してい
る時、音叉型振動子の脚部の伸縮方向の回りに作用する
回転角速度の大きさとその回転方向を、検出電極に生ず
る電圧信号の大きさと、励振振動信号との位相比較によ
り検出する音叉型角速度検出センサに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotational angular velocity that acts around the extension and contraction direction of a leg portion of a tuning fork type vibrator when the tuning fork type vibrator vibrates by applying an AC voltage to an excitation electrode. The present invention relates to a tuning fork type angular velocity detection sensor for detecting the magnitude and its rotation direction by comparing the magnitude of a voltage signal generated in a detection electrode and a phase of an excitation vibration signal.

【0002】[0002]

【従来の技術】所定方向に沿って振動している振動子、
例えば直交座標軸平面(X−Z平面)におけるX軸に沿
って振動している振動子がこのX−Z平面と直交するY
軸の回りに回転すると、その回転角速度により振動子に
Z軸方向にコリオリの力が生じる。このコリオリの力は
角速度の大きさに比例して定まることから、コリオリの
力を振動子の撓み変位量として間接的に、或いは歪量と
して圧電素子の圧電効果、歪ゲージの抵抗変化などで直
接的に測定すれば、振動子のY軸方向の回りに作用した
回転角速度の大きさを求めることができる。このため、
振動する振動子を角速度検出素子として車両や航空機等
に搭載し、その走行或いは飛行軌跡を記録したり旋回時
に発生するヨーレイトを検出することが行われている。
また、この角速度検出素子をロボットに搭載して、その
姿勢制御等にも応用されている。
2. Description of the Related Art A vibrator vibrating along a predetermined direction,
For example, a vibrator vibrating along the X axis in the orthogonal coordinate plane (XZ plane) is orthogonal to the XZ plane.
When rotating about the axis, the Coriolis force is generated in the Z-axis direction on the vibrator due to the rotation angular velocity. Since the Coriolis force is determined in proportion to the magnitude of the angular velocity, the Coriolis force is indirectly used as the bending displacement amount of the vibrator, or directly as the strain amount by the piezoelectric effect of the piezoelectric element or the resistance change of the strain gauge. If it is measured, the magnitude of the rotational angular velocity acting around the Y-axis direction of the vibrator can be obtained. For this reason,
2. Description of the Related Art A vibrating vibrator is mounted on a vehicle, an aircraft, or the like as an angular velocity detecting element, and its running or flight trajectory is recorded, and yaw rate generated at the time of turning is detected.
Further, the angular velocity detecting element is mounted on a robot, and is applied to attitude control and the like.

【0003】図5は音叉型水晶振動子を用いた従来の音
叉型角速度検出センサの要部を示す図である。同図にお
いて、(a)は平面図、(b)は同図(a)をA方向か
ら見た図である。図5において、1は音叉型水晶振動
子、2−1〜2−4は励振電極、3−1〜3−4は検出
電極であり、励振電極2−1〜2−4は水晶振動子1の
一方の脚部1−1の先端の上下および左右の面に、検出
電極3−1〜3−4は水晶振動子1の他方の脚部1−2
の先端の左右の面に形成されている。
FIG. 5 is a diagram showing a main part of a conventional tuning fork type angular velocity detection sensor using a tuning fork type crystal oscillator. In the figure, (a) is a plan view and (b) is a view of FIG. In FIG. 5, 1 is a tuning fork type crystal oscillator, 2-1 to 2-4 are excitation electrodes, 3-1 to 3-4 are detection electrodes, and excitation electrodes 2-1 to 2-4 are crystal oscillators 1. The detection electrodes 3-1 to 3-4 are provided on the upper, lower, left, and right surfaces of the tip of the one leg 1-1 and the other leg 1-2 of the crystal unit 1 is provided.
Are formed on the left and right surfaces of the tip of the.

【0004】この音叉型角速度検出センサにおいては、
励振電極2−1と2−3とが端子P1に共通に接続さ
れ、励振電極2−2と2−4とが端子P2に共通に接続
され、この端子P1とP2との間に交流電圧が印加され
る。このため、ある時は図5(b)中に矢印で示す如く
電界が発生し、次には逆方向の電界が発生することによ
り、水晶振動子1の一方の脚部1−1が、更に他方の脚
部1−2も連動して、左右に振動する。
In this tuning fork type angular velocity detection sensor,
The excitation electrodes 2-1 and 2-3 are commonly connected to the terminal P1, the excitation electrodes 2-2 and 2-4 are commonly connected to the terminal P2, and an AC voltage is applied between the terminals P1 and P2. Is applied. Therefore, at some time, an electric field is generated as shown by an arrow in FIG. 5B, and then an electric field in the opposite direction is generated. The other leg 1-2 also interlocks and vibrates left and right.

【0005】ここで、脚部1−1,1−2の振動方向を
X軸方向、このX軸方向と直交する紙面内の方向、すな
わち脚部1−1,1−2の伸縮方向をY軸方向、このX
−Y平面と直交する方向(水晶振動子1の板面に垂直な
方向)をZ軸方向とした場合、Y軸方向の回りに回転角
速度が作用すると、コリオリの力によりZ軸方向の振動
成分が生じる。この振動成分の大きさはコリオリの力に
比例しているので、水晶振動子1の他方の脚部1−2に
は回転角速度に比例した大きさで振動の方向に応じた極
の電荷が発生する。
Here, the vibration direction of the leg portions 1-1 and 1-2 is the X-axis direction, and the direction within the plane of the drawing orthogonal to the X-axis direction, that is, the expansion / contraction direction of the leg portions 1-1 and 1-2 is Y. Axial direction, this X
When the direction orthogonal to the -Y plane (the direction perpendicular to the plate surface of the crystal unit 1) is the Z-axis direction, when the rotational angular velocity acts around the Y-axis direction, the Coriolis force causes the vibration component in the Z-axis direction. Occurs. Since the magnitude of this vibration component is proportional to the Coriolis force, the other leg 1-2 of the crystal resonator 1 has a magnitude proportional to the rotational angular velocity and a polar charge corresponding to the direction of vibration is generated. To do.

【0006】これにより、検出電極3−1と3−4とを
共通に接続した端子P3と、検出電極3−2と3−3と
を共通に接続した端子P4との間に、ある時には矢印の
方向、次には逆方向の電荷が発生し、コリオリの力に応
じた電圧信号eが得られる。この電圧信号eの大きさに
よって、Y軸方向の回りに作用する回転角速度の大きさ
を知ることができる。また、この電圧信号eは基本的に
サインカーブとして得られ、この電圧信号eの波形と励
振波形とを位相比較することにより、その位相の進み遅
れで回転角速度の方向を知ることができる。
As a result, between the terminal P3 commonly connecting the detection electrodes 3-1 and 3-4 and the terminal P4 commonly connecting the detection electrodes 3-2 and 3-3, there is an arrow when present. , And then in the opposite direction, a voltage signal e corresponding to the Coriolis force is obtained. From the magnitude of the voltage signal e, the magnitude of the rotational angular velocity acting around the Y-axis direction can be known. Further, the voltage signal e is basically obtained as a sine curve, and by comparing the waveform of the voltage signal e and the excitation waveform in phase, the direction of the rotational angular velocity can be known from the advance or delay of the phase.

【0007】なお、端子P1とP2との間に印加される
交流電圧の振幅は、図示せぬ温度補償回路によって、温
度変化により素子の諸定数、振動姿態が変化しても、一
定の振幅に保たれる。また、端子P1とP2との間に印
加される交流電圧に対して、端子P3とP4との間に得
られる電圧信号eは桁違いに小さい。
The amplitude of the AC voltage applied between the terminals P1 and P2 has a constant amplitude by a temperature compensating circuit (not shown) even if the constants of the element and the vibration mode change due to temperature changes. To be kept. Further, the voltage signal e obtained between the terminals P3 and P4 is orders of magnitude smaller than the AC voltage applied between the terminals P1 and P2.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の音叉型角速度検出センサによると、水晶振動
子1の一方の脚部1−1の振動(励振)が他方の脚部1
−2に伝わりにくい。このため、端子P3とP4との間
に得られる電圧信号eが小さくなり、充分な大きさの検
出信号が得にくいという問題があった。また、一方の脚
部1−1の振動が他方の脚部1−2に伝わるまでに時間
がかかり、センサとしての立ち上がりが遅いという問題
もあった。
However, according to such a conventional tuning fork type angular velocity detection sensor, the vibration (excitation) of one leg portion 1-1 of the crystal resonator 1 causes the other leg portion 1 to vibrate.
-It's hard to get to -2. Therefore, the voltage signal e obtained between the terminals P3 and P4 becomes small, and there is a problem that it is difficult to obtain a sufficiently large detection signal. In addition, there is a problem that it takes time for the vibration of the one leg 1-1 to be transmitted to the other leg 1-2, so that the sensor rises slowly.

【0009】なお、別のタイプの音叉型角速度検出セン
サとして、図6に示すように、水晶振動子1の一方の脚
部1−1の先端部に励振電極2−1〜2−4を形成し、
脚部1−1の根元部に検出電極3−1〜3−4を形成し
たセンサがある。しかし、この音叉型角速度検出センサ
では、小型化した場合に、脚部1−1に励振電極2−1
〜2−4と検出電極3−1〜3−4を構成するのが難し
い。また、励振電極2−1〜2−4が脚部1−1の先端
部に配置されるので、脚部1−1を振動させにくく、充
分な大きさの検出信号が得にくい。
As another type of tuning fork type angular velocity detection sensor, as shown in FIG. 6, excitation electrodes 2-1 to 2-4 are formed at the tip of one leg 1-1 of the crystal unit 1. Then
There is a sensor in which detection electrodes 3-1 to 3-4 are formed at the root of the leg 1-1. However, in this tuning fork type angular velocity detection sensor, when the size is reduced, the excitation electrode 2-1 is attached to the leg portion 1-1.
2-4 and the detection electrodes 3-1 to 3-4 are difficult to configure. Further, since the excitation electrodes 2-1 to 2-4 are arranged at the tip of the leg portion 1-1, it is difficult to vibrate the leg portion 1-1 and it is difficult to obtain a detection signal having a sufficient magnitude.

【0010】また、図6に示した音叉型角速度検出セン
サに対し、水晶振動子1の一方の脚部1−1の先端部に
検出電極3−1〜3−4を形成し、脚部1−1の根元部
に励振電極2−1〜2−4を形成することが考えられ
る。この場合、励振電極2−1〜2−4が脚部1−1の
滑動端Sの付近に形成されるため、脚部1−1を振動さ
せ易くなる。しかし、この場合、滑動端Sの付近が最も
歪が大きいのに対し、脚部1−1の先端部の歪は小さ
く、充分な大きさの検出信号を得ることができない。
Further, in the tuning fork type angular velocity detection sensor shown in FIG. 6, detection electrodes 3-1 to 3-4 are formed at the tip of one leg portion 1-1 of the crystal unit 1 to form the leg portion 1. It is conceivable to form the excitation electrodes 2-1 to 2-4 at the root of -1. In this case, since the excitation electrodes 2-1 to 2-4 are formed near the sliding end S of the leg portion 1-1, the leg portion 1-1 can be easily vibrated. However, in this case, the distortion is greatest near the sliding end S, whereas the distortion at the tip of the leg 1-1 is small, and a sufficiently large detection signal cannot be obtained.

【0011】本発明はこのような課題を解決するために
なされたもので、その目的とするところは、充分な大き
さの検出信号を得ることのできる、またセンサとしての
立ち上がりが速く、小型化も容易に可能な、音叉型角速
度検出センサを提供することにある。
The present invention has been made in order to solve such a problem, and an object thereof is to obtain a detection signal having a sufficiently large size, and to have a quick start-up as a sensor and to reduce the size. It is another object of the present invention to provide a tuning fork type angular velocity detection sensor that can be easily performed.

【0012】[0012]

【課題を解決するための手段】このような目的を達成す
るために、第1発明(請求項1に係る発明)は、音叉型
振動子の少なくとも一方の脚部に、その脚部の滑動端付
近を出発点として励振電極と検出電極とを同一距離内に
並置して形成したものである。この発明によれば、最も
歪が大きい脚部の滑動端付近を出発点として、励振電極
と検出電極とが同一距離内に並置され、効率よく大きな
検出信号が得られる。
In order to achieve such an object, a first invention (an invention according to claim 1) is that at least one leg portion of a tuning fork type vibrator is provided with a sliding end of the leg portion. The excitation electrode and the detection electrode are formed side by side within the same distance with the vicinity as a starting point. According to the present invention, the excitation electrode and the detection electrode are juxtaposed in the same distance with the vicinity of the sliding end of the leg portion having the largest strain as a starting point, and a large detection signal can be efficiently obtained.

【0013】第2発明(請求項2に係る発明)は、第1
発明において、励振電極と検出電極との間にグランド電
極を形成したものである。この発明によれば、励振電極
と検出電極との間がグランド電極によってインシュレー
トされ、両者間の電気的な漏れ(クロストーク)とノイ
ズが抑制される。
The second invention (the invention according to claim 2) is the first invention.
In the invention, the ground electrode is formed between the excitation electrode and the detection electrode. According to this invention, the excitation electrode and the detection electrode are insulated by the ground electrode, and electrical leakage (crosstalk) and noise between them are suppressed.

【0014】第3発明(請求項3に係る発明)は、音叉
型振動子の一方の脚部に、その脚部の滑動端付近を出発
点として第1の励振電極と第1の検出電極とを同一距離
内に並置して形成し、他方の脚部に、その脚部の滑動端
付近を出発点として第2の励振電極と第2の検出電極と
を同一距離内に並置して形成したものである。この発明
によれば、一方の脚部の最も歪が大きい滑動端付近を出
発点として、第1の励振電極と第1の検出電極とが同一
距離内に並置され、また、他方の脚部の最も歪が大きい
滑動端付近を出発点として、第2の励振電極と第2の検
出電極とが同一距離内に並置され、効率よく大きな検出
信号が得られる。
According to a third aspect of the present invention (the invention according to claim 3), the first excitation electrode and the first detection electrode are provided on one leg of the tuning fork type vibrator with the vicinity of the sliding end of the leg as a starting point. Are juxtaposed within the same distance, and the second excitation electrode and the second detection electrode are juxtaposed within the same distance on the other leg, with the vicinity of the sliding end of the leg being the starting point. It is a thing. According to the present invention, the first excitation electrode and the first detection electrode are juxtaposed within the same distance, with the vicinity of the sliding end having the largest strain of one leg as a starting point, and the other leg of the other leg. The second excitation electrode and the second detection electrode are juxtaposed in the same distance with the vicinity of the sliding end having the largest strain as a starting point, and a large detection signal can be efficiently obtained.

【0015】第4発明(請求項4に係る発明)は、第3
発明において、第1の励振電極と第1の検出電極との間
に第1のグランド電極を形成し、第2の励振電極と第2
の検出電極との間に第2のグランド電極を形成し、第1
のグランド電極を一方の脚部の先端部に形成した第1の
バランス電極に接続し、第2のグランド電極を他方の脚
部の先端部に形成した第2のバランス電極に接続したも
のである。
The fourth invention (the invention according to claim 4) is the third invention.
In the invention, the first ground electrode is formed between the first excitation electrode and the first detection electrode, and the second excitation electrode and the second ground electrode are formed.
Forming a second ground electrode between the detection electrode and the first
Is connected to the first balance electrode formed at the tip of one leg, and the second ground electrode is connected to the second balance electrode formed at the tip of the other leg. .

【0016】この発明によれば、第1の励振電極と第1
の検出電極との間が第1のグランド電極によってインシ
ュレートされ、また第2の励振電極と第2の検出電極と
の間が第2のグランド電極によってインシュレートさ
れ、両者間の電気的な漏れ(クロストーク)とノイズが
抑制される。また、第1および第2のバランス電極の面
積や厚さ等を調整することにより、一方の脚部と他方の
脚部との質量バランスの調整を行うことが可能となる。
According to the present invention, the first excitation electrode and the first excitation electrode
Between the second detection electrode and the second detection electrode is insulated by the first ground electrode, and between the second excitation electrode and the second detection electrode is insulated by the second ground electrode. (Crosstalk) and noise are suppressed. In addition, by adjusting the areas and thicknesses of the first and second balance electrodes, it is possible to adjust the mass balance between one leg and the other leg.

【0017】第5発明(請求項5に係る発明)は、第1
発明、第3発明において、励振電極と検出電極とを、脚
部の全長をLとしたとき、脚部の滑動端付近を出発点と
して0.4L〜0.6Lの間に並置して形成したもので
ある。この発明によれば、最も歪が大きい脚部の滑動端
付近を出発点として、励振電極と検出電極とが0.4L
〜0.6Lの間に並置され、2次モード振動を抑圧した
充分な大きさの検出信号が得られる。
The fifth invention (the invention according to claim 5) is the first
In the invention and the third invention, the excitation electrode and the detection electrode are formed side by side between 0.4L and 0.6L with the vicinity of the sliding end of the leg as a starting point, where L is the total length of the leg. It is a thing. According to the present invention, the excitation electrode and the detection electrode are 0.4 L apart from the sliding end of the leg portion having the largest strain as a starting point.
They are juxtaposed between .about.0.6 L, and a sufficiently large detection signal in which the secondary mode vibration is suppressed can be obtained.

【0018】[0018]

【発明の実施の形態】以下、本発明を実施の形態に基づ
き詳細に説明する。図1はこの発明の一実施の形態を示
す音叉型角速度検出センサの要部を示す図であり、同図
(a)は平面図、同図(b)は左側面図、同図(c)は
右側面図、同図(d)は同図(a)を裏面側から見た図
である。図2は図1(a)におけるII−II線断面図であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail based on embodiments. FIG. 1 is a diagram showing a main part of a tuning fork type angular velocity detection sensor showing an embodiment of the present invention. FIG. 1 (a) is a plan view, FIG. 1 (b) is a left side view, and FIG. 1 (c). Is a right side view, and FIG. 6D is a view of FIG. FIG. 2 is a sectional view taken along line II-II in FIG.

【0019】これらの図において、4は音叉型水晶振動
子、5(5−1〜5−3)は第1の励振電極、6(6−
1〜6−3)は第2の励振電極、7(7−1〜7−4)
は第1の検出電極、8(8−1〜8−4)は第2の検出
電極、9(9−1,9−2)は第1のグランド電極、1
0(10−1,10−2)は第2のグランド電極、11
(11−1,11−2)は第1のバランス電極、12
(12−1,12−2)は第2のバランス電極である。
In these figures, 4 is a tuning fork type crystal oscillator, 5 (5-1 to 5-3) are first excitation electrodes, and 6 (6-
1 to 6-3) is a second excitation electrode, 7 (7-1 to 7-4)
Is a first detection electrode, 8 (8-1 to 8-4) is a second detection electrode, 9 (9-1, 9-2) is a first ground electrode, 1
0 (10-1, 10-2) is the second ground electrode, 11
(11-1, 11-2) is the first balance electrode, 12
(12-1, 12-2) are second balance electrodes.

【0020】第1の励振電極5と第1の検出電極7と
は、水晶振動子4の一方の脚部4−1の滑動端S1付近
を出発点として、同一距離L1内に並置して形成されて
いる。また、第2の励振電極6と第2の検出電極8と
は、水晶振動子4の他方の脚部4−2の滑動端S2付近
を出発点として、同一距離L2内に並置して形成されて
いる。この実施の形態では、脚部4−1,4−2の全長
をLとしたとき、L1,L2(L1=L2)が0.4L
〜0.6Lの間とされている。
The first excitation electrode 5 and the first detection electrode 7 are formed side by side within the same distance L1 with the vicinity of the sliding end S1 of one leg 4-1 of the crystal unit 4 as a starting point. Has been done. The second excitation electrode 6 and the second detection electrode 8 are formed side by side within the same distance L2, starting from the vicinity of the sliding end S2 of the other leg 4-2 of the crystal unit 4 as a starting point. ing. In this embodiment, when the total length of the legs 4-1 and 4-2 is L, L1 and L2 (L1 = L2) are 0.4L.
It is set between ~ 0.6L.

【0021】第1の励振電極5において、励振電極5−
1,5−2は脚部4−1の上下の面に、励振電極5−3
は脚部4−1の右側面(内面)に形成されている。第2
の励振電極6において、励振電極6−1,6−2は脚部
4−2の上下の面に、励振電極6−3は脚部4−3の左
側面(内面)に形成されている。
In the first excitation electrode 5, the excitation electrode 5-
1, 5-2 are excitation electrodes 5-3 on the upper and lower surfaces of the leg 4-1.
Is formed on the right side surface (inner surface) of the leg 4-1. Second
In the excitation electrode 6, the excitation electrodes 6-1 and 6-2 are formed on the upper and lower surfaces of the leg portion 4-2, and the excitation electrode 6-3 is formed on the left side surface (inner surface) of the leg portion 4-3.

【0022】第1の検出電極7において、検出電極7−
1,7−4は脚部4−1の上下の面に、検出電極7−
2,7−3は左側面(外面)に形成されている。第2の
検出電極8において、検出電極8−1,8−4は脚部4
−2の上下の面に、検出電極8−2,8−3は右側面
(外面)に形成されている。
In the first detection electrode 7, the detection electrode 7-
1, 7-4 are the detection electrodes 7- on the upper and lower surfaces of the leg 4-1.
2, 7-3 are formed on the left side surface (outer surface). In the second detection electrode 8, the detection electrodes 8-1 and 8-4 are the legs 4
-2, the detection electrodes 8-2 and 8-3 are formed on the right and left surfaces (outer surface).

【0023】第1のグランド電極9において、グランド
電極9−1は脚部4−1の上面かつ励振電極5−1と検
出電極7−1との間に、グランド電極9−2は脚部4−
1の下面かつ励振電極5−2と検出電極7−4との間に
形成されている。第2のグランド電極10において、グ
ランド電極10−1は脚部4−2の上面かつ励振電極6
−1と検出電極8−1との間に、グランド電極10−2
は脚部4−2の下面かつ励振電極6−2と検出電極8−
4との間に形成されている。
In the first ground electrode 9, the ground electrode 9-1 is on the upper surface of the leg 4-1 and between the excitation electrode 5-1 and the detection electrode 7-1, and the ground electrode 9-2 is the leg 4. −
It is formed on the lower surface of No. 1 and between the excitation electrode 5-2 and the detection electrode 7-4. In the second ground electrode 10, the ground electrode 10-1 is the upper surface of the leg 4-2 and the excitation electrode 6
-1 and the detection electrode 8-1, between the ground electrode 10-2
Is the lower surface of the leg 4-2 and the excitation electrode 6-2 and the detection electrode 8-
It is formed between 4 and.

【0024】第1のバランス電極11において、バラン
ス電極11−1は脚部4−1の先端部上面に、バランス
電極11−2は脚部4−1の先端部下面に形成されてい
る。第2のバランス電極12において、バランス電極1
2−1は脚部4−2の先端部上面に、バランス電極12
−2は脚部4−2の先端部下面に形成されている。
In the first balance electrode 11, the balance electrode 11-1 is formed on the upper surface of the tip of the leg 4-1 and the balance electrode 11-2 is formed on the lower surface of the tip of the leg 4-1. In the second balance electrode 12, the balance electrode 1
2-1 is the balance electrode 12 on the upper surface of the tip of the leg 4-2.
-2 is formed on the lower surface of the tip of the leg 4-2.

【0025】図2では各電極の接続関係を分かり易いよ
うに結線図として示している。すなわち、この音叉型角
速度検出センサにおいて、励振用電極5−1と5−2と
6−3とが端子T1(T1U ,T1D )に共通に接続さ
れ、励振用電極6−1と6−2と5−3とが端子T2
(T2U ,T2D )に共通に接続されている。また、検
出用電極7−1と7−3とが端子T3(T3U ,T
D )に共通に接続され、検出用電極7−2と7−4と
が端子T4(T4U ,T4D )に共通に接続され、検出
用電極8−1と8−3とが端子T5(T5U ,T5D
に共通に接続され、検出用電極8−2と8−4とが端子
T6(T6U ,T6D )に共通に接続されている。
In FIG. 2, the connection relationship of each electrode is shown as a connection diagram for easy understanding. That is, in the tuning fork type angular velocity sensor, the excitation electrodes 5-1 5-2 6-3 and are connected in common to the terminal T1 (T1 U, T1 D) , and the excitation electrodes 6-1 6- 2 and 5-3 are terminals T2
(T2 U , T2 D ) are commonly connected. Further, the detecting electrodes 7-1 and 7-3 terminal T3 (T3 U, T
3 D) to be connected to a common, and detection electrodes 7-2 and 7-4 are connected in common to the terminal T4 (T4 U, T4 D) , and the detecting electrodes 8-1 and 8-3 terminal T5 (T5 U , T5 D )
To be connected to a common, and detection electrodes 8-2 and 8-4 are connected in common to the terminal T6 (T6 U, T6 D) .

【0026】また、グランド電極9−1およびバランス
電極11−1とグランド電極9−2およびバランス電極
11−2とが端子T7(T7U ,T7D )に共通に接続
され、グランド電極10−1およびバランス電極12−
1とグランド電極10−2およびバランス電極12−2
とが端子T8(T8U ,T8D )に共通に接続されてい
る。
Further, the ground electrode 9-1 and the balance electrode 11-1 and the ground electrodes 9-2 and balance electrodes 11-2 are commonly connected to the terminal T7 (T7 U, T7 D) , ground electrodes 10-1 And balance electrode 12-
1, the ground electrode 10-2, and the balance electrode 12-2
And are commonly connected to the terminal T8 (T8 U , T8 D ).

【0027】なお、この実施の形態では、励振電極5,
6や検出電極7,8はその厚さを1000〜1500オ
ングストローム、グランド電極9,10やバランス電極
11,12はその厚さを5000オングストローム以上
としている。また、グランド電極9,10はバランス電
極11,12と端子T7,T8とをつなぐリード配線を
兼ねており、バランス電極11,12は大面積とされて
いる。図2では分かり易いように各電極の厚さは同じと
して示している。
In this embodiment, the excitation electrodes 5,
6 and the detection electrodes 7 and 8 have a thickness of 1000 to 1500 angstroms, and the ground electrodes 9 and 10 and the balance electrodes 11 and 12 have a thickness of 5000 angstroms or more. The ground electrodes 9 and 10 also serve as lead wires connecting the balance electrodes 11 and 12 to the terminals T7 and T8, and the balance electrodes 11 and 12 have a large area. In FIG. 2, the thickness of each electrode is shown to be the same for easy understanding.

【0028】この角速度検出センサにおいては、端子T
1とT2との間に交流電圧を印加する。これにより、あ
る時は図2中に矢印で示す如く電界が発生し、次には逆
方向に電界が発生することにより、水晶振動子4の脚部
4−1,4−2が左右に振動する。
In this angular velocity detection sensor, the terminal T
An alternating voltage is applied between 1 and T2. As a result, an electric field is generated as indicated by an arrow in FIG. 2 at one time, and then an electric field is generated in the opposite direction, so that the legs 4-1 and 4-2 of the crystal resonator 4 vibrate to the left and right. To do.

【0029】ここで、脚部4−1,4−2の振動方向を
X1,X2軸方向、このX1,X2軸方向と直交する紙
面内の方向、すなわち脚部4−1,4−2の伸縮方向を
Y1,Y2軸方向、このX−Y平面と直交する方向(水
晶振動子4の板面に垂直な方向)をZ1,Z2軸方向と
した場合、Y1,Y2軸方向の回りに回転角速度が作用
すると、コリオリの力によりZ1,Z2軸方向の振動成
分が生じる。
Here, the vibration directions of the leg portions 4-1 and 4-2 are the X1 and X2 axis directions, and the directions in the plane of the paper orthogonal to the X1 and X2 axis directions, that is, the leg portions 4-1 and 4-2. When the expansion / contraction direction is the Y1 and Y2 axis directions and the direction orthogonal to the XY plane (the direction perpendicular to the plate surface of the crystal unit 4) is the Z1 and Z2 axis directions, the Y1 and Y2 axis directions rotate. When the angular velocity acts, a Coriolis force causes a vibration component in the Z1 and Z2 axis directions.

【0030】この振動成分の大きさはコリオリの力に比
例しているので、水晶振動子4の脚部4−1,4−2に
は回転角速度に比例した大きさで振動の方向に応じた極
の電荷が発生する。これにより、検出電極7−1と7−
3とを共通に接続した端子T3と、検出電極7−2と7
−4とを共通に接続した端子T4との間に、また検出電
極8−1と8−3とを共通に接続した端子T5と、検出
電極8−2と8−4とを共通に接続した端子T6との間
に、ある時には矢印の方向、次には逆方向の電荷が発生
し、コリオリの力に応じた電圧信号e1,e2が得られ
る。
Since the magnitude of this vibration component is proportional to the Coriolis force, the leg portions 4-1 and 4-2 of the crystal unit 4 have a magnitude proportional to the rotational angular velocity and correspond to the direction of vibration. Charge of the pole is generated. Thereby, the detection electrodes 7-1 and 7-
3 is commonly connected to the terminal T3 and the detection electrodes 7-2 and 7
-4 and a terminal T4 commonly connected, and a terminal T5 to which the detection electrodes 8-1 and 8-3 are commonly connected and a detection electrode 8-2 and 8-4 are commonly connected. Charge is generated between the terminal T6 and the terminal T6 in the direction of the arrow and then in the opposite direction at some time, and voltage signals e1 and e2 corresponding to the Coriolis force are obtained.

【0031】この電圧信号e1,e2の大きさによっ
て、Y1,Y2軸方向すなわちY軸方向の回りに作用す
る回転角速度の大きさを知ることができる。また、この
電圧信号e1,e2は基本的にサインカーブとして得ら
れ、この電圧信号e1,e2の波形と励振波形とを位相
比較することにより、その位相の進み遅れで回転角速度
の方向を知ることができる。
From the magnitudes of the voltage signals e1 and e2, the magnitude of the rotational angular velocity acting around the Y1 and Y2 axis directions, that is, around the Y axis direction can be known. Further, the voltage signals e1 and e2 are basically obtained as sine curves, and by comparing the waveforms of the voltage signals e1 and e2 with the excitation waveform, the direction of the rotational angular velocity can be known from the advance or delay of the phase. You can

【0032】この実施の形態では、両方の脚部4−1,
4−2によってY軸方向の回りに作用する回転角速度が
検出されるので、片方の脚部によって検出するようにし
た場合に比べ、その検出感度がアップする。
In this embodiment, both leg parts 4-1 and
Since the rotational angular velocity acting around the Y-axis direction is detected by 4-2, the detection sensitivity thereof is higher than that in the case where it is detected by one leg.

【0033】また、この実施の形態では、励振電極5と
検出電極7とが脚部4−1の滑動端S1付近を出発点と
して、また励振電極6と検出電極8とが脚部4−2の滑
動端S2付近を出発点として、0.4L〜0.6L内に
並置して形成されているので、2次モード振動を抑圧し
た充分な大きさの検出信号を得ることができる。
Further, in this embodiment, the excitation electrode 5 and the detection electrode 7 start from the vicinity of the sliding end S1 of the leg portion 4-1, and the excitation electrode 6 and the detection electrode 8 form the leg portion 4-2. Since they are formed side by side within 0.4L to 0.6L with the vicinity of the sliding end S2 as the starting point, it is possible to obtain a sufficiently large detection signal in which the secondary mode vibration is suppressed.

【0034】すなわち、この実施の形態では、励振電極
5,6が脚部4−1,4−2の滑動端S1,S2の付近
に形成されているため、脚部4−1,4−2を振動させ
易い。また、滑動端S1,S2付近は最も歪が大きく、
この歪の大きい滑動端S1,S2付近でZ1,Z2軸方
向の振動成分を検出するようにしているので、充分な大
きさの検出信号を得ることができる。また、滑動端S
1,S2付近を出発点として励振電極5,6が0.4L
〜0.6L内に形成されているので、2次モード振動の
CI値が基本波振動のCI値よりも大きくなり、2次モ
ード振動を抑圧することができる。なお、この2次モー
ド振動の抑圧については、本出願人による実公昭56−
41387号公報に示されているので、ここでの詳しい
説明は省略する。
That is, in this embodiment, since the excitation electrodes 5 and 6 are formed near the sliding ends S1 and S2 of the legs 4-1 and 4-2, the legs 4-1 and 4-2 are formed. It is easy to vibrate. In addition, the maximum strain is near the sliding ends S1 and S2,
Since the vibration components in the Z1 and Z2 axis directions are detected near the sliding ends S1 and S2 having large distortion, it is possible to obtain a detection signal having a sufficient magnitude. Also, the sliding end S
Exciting electrodes 5 and 6 are 0.4L, starting from around 1, S2
Since it is formed within ˜0.6 L, the CI value of the secondary mode vibration becomes larger than the CI value of the fundamental wave vibration, and the secondary mode vibration can be suppressed. Regarding the suppression of the second-order mode vibration, the applicant of the present invention published in Sho 56-
Since it is disclosed in Japanese Patent No. 41387, detailed description thereof is omitted here.

【0035】また、この実施の形態では、励振電極5と
検出電極7とが脚部4−1に、また励振電極6と検出電
極8とが脚部4−2に並置して形成されているので、す
なわち励振電極と検出電極とが同一箇所に配置されてい
るので、小型化し易く、センサとしての立ち上がりも速
くなる。
Further, in this embodiment, the excitation electrode 5 and the detection electrode 7 are formed side by side on the leg 4-1 and the excitation electrode 6 and the detection electrode 8 are formed side by side on the leg 4-2. Therefore, that is, since the excitation electrode and the detection electrode are arranged at the same location, the size can be easily reduced and the sensor can be started up quickly.

【0036】また、この実施の形態では、励振電極5と
検出電極7との間にグランド電極9が、また励振電極6
と検出電極8との間にグランド電極10が形成されてい
るので、励振電極5と検出電極7との間がグランド電極
9によってインシュレートされ、また励振電極6と検出
電極8との間がグランド電極10によってインシュレー
トされ、両者間の電気的な漏れ(クロストーク)とノイ
ズが抑制される。
In addition, in this embodiment, the ground electrode 9 is provided between the excitation electrode 5 and the detection electrode 7, and the excitation electrode 6 is also provided.
Since the ground electrode 10 is formed between the excitation electrode 5 and the detection electrode 8, the excitation electrode 5 and the detection electrode 7 are insulated by the ground electrode 9, and the excitation electrode 6 and the detection electrode 8 are grounded. It is insulated by the electrode 10, and electrical leakage (crosstalk) and noise between the two are suppressed.

【0037】また、この実施の形態では、脚部4−1,
4−2の先端部に設けたバランス電極11,12の面積
や厚さ等を調整することにより、脚部4−1と脚部4−
2との質量バランスの調整を行うことができ、動作をよ
り安定化することが可能となる。この場合、脚部4−
1,4−2を振動させ、質量バランスの調整を行いなが
ら、バランス電極11,12を形成する方法が考えられ
る。また、バランス電極11,12を形成した後で、脚
部4−1,4−2を振動させながら、電極を部分的に除
去し、質量バランスの調整を行う方法が考えられる。
In addition, in this embodiment, the leg portions 4-1 and
By adjusting the area, thickness, etc. of the balance electrodes 11 and 12 provided at the tip of 4-2, the leg 4-1 and the leg 4-
It is possible to adjust the mass balance with respect to No. 2 and to stabilize the operation. In this case, the leg 4-
A method is conceivable in which the balance electrodes 11 and 12 are formed while vibrating 1, 4-2 and adjusting the mass balance. In addition, after forming the balance electrodes 11 and 12, a method may be considered in which the electrodes are partially removed and the mass balance is adjusted while vibrating the legs 4-1 and 4-2.

【0038】なお、この実施の形態においては、励振電
極5,6を脚部4−1,4−2の内側に検出電極7,8
を外側に形成したが(図3参照)、励振電極5,6を脚
部4−1,4−2の外側に検出電極7,8を内側に形成
するようにしてもよい(図4参照)。この場合、検出電
極7,8を外側に形成するようにした方が、水晶振動子
4が大きく伸縮するので、大きな検出信号が得られる。
また、励振電極5,6を内側に形成するようにした方
が、検出電極7,8を内側に形成するよりも製作が簡単
となる。
In this embodiment, the excitation electrodes 5 and 6 are arranged inside the leg portions 4-1 and 4-2, and the detection electrodes 7 and 8 are arranged inside the leg portions 4-1 and 4-2.
Is formed outside (see FIG. 3), the excitation electrodes 5 and 6 may be formed outside the legs 4-1 and 4-2 and the detection electrodes 7 and 8 may be formed inside (see FIG. 4). . In this case, if the detection electrodes 7 and 8 are formed on the outer side, the crystal oscillator 4 expands and contracts greatly, so that a large detection signal can be obtained.
In addition, forming the excitation electrodes 5 and 6 inside makes the manufacturing easier than forming the detection electrodes 7 and 8 inside.

【0039】すなわち、励振電極5,6を内側に形成す
るようにした場合、励振電極5−3,6−3が脚部4−
1,4−2の内面に位置し、これらの電極は1つの電極
であるので形成し易い。これに対して、検出電極7,8
を内側に形成するようにした場合、検出電極7−2,7
−3,8−2,8−3が脚部4−1,4−2の内面に位
置し、これらの電極は2つの電極であるので形成しにく
い。
That is, when the excitation electrodes 5 and 6 are formed inside, the excitation electrodes 5-3 and 6-3 are connected to the leg portion 4-.
Since these electrodes are located on the inner surfaces of 1 and 4-2 and are one electrode, they are easy to form. On the other hand, the detection electrodes 7 and 8
When the electrodes are formed inside, the detection electrodes 7-2, 7
-3, 8-2, 8-3 are located on the inner surfaces of the legs 4-1 and 4-2, and these electrodes are two electrodes, so it is difficult to form them.

【0040】また、この実施の形態においては、音叉型
振動子として水晶を用いたが、水晶に限られるものでは
ない。例えば、チタン酸バリウムを用いてもよく、種々
の圧電材料の使用が可能である。また、この実施の形態
においては、音叉型振動子を用いたが、H型振動子に応
用することも可能である。また、この実施の形態におい
ては、脚部4−1,4−2のそれぞれに励振電極と検出
電極を形成したが、脚部4−1,4−2の何れか一方に
形成するようにしてもよい。すなわち、必ずしも両方の
脚部を使用しなくてもよく、片方の脚部を使用して回転
角速度の検出を行うようにしてもよい。
In this embodiment, crystal is used as the tuning fork type vibrator, but the crystal is not limited to crystal. For example, barium titanate may be used, and various piezoelectric materials can be used. Further, although the tuning fork type vibrator is used in this embodiment, it can be applied to an H type vibrator. Further, in this embodiment, the excitation electrode and the detection electrode are formed on each of the legs 4-1 and 4-2, but they may be formed on either one of the legs 4-1 and 4-2. Good. That is, it is not always necessary to use both legs, and one leg may be used to detect the rotational angular velocity.

【0041】[0041]

【発明の効果】以上説明したことから明らかなように本
発明によれば、第1発明では、音叉型振動子の少なくと
も一方の脚部に、その脚部の滑動端付近を出発点として
励振電極と検出電極とを同一距離内に並置して形成した
ので、歪の最も大きい滑動端付近で励振と検出が行われ
るようになり、効率よく大きな検出信号が得られるよう
になる。また、センサとしての立ち上がりが速くなり、
小型化も容易に可能となる。
As is apparent from the above description, according to the present invention, in the first invention, at least one leg of the tuning fork vibrator is provided with the excitation electrode with the vicinity of the sliding end of the leg as a starting point. Since the detection electrode and the detection electrode are formed side by side within the same distance, excitation and detection are performed near the sliding end with the largest strain, and a large detection signal can be efficiently obtained. Also, the rise as a sensor becomes faster,
Miniaturization is also possible easily.

【0042】第2発明では、第1発明において、励振電
極と検出電極との間にグランド電極を形成したので、励
振電極と検出電極との間がグランド電極によってインシ
ュレートされ、両者間の電気的な漏れ(クロストーク)
とノイズが抑制されるものとなる。
In the second aspect of the invention, since the ground electrode is formed between the excitation electrode and the detection electrode in the first aspect of the invention, the excitation electrode and the detection electrode are insulated by the ground electrode, and the electrical connection between them is achieved. Leak (crosstalk)
And the noise will be suppressed.

【0043】第3発明では、音叉型振動子の一方の脚部
に、その脚部の滑動端付近を出発点として第1の励振電
極と第1の検出電極とを同一距離内に並置して形成し、
他方の脚部に、その脚部の滑動端付近を出発点として第
2の励振電極と第2の検出電極とを同一距離内に並置し
て形成したので、歪の最も大きい両方の脚部の滑動端付
近で励振と検出が行われるようになり、効率よく大きな
検出信号が得られるようになる。また、センサとしての
立ち上がりが速くなり、小型化も容易に可能となる。ま
た、この発明では、片方の脚部によって回転角速度を検
出する場合に比べ、その検出感度がアップする。
In the third invention, the first excitation electrode and the first detection electrode are juxtaposed in the same distance on one leg of the tuning fork type oscillator with the vicinity of the sliding end of the leg as a starting point. Formed,
Since the second excitation electrode and the second detection electrode are juxtaposed in the same distance on the other leg with the vicinity of the sliding end of the leg as a starting point, both legs having the largest distortion are formed. Excitation and detection are performed near the sliding end, and a large detection signal can be efficiently obtained. Further, the sensor can be quickly started up, and the size can be easily reduced. Further, in the present invention, the detection sensitivity is increased as compared with the case where the rotational angular velocity is detected by one leg.

【0044】第4発明では、第3発明において、第1の
励振電極と第1の検出電極との間に第1のグランド電極
を形成し、第2の励振電極と第2の検出電極との間に第
2のグランド電極を形成し、第1のグランド電極を一方
の脚部の先端部に形成した第1のバランス電極に接続
し、第2のグランド電極を他方の脚部の先端部に形成し
た第2のバランス電極に接続したので、第1の励振電極
と第1の検出電極との間が第1のグランド電極によって
インシュレートされ、第2の励振電極と第2の検出電極
との間が第2のグランド電極によってインシュレートさ
れ、両者間の電気的な漏れ(クロストーク)とノイズが
抑制されるものとなる。また、第1および第2のバラン
ス電極の面積や厚さ等を調整することにより、一方の脚
部と他方の脚部との質量バランスの調整を行うことが可
能となり、動作をより安定化させることができるように
なる。
According to a fourth invention, in the third invention, a first ground electrode is formed between the first excitation electrode and the first detection electrode, and the second excitation electrode and the second detection electrode are formed. A second ground electrode is formed between them, the first ground electrode is connected to the first balance electrode formed at the tip of one leg, and the second ground electrode is connected at the tip of the other leg. Since it is connected to the formed second balance electrode, the space between the first excitation electrode and the first detection electrode is insulated by the first ground electrode, and the connection between the second excitation electrode and the second detection electrode is made. The second ground electrode is insulated by the second ground electrode, and electrical leakage (crosstalk) and noise between the two are suppressed. In addition, by adjusting the areas and thicknesses of the first and second balance electrodes, it is possible to adjust the mass balance between one leg and the other leg, which further stabilizes the operation. Will be able to.

【0045】第5発明では、第1発明、第3発明におい
て、励振電極と検出電極とを、脚部の全長をLとしたと
き、脚部の滑動端付近を出発点として0.4L〜0.6
Lの間に並置して形成したので、2次モード振動を抑圧
した充分な大きさの検出信号を得ることが可能となる。
In the fifth invention, in the first invention and the third invention, when the total length of the legs of the excitation electrode and the detection electrode is L, 0.4L to 0 with the vicinity of the sliding end of the leg as a starting point. .6
Since they are formed side by side between L, it is possible to obtain a detection signal of sufficient magnitude in which the secondary mode vibration is suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施の形態を示す音叉型角速度検
出センサの要部を示す図である。
FIG. 1 is a diagram showing a main part of a tuning fork type angular velocity detection sensor according to an embodiment of the present invention.

【図2】 図1(a)におけるII−II線断面図である。FIG. 2 is a sectional view taken along line II-II in FIG.

【図3】 この音叉型角速度検出センサの各電極の配置
状況を示す斜視図である。
FIG. 3 is a perspective view showing an arrangement state of electrodes of the tuning fork type angular velocity detection sensor.

【図4】 励振電極を脚部の外側に検出電極を脚部の内
側に形成した例を示す斜視図である。
FIG. 4 is a perspective view showing an example in which an excitation electrode is formed outside the leg portion and a detection electrode is formed inside the leg portion.

【図5】 音叉型水晶振動子を用いた従来の音叉型角速
度センサの要部を示す図である。
FIG. 5 is a diagram showing a main part of a conventional tuning fork type angular velocity sensor using a tuning fork type crystal resonator.

【図6】 音叉型水晶振動子を用いた従来の音叉型角速
度センサの別の例を示す図である。
FIG. 6 is a diagram showing another example of a conventional tuning fork type angular velocity sensor using a tuning fork type crystal resonator.

【符号の説明】[Explanation of symbols]

4…音叉型水晶振動子、4−1,4−2…脚部、5(5
−1〜5−3)…第1の励振電極、6(6−1〜6−
3)…第2の励振電極、7(7−1〜7−4)…第1の
検出電極、8(8−1〜8−4)…第2の検出電極、9
(9−1,9−2)…第1のグランド電極、10(10
−1,10−2)…第2のグランド電極、11(11−
1,11−2)…第1のバランス電極、12(12−
1,12−2)…第2のバランス電極。
4 ... Tuning fork type crystal unit, 4-1 and 4-2 ... Legs, 5 (5
-1 to 5-3) ... First excitation electrode, 6 (6-1 to 6-)
3) ... 2nd excitation electrode, 7 (7-1 to 7-4) ... 1st detection electrode, 8 (8-1 to 8-4) ... 2nd detection electrode, 9
(9-1, 9-2) ... First ground electrode, 10 (10
-1, 10-2) ... Second ground electrode, 11 (11-
1, 11-2) ... 1st balance electrode, 12 (12-
1, 12-2) ... Second balance electrode.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 音叉型振動子と、この音叉型振動子の脚
部の少なくとも一方に形成された励振電極および検出電
極とを備え、前記励振電極に交流電圧を印加することに
よって前記音叉型振動子を振動させながら、前記検出電
極に生ずる電圧信号に基づいて前記脚部の伸縮方向の回
りに作用する回転角速度を検出する音叉型角速度検出セ
ンサにおいて、 前記励振電極と前記検出電極とが前記脚部の滑動端付近
を出発点として同一距離内に並置して形成されているこ
とを特徴とする音叉型角速度検出センサ。
1. A tuning fork type vibration device, and an excitation electrode and a detection electrode formed on at least one of legs of the tuning fork type vibration device. The tuning fork type vibration device is provided by applying an AC voltage to the excitation electrode. In a tuning fork type angular velocity detection sensor for detecting a rotational angular velocity acting around the extension and contraction direction of the leg portion based on a voltage signal generated in the detection electrode while vibrating a child, the excitation electrode and the detection electrode are the legs. A tuning fork type angular velocity detection sensor, which is formed by juxtaposing the same at the same distance with the vicinity of the sliding end of the section as a starting point.
【請求項2】 請求項1において、前記励振電極と前記
検出電極との間にグランド電極が形成されていることを
特徴とする音叉型角速度検出センサ。
2. The tuning fork type angular velocity detection sensor according to claim 1, wherein a ground electrode is formed between the excitation electrode and the detection electrode.
【請求項3】 音叉型振動子と、この音叉型振動子の一
方の脚部に形成された第1の励振電極および第1の検出
電極と、前記音叉型振動子の他方の脚部に形成された第
2の励振電極および第2の検出電極とを備え、前記第1
および第2の励振電極に交流電圧を印加することによっ
て前記音叉型振動子を振動させながら、前記第1および
第2の検出電極に生ずる電圧信号に基づいて前記脚部の
伸縮方向の回りに作用する回転角速度を検出する音叉型
角速度検出センサにおいて、 前記第1の励振電極と前記第1の検出電極とが前記一方
の脚部の滑動端付近を出発点として同一距離内に並置し
て形成され、 前記第2の励振電極と前記第2の検出電極とが前記他方
の脚部の滑動端付近を出発点として同一距離内に並置し
て形成されていることを特徴とする音叉型角速度検出セ
ンサ。
3. A tuning fork type oscillator, a first excitation electrode and a first detection electrode formed on one leg of the tuning fork type oscillator, and a second leg of the tuning fork type oscillator. A second excitation electrode and a second detection electrode,
And vibrating the tuning fork type vibrator by applying an AC voltage to the second excitation electrode, and acting around the extension and contraction direction of the leg portion based on the voltage signal generated at the first and second detection electrodes. In the tuning fork type angular velocity detection sensor for detecting the rotational angular velocity, the first excitation electrode and the first detection electrode are formed side by side within the same distance with the vicinity of the sliding end of the one leg as a starting point. A tuning fork type angular velocity detection sensor, wherein the second excitation electrode and the second detection electrode are formed side by side within the same distance with the vicinity of the sliding end of the other leg as a starting point. .
【請求項4】 請求項3において、前記第1の励振電極
と前記第1の検出電極との間に第1のグランド電極が形
成され、前記第2の励振電極と前記第2の検出電極との
間に第2のグランド電極が形成され、前記第1のグラン
ド電極が前記一方の脚部の先端部に形成した第1のバラ
ンス電極に接続され、前記第2のグランド電極が前記他
方の脚部の先端部に形成した第2のバランス電極に接続
されていることを特徴とする音叉型角速度検出センサ。
4. The first ground electrode according to claim 3, wherein a first ground electrode is formed between the first excitation electrode and the first detection electrode, and the second excitation electrode and the second detection electrode are formed. A second ground electrode is formed between them, the first ground electrode is connected to a first balance electrode formed at the tip of the one leg, and the second ground electrode is connected to the other leg. A tuning fork type angular velocity detection sensor, characterized in that the tuning fork type angular velocity detection sensor is connected to a second balance electrode formed at the tip of the section.
【請求項5】 請求項1又は3において、前記励振電極
と前記検出電極とが、前記脚部の全長をLとしたとき、
前記脚部の滑動端付近を出発点として0.4L〜0.6
Lの間に並置して形成されていることを特徴とする音叉
型角速度検出センサ。
5. The excitation electrode and the detection electrode according to claim 1 or 3, wherein the total length of the leg portion is L.
Starting from the vicinity of the sliding ends of the legs, 0.4L to 0.6
A tuning fork type angular velocity detection sensor, which is formed in parallel between L.
JP09512096A 1996-04-17 1996-04-17 Tuning fork type angular velocity detection sensor Expired - Fee Related JP3665131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09512096A JP3665131B2 (en) 1996-04-17 1996-04-17 Tuning fork type angular velocity detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09512096A JP3665131B2 (en) 1996-04-17 1996-04-17 Tuning fork type angular velocity detection sensor

Publications (2)

Publication Number Publication Date
JPH09280868A true JPH09280868A (en) 1997-10-31
JP3665131B2 JP3665131B2 (en) 2005-06-29

Family

ID=14128981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09512096A Expired - Fee Related JP3665131B2 (en) 1996-04-17 1996-04-17 Tuning fork type angular velocity detection sensor

Country Status (1)

Country Link
JP (1) JP3665131B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003052350A1 (en) * 2001-11-27 2003-06-26 Matsushita Electric Industrial Co., Ltd. Thin-film micromachine resonator, thin-film micromachine resonator gyroscope, navigation system using the thin-film micromachine resonator gyroscope, and automobile
JP2006300520A (en) * 2005-04-15 2006-11-02 Nec Tokin Corp Piezoelectric vibration gyroscope
JP2007240540A (en) * 2001-11-27 2007-09-20 Matsushita Electric Ind Co Ltd Thin-film micromechanical resonator gyro
JP2009276356A (en) * 2009-08-25 2009-11-26 Seiko Epson Corp Vibratory gyroscope and its manufacturing method
JP2011203265A (en) * 2011-05-27 2011-10-13 Seiko Epson Corp Manufacturing method of vibrating structure gyroscope

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003052350A1 (en) * 2001-11-27 2003-06-26 Matsushita Electric Industrial Co., Ltd. Thin-film micromachine resonator, thin-film micromachine resonator gyroscope, navigation system using the thin-film micromachine resonator gyroscope, and automobile
US7002284B2 (en) 2001-11-27 2006-02-21 Matsushita Electric Industrial Co., Ltd. Thin-film micromechanical resonator, thin-film micromechanical resonator gyro, and navigation system and automobile using the resonator gyro
JP2007240540A (en) * 2001-11-27 2007-09-20 Matsushita Electric Ind Co Ltd Thin-film micromechanical resonator gyro
JP2006300520A (en) * 2005-04-15 2006-11-02 Nec Tokin Corp Piezoelectric vibration gyroscope
JP2009276356A (en) * 2009-08-25 2009-11-26 Seiko Epson Corp Vibratory gyroscope and its manufacturing method
JP2011203265A (en) * 2011-05-27 2011-10-13 Seiko Epson Corp Manufacturing method of vibrating structure gyroscope

Also Published As

Publication number Publication date
JP3665131B2 (en) 2005-06-29

Similar Documents

Publication Publication Date Title
JP3973742B2 (en) Vibrating gyroscope
JPH1054723A (en) Angular velocity detecting device
JPH1047971A (en) Angular velocity sensor
WO2002018875A1 (en) Angular velocity sensor
WO1998007005A1 (en) Angular velocity detector
JP4693116B2 (en) Angular velocity measurement transducer
JP4449128B2 (en) Angular velocity sensor
US20020100322A1 (en) Vibrating gyroscope and temperature-drift adjusting method therefor
JP2004301734A (en) Inertia sensor
JPH09126783A (en) Piezoelectric vibration gyroscope
US20120024060A1 (en) Element vibrating in two uncoupled modes, and use in vibrating rate gyroscope
JPH09280868A (en) Tuning fork type angular velocity detection sensor
JPH10221084A (en) Vibration type angular velocity sensor
WO2001036910A1 (en) Angular speed sensor
JP3674013B2 (en) Angular velocity detector
JP2004245605A (en) Vibrator and signal generation element for measuring physical quantity
JPH10103961A (en) Temperature characteristic adjusting method for vibration gyroscope
JPH08278141A (en) Ceramic piezoelectric complex type angular velocity sensor
JPH0781865B2 (en) Vibrating gyro
JP2006308359A (en) Inertia sensor element, and manufacturing method of inertia sensor element
JPH0571967A (en) Vibration gyroscope
JP3581992B2 (en) Vibrating gyro
JPH10176917A (en) Contact detection system of touch signal probe
JP3419999B2 (en) Angular velocity sensor
JP2000329561A (en) Angular speed sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees