JPH09279293A - Steel excellent in exhaust gas corrosion resistance - Google Patents

Steel excellent in exhaust gas corrosion resistance

Info

Publication number
JPH09279293A
JPH09279293A JP8092551A JP9255196A JPH09279293A JP H09279293 A JPH09279293 A JP H09279293A JP 8092551 A JP8092551 A JP 8092551A JP 9255196 A JP9255196 A JP 9255196A JP H09279293 A JPH09279293 A JP H09279293A
Authority
JP
Japan
Prior art keywords
steel
corrosion resistance
exhaust gas
less
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8092551A
Other languages
Japanese (ja)
Inventor
Minoru Suwa
稔 諏訪
Hideto Kimura
秀途 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP8092551A priority Critical patent/JPH09279293A/en
Publication of JPH09279293A publication Critical patent/JPH09279293A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a steel having good corrosion resistance to the dew point corrosion by an exhaust gas used for the flue or chimney of a combustion exhaust gas in a thermal power plant or the like using LNG as the main fuel. SOLUTION: This steel has a compsn. contg., by weight, <=0.15% C, <=1.0% Si, <=2.0% Mn, 0.5 to 6% Cr, 0.1 to 1.0% Cu, 0.05 to 1.0% Ni, 0.02 to 1.0% Mo, <=0.1% Al and 0.001 to 0.05% N, furthermore contg., at need, one or >=two kinds among <=0.2% Sb, <=0.1% Sn and <=0.1% Pb, and the balance Fe with inevitable impurities. Furthermore, the steel satisfies the inequality I, DW =0.7Cr+Cu+2Ni+Mo+5Sb+6Sn+5Pb>1.0 and the inequality II, PC=C+Si/30+Mn/20+Cr/ 20+Cu/20+Ni/60+Mo/15+Sb/40+Sn/40+Pb/60<0.4 (where, each elemental symbol denotes the weight% of the element, and the elements not to be added are treated as zero).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、LNGを主燃料と
する火力発電プラント(以下、火力プラントと略す。)
等の燃焼排ガス(以下、排ガスと略す。)の煙道、もし
くは煙突に使用される、排ガスの露点腐食に対して良好
な耐食性を有する鋼に関する。
TECHNICAL FIELD The present invention relates to a thermal power plant using LNG as a main fuel (hereinafter abbreviated as thermal power plant).
The present invention relates to a steel used for a flue of a combustion exhaust gas (hereinafter, abbreviated as exhaust gas) or a chimney and having good corrosion resistance against dew point corrosion of the exhaust gas.

【0002】[0002]

【従来の技術】火力プラント等の排ガス中にはCO2
NOX 、SOX 等が含まれ、これらは水溶液となるとほ
とんどの場合、腐食性の強い酸となる。そのため、排ガ
スが流通する煙突、煙道の構成材料においては、排ガス
中の水分の凝結に伴う露点腐食が問題となっている。
2. Description of the Related Art CO 2 in exhaust gas from a thermal power plant,
NO x , SO x, etc. are contained, and in most cases, when they become an aqueous solution, they become strongly corrosive acids. Therefore, in the constituent materials of the chimney and the flue through which the exhaust gas flows, dew point corrosion due to the condensation of water in the exhaust gas has become a problem.

【0003】これらの排気系、すなわち煙道、煙突およ
び煙ダクト等の排ガスに接する内筒材料の内、特に高い
信頼性を要求される部分には、耐全面腐食性や耐隙間腐
食性の観点から、SUS304等のオーステナイト系ス
テンレス鋼が用いられてきた。
In these exhaust systems, that is, in the inner tube materials that come into contact with exhaust gas such as flues, chimneys, and smoke ducts, particularly high reliability is required in a portion requiring general corrosion resistance or crevice corrosion resistance. Therefore, austenitic stainless steel such as SUS304 has been used.

【0004】また、さらに腐食性の大きい排ガスが流通
する重油専焼ボイラや石炭焚きボイラにおいては、SU
S304鋼以上にCr含有量を高めた、例えば25Cr
オーステテナイト系ステンレス鋼が用いられる場合もあ
る。
Further, in a heavy oil fired boiler or a coal-fired boiler in which an exhaust gas having a higher corrosiveness flows, the SU
Higher Cr content than S304 steel, eg 25Cr
Austenitic stainless steel may also be used.

【0005】一方、最近の火力プラントにおいては、L
NG等の資源量が豊富で、しかも排ガスがクリーンな燃
料の使用が推進される傾向がある。また、従来の燃料を
用いたプラントにおいても環境対策を図る必要性から、
脱硝、脱硫等の設備を備えることも一般化しており、多
くのプラントにおいて結果的にNOX 、SOX 等の有害
成分の量は1000ppm以下に低下している。
On the other hand, in recent thermal power plants, L
There is a tendency to promote the use of fuel that has abundant resources such as NG and has a clean exhaust gas. In addition, because it is necessary to take environmental measures in plants using conventional fuel,
Denitrification, providing the facilities of the desulfurization etc. are also generalized, the amount of harmful components such as results in NO X, SO X in many plants has dropped to 1000ppm or less.

【0006】これらの排ガスが比較的清浄なプラントに
おいては、SUS304等のオーステナイト系ステンレ
ス鋼が有する高い耐食性は必ずしも必要とされておら
ず、例えばSUS430等の17Crフェライト系ステ
ンレス鋼等も用いられている。
In plants where these exhaust gases are relatively clean, the high corrosion resistance of austenitic stainless steel such as SUS304 is not necessarily required, and 17Cr ferritic stainless steel such as SUS430 is also used. .

【0007】また、このような穏やかな腐食環境に使用
可能な材料として、例えば特開平6−192788号公
報、および特開平6−192789号公報には、低C−
低Mn−P−Cu−Ni鋼、および低C−低Mn−Cu
−Ni−Mo鋼が開示されている。
As a material which can be used in such a mild corrosive environment, for example, Japanese Patent Laid-Open Nos. 6-192788 and 6-192789 disclose low C-
Low Mn-P-Cu-Ni steel, and low C-low Mn-Cu
-Ni-Mo steel is disclosed.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、以上に
示された技術の内で、ステンレス鋼は高価である。ま
た、一般的に、オーステナイト系ステンレス鋼には応力
腐食割れの問題があり、これを回避するためには相当の
コストと手間を必要とする。
However, of the techniques presented above, stainless steel is expensive. Further, austenitic stainless steel generally has a problem of stress corrosion cracking, and considerable cost and labor are required to avoid it.

【0009】フェライト系ステンレス鋼も、SUS30
4等のオーステナイト系ステンレス鋼に比較して必ずし
も安価でなく、またこの系のステンレス鋼には溶接部の
低靭性等の欠点もあり、有効な解決策ではない。
Ferritic stainless steel is also SUS30
It is not necessarily cheaper than austenitic stainless steels such as No. 4 and the like, and this type of stainless steel also has drawbacks such as low toughness of the welded portion and is not an effective solution.

【0010】一方、低C−低Mn−P−Cu−Ni鋼お
よび低C−低Mn−Cu−Ni−Mo鋼は、耐食性確保
のための合金量がいまひとつ十分ではない。以上のよう
な理由により、LNGを主燃料とする火力プラントや、
他の燃料を用いてはいるが、排ガス中のNOX 、SOX
の濃度が低い火力プラントにおいては、排ガスに対する
耐食性と経済性の適当なバランスを有する、また使いや
すい鋼の開発が待たれていた。
On the other hand, the low C-low Mn-P-Cu-Ni steel and the low C-low Mn-Cu-Ni-Mo steel are not yet sufficient in alloy amount for ensuring corrosion resistance. Due to the above reasons, thermal power plants that use LNG as the main fuel,
Although the use of other fuels, NO X in the exhaust gas, SO X
In a thermal power plant with a low concentration of, the development of a steel that has an appropriate balance of corrosion resistance against exhaust gas and economic efficiency and is easy to use has been awaited.

【0011】このような火力プラントの排ガス環境に使
用される鋼に顕在する最大の問題点は、CO2 を含む排
ガスの露点腐食(以下CO2 腐食と略す。)による材料
損傷である。排ガス中のCO2 濃度は燃料により多少異
なるが、通常は10%程度である。LNG専焼プラント
においても同様であり、これに耐える鋼が求められてい
る。
[0011] The biggest problem actualized in steel used in the exhaust gas environment of such thermal power plants, the dew point corrosion of exhaust gas containing CO 2 (hereinafter referred to as CO 2 corrosion.) A material damage. The CO 2 concentration in the exhaust gas varies depending on the fuel, but is usually about 10%. The same applies to LNG-only burning plants, and steel that can withstand this is required.

【0012】ところで、鋼の表面に形成されたクロム酸
化物の層(不働態被膜)は、化学的に安定性が高く耐食
性に有効であり、CO2 腐食環境中において、耐食性を
向上させる。そして、このクロム酸化物の層を、鋼の表
面に形成させるためには、一定量以上のCr添加が必要
であることはよく知られている。しかしながら低合金鋼
においては、排ガス環境中における、Crの添加量と耐
食性の関係を調査した例は、ステンレス鋼における場合
と異なり、きわめて少ない。
By the way, the chromium oxide layer (passive film) formed on the surface of the steel is chemically stable and effective in corrosion resistance, and improves the corrosion resistance in a CO 2 corrosive environment. It is well known that a certain amount or more of Cr must be added in order to form this chromium oxide layer on the surface of steel. However, in the case of low alloy steel, there are very few examples of investigating the relationship between the added amount of Cr and the corrosion resistance in the exhaust gas environment, unlike the case of stainless steel.

【0013】排ガス環境中において耐食性を得るための
Cr添加量の最適化、あるいはCrの効果を補完し、も
しくは代替する他元素の効果等については、従来、特定
できないものとして扱われてきた。
The optimization of the amount of Cr added to obtain corrosion resistance in an exhaust gas environment, the effect of other elements that complement or substitute the effect of Cr, etc. have heretofore been treated as unspecified.

【0014】一方、Cr含有量の増加は溶接性を劣化さ
せるという問題を生じる。また、耐食性の点からCrの
効果を補完しもしくは代替する他元素についても溶接性
に及ぼす影響が明確になっていない。
On the other hand, an increase in the Cr content causes a problem that the weldability is deteriorated. Further, the influence of other elements that complement or substitute the effect of Cr on the weldability from the viewpoint of corrosion resistance is not clear.

【0015】本発明は、上記事情に鑑みてなされたもの
で、その目的とするところは、LNGを主燃料とする火
力発電プラント等の燃焼排ガスの煙道又は煙突に使用さ
れる排ガスの露点腐食に対して良好な耐食性を有する鋼
を提供するものである。
The present invention has been made in view of the above circumstances, and an object thereof is to dew-point corrode exhaust gas used for a flue or a stack of combustion exhaust gas of a thermal power plant using LNG as a main fuel. To provide a steel having good corrosion resistance to.

【0016】[0016]

【課題を解決するための手段】この目的を達成するため
に、発明者らは、CO2 、NOX 、SOX 濃度等の環境
条件が、広い範囲に変化して特定されない場合は、これ
らの環境中におけるCrや添加元素による防食効果は様
々に変化し、その有効性が明瞭でないが、環境条件が一
定の範囲に特定される場合は、有効な添加元素およびそ
の添加量について、適正範囲を特定できるとの観点に立
ち研究をすすめた。
In order to achieve this object, the inventors of the present invention have proposed that if the environmental conditions such as CO 2 , NO x and SO x concentrations change in a wide range and are not specified, these The anticorrosion effect of Cr and added elements in the environment changes variously, and its effectiveness is not clear, but when the environmental conditions are specified within a certain range, the effective range of the effective added element and its addition amount should be set to the appropriate range. I proceeded with the research from the viewpoint that it could be specified.

【0017】また、Cr含有量の増加が溶接性を劣化さ
せること、および耐食性に有効な元素の溶接性に及ぼす
影響を考慮し、溶接性の観点からもCrおよび他の元素
の適正含有量があるはずであるとの観点に立ち研究をす
すめた。
Considering that the increase of Cr content deteriorates the weldability and the effect of the elements effective for corrosion resistance on the weldability, the proper content of Cr and other elements is also considered from the viewpoint of weldability. I proceeded with the research from the viewpoint that it should exist.

【0018】まず、LNGを主燃料とした場合の排ガス
や、脱硝、脱硫等の設備が完備した他の燃料を用いる排
ガスが比較的クリーンなプラントの場合を前提とした、
CO2 が20%未満、NOX が50ppm未満、SOX
が0.1%未満の環境条件下では添加元素の効果が明瞭
なことを見い出した。
First, it is assumed that the exhaust gas when LNG is used as the main fuel and the exhaust gas that uses other fuels complete with facilities for denitration, desulfurization, etc. are relatively clean.
CO 2 is less than 20%, NO X is less than 50 ppm, SO X
It was found that the effect of the additional element is clear under the environmental condition of less than 0.1%.

【0019】そこで、本発明者らは、上記の環境中にお
ける元素の組み合わせも含めた有効元素、およびそれら
の適正添加範囲を明らかにするために、組成を種々に変
化させた鋼を溶製、圧延し、CO2 腐食環境中における
耐全面腐食性および耐局部腐食性の調査をおこなつた。
Therefore, in order to clarify the effective elements including the combination of the elements in the above environment and the appropriate addition range thereof, the inventors of the present invention melt-produced steels having various compositions, After rolling, a general corrosion resistance and a local corrosion resistance in a CO 2 corrosive environment were investigated.

【0020】その結果、LNGを主燃料とする排ガス等
のCO2 腐食環境中での鋼の全面腐食に対して効果のあ
る添加元素はCr、Cu、Ni、Mo、Sb、Sn、P
bであること、また局部腐食に対してはMo、Nが有効
であることを見い出した。
As a result, the additive elements effective for the general corrosion of steel in a CO 2 corrosive environment such as exhaust gas using LNG as the main fuel are Cr, Cu, Ni, Mo, Sb, Sn and P.
It has been found that Mo and N are effective against local corrosion.

【0021】さらに、これら元素と鋼に一般的に含まれ
ている元素の溶接性、特に低温割れに及ぼす影響を明ら
かにし、本発明を完成するに至った。すなわち本発明
は、重量%で、C:0.15%以下、Si:1.0%以
下、Mn:2.0%以下、Cr:0.5〜6%、Cu:
0.1〜1.0%、Ni:0.05〜1.0%、Mo:
0.02〜1.0%、Al:0.1%以下、N:0.0
01〜0.05%、Sb:0.2%以下(0%を含
む)、Sn:0.1%以下(0%を含む)、Pb:0.
1%以下(0%を含む)を含み、残部がFeおよび不可
避的不純物よりなり、さらに、(1)式および(2)式
を満たすことを特徴とする耐排ガス腐食性に優れた鋼で
ある。 DW=0.7Cr+Cu+2Ni+Mo+5Sb+6Sn+5Pb>1.0…( 1) PC=C+Si/30+Mn/20+Cr/20+Cu/20+Ni/60+M o/15+Sb/40+Sn/40+Pb/60<0.4…(2) ただし、(1)式および(2)式において、各元素記号
はその元素の重量%を表し、添加しない元素は0として
扱う。
Further, the influence of these elements and the elements generally contained in steel on the weldability, especially on cold cracking was clarified, and the present invention was completed. That is, the present invention is, by weight%, C: 0.15% or less, Si: 1.0% or less, Mn: 2.0% or less, Cr: 0.5 to 6%, Cu:
0.1-1.0%, Ni: 0.05-1.0%, Mo:
0.02-1.0%, Al: 0.1% or less, N: 0.0
01-0.05%, Sb: 0.2% or less (including 0%), Sn: 0.1% or less (including 0%), Pb: 0.
Steel containing 1% or less (including 0%), the balance being Fe and unavoidable impurities, and further satisfying the formulas (1) and (2), which is excellent in exhaust gas corrosion resistance. . DW = 0.7Cr + Cu + 2Ni + Mo + 5Sb + 6Sn + 5Pb> 1.0 ... (1) PC = C + Si / 30 + Mn / 20 + Cr / 20 + Cu / 20 + Ni / 60 + Mo / 15 + Sb / 40 + Sn / 40 + Pb / 60 <0.4 ... (2) However, (1) Formula and Formula. In the formula (2), each element symbol represents the weight% of the element, and the element not added is treated as 0.

【0022】[0022]

【発明の実施の形態】以下に、本発明における添加元素
等の限定理由について述べる。Cは鋼に強度を与える元
素であるが、0.15%を越えて添加すると溶接性およ
びCO2 腐食環境中における耐全面腐食性ならびに耐局
部腐食性を劣化させるため、その添加量は0.15%以
下とする。
BEST MODE FOR CARRYING OUT THE INVENTION The reasons for limiting the additive elements in the present invention will be described below. C is an element that gives strength to the steel, but if added in excess of 0.15%, the weldability and general corrosion resistance and local corrosion resistance in a CO 2 corrosive environment are deteriorated, so the addition amount is 0. 15% or less.

【0023】Siは鋼の脱酸に重要な元素であるが、
1.0%を越えて添加すると溶接性が劣化するため添加
量の上限を1.0%とする。Mnは鋼の強度に寄与する
が、2.0%を越えて添加すると、溶接性およびCO2
腐食環境中の耐全面腐食性ならびに耐局部腐食性を劣化
させるため、その添加量は2、0%以下とする。
Si is an important element for deoxidizing steel,
If added in excess of 1.0%, the weldability deteriorates, so the upper limit of addition is set to 1.0%. Mn contributes to the strength of the steel, but if added over 2.0%, the weldability and CO 2
In order to deteriorate the general corrosion resistance and the local corrosion resistance in a corrosive environment, the addition amount thereof is set to 20% or less.

【0024】CrはCO2 腐食環境中の耐全面腐食性確
保の観点から非常に有効な添加元素である。その効果は
0.5%以上で顕著になる。一方、6%を越えると溶接
性が著しく劣化するため、その添加量の範囲を0.5〜
6%とする。
Cr is a very effective additive element from the viewpoint of ensuring general corrosion resistance in a CO 2 corrosive environment. The effect becomes remarkable at 0.5% or more. On the other hand, if it exceeds 6%, the weldability is significantly deteriorated, so the range of addition is 0.5 to
6%.

【0025】CuはCO2 腐食環境中での耐全面腐食性
向上に寄与する元素である。その効果は0.1%未満で
は十分ではない。一方、1.0%を越えて添加すると溶
接性を低下させるため、その添加量は0.1〜1.0%
とする。
Cu is an element that contributes to the improvement of general corrosion resistance in a CO 2 corrosive environment. If the effect is less than 0.1%, it is not sufficient. On the other hand, if added in excess of 1.0%, the weldability deteriorates, so the addition amount is 0.1-1.0%.
And

【0026】NiはCO2 腐食環境中での耐全面腐食性
向上に有効な元素である。また、Cu割れを防止するた
めの重要な添加元素でもある。比較的高価な元素であ
り、経済性から少量の添加が望ましいが、0.05%未
満ではその効果が十分でない。一方、1.0%を越えて
添加しても、その効果は飽和するため、添加量の範囲は
0.05〜1.0%とする。
Ni is an element effective for improving general corrosion resistance in a CO 2 corrosive environment. It is also an important additional element for preventing Cu cracking. It is a relatively expensive element and it is desirable to add a small amount from the economical viewpoint, but if it is less than 0.05%, its effect is not sufficient. On the other hand, even if added over 1.0%, the effect is saturated, so the range of addition is set to 0.05 to 1.0%.

【0027】MoはCO2 腐食環境中における耐全面腐
食性ならびに耐局部腐食性に対して有効な添加元素であ
るが、その効果は0.02%未満では明瞭ではない。一
方、1.0%を越えて添加すると多量の炭化物を生じ、
延性および溶接性に問題を生じるため、その添加量を
0.02〜1.0%の範囲とする。
Mo is an effective additive element for general corrosion resistance and local corrosion resistance in a CO 2 corrosive environment, but the effect is not clear at less than 0.02%. On the other hand, if added over 1.0%, a large amount of carbide is generated,
Since the ductility and weldability will be problematic, the addition amount is made 0.02 to 1.0%.

【0028】AlはSiと同様に鋼の脱酸に重要な元素
であるが、0.1%を越えて添加すると延性および溶接
性が劣化するため、その添加量は0.1%以下とする。
Nは鋼に少量含まれて強度特性を向上させ、またCO2
腐食環境中における耐局部腐食性に対して有効な添加元
素であるが、0.001%未満では効果がない。また、
0.05%を越えて含有させると溶接性および熱間加工
性を劣化させるため、その含有量は0.001〜0.0
5%とする。
Al, like Si, is an important element for deoxidizing steel, but if added in excess of 0.1%, the ductility and weldability will deteriorate, so the addition amount should be 0.1% or less. .
N is contained in steel in a small amount to improve strength characteristics, and CO 2
It is an additive element effective for local corrosion resistance in a corrosive environment, but if it is less than 0.001%, it has no effect. Also,
If the content exceeds 0.05%, the weldability and hot workability deteriorate, so the content is 0.001-0.0
5%.

【0029】SbはCO2 腐食環境中での耐全面腐食性
向上に有効な元素であるが、0.2%を越えて添加する
と延性および溶接性が劣化するため、その添加量の上限
は0.2%とする。SnもCO2 腐食環境中での耐全面
腐食性向上に有効な元素であるが、0.1%を越えて添
加すると延性および溶接性が劣化するため、その添加量
の上限は0.1%とする。PbもSbと同様に、CO2
腐食環境中での耐全面腐食性向上に有効な元素である
が、0.1%を越えて添加すると延性および溶接性が劣
化するため、その添加量は0.1%以下とする。
Sb is an element effective for improving the general corrosion resistance in a CO 2 corrosive environment, but if it is added in an amount exceeding 0.2%, ductility and weldability deteriorate, so the upper limit of the addition amount is 0. 0.2%. Sn is also an element effective in improving general corrosion resistance in a CO 2 corrosive environment, but if added in excess of 0.1%, ductility and weldability deteriorate, so the upper limit of addition is 0.1%. And Pb, like Sb, has CO 2
It is an element effective for improving the general corrosion resistance in a corrosive environment, but if added in excess of 0.1%, ductility and weldability deteriorate, so its addition amount is set to 0.1% or less.

【0030】以下の限定に加え、有効元素の重量%の一
次式として、DW=0.7Cr+Cu+2Ni+Mo+
5Sb+6Sn+5Pb>1.0(1)を満たすものと
する。(ただし添加しない元素は、ゼロとして取り扱
う。)上式が満たされない場合は、有効元素の量が不足
するため、CO2 腐食環境中における耐全面腐食性が十
分でない。
In addition to the following restrictions, DW = 0.7Cr + Cu + 2Ni + Mo +
It is assumed that 5Sb + 6Sn + 5Pb> 1.0 (1) is satisfied. (However, elements that are not added are treated as zero.) If the above formula is not satisfied, the amount of effective elements will be insufficient, and thus the general corrosion resistance in a CO 2 corrosive environment will not be sufficient.

【0031】また、 PC=C+Si/30+Mn/20+Cr/20+Cu/20+Ni/60+M o/15+Sb/40+Pb/60<0.4(2) を満たすものとする。(ただし添加しない元素は、ゼロ
として取り扱う。)上式が満たされない場合は、溶接に
おける耐低温割れ性が著しく劣化し、溶接施工時に高温
の予後熱が必要となり、溶接施工性を著しく阻害する。
Further, it is assumed that PC = C + Si / 30 + Mn / 20 + Cr / 20 + Cu / 20 + Ni / 60 + Mo / 15 + Sb / 40 + Pb / 60 <0.4 (2). (However, elements that are not added are treated as zero.) If the above formula is not satisfied, cold crack resistance in welding is significantly deteriorated, and high-temperature prognosis is required during welding work, which significantly impairs weldability.

【0032】なお、本発明には通常に鋼に含まれる程度
の不可避的不純物は許容される。例えば、PおよびSは
鋼の熱間加工性を劣化させる不純物であり、その量は少
ないほどよいが、両元素とも0.03程度含有してよ
い。
The present invention allows unavoidable impurities to the extent that they are usually contained in steel. For example, P and S are impurities that deteriorate the hot workability of steel, and the smaller the amount, the better, but both elements may be contained in an amount of about 0.03.

【0033】[0033]

【実施例】次に、本発明の実施例について述べる。表1
に示す組成を持つ本願発明鋼、および比較鋼を50kg
w誘導加熱溶解炉により溶解、鋳造後、1150℃に均
熱し、熱間圧延機により15mm厚に圧延した。圧延仕
上げ温度は850℃を目標としており、圧延後に直ちに
水冷を行い、試験片を切り出し加工した。
Next, an embodiment of the present invention will be described. Table 1
50 kg of the present invention steel having the composition shown in Table 1 and comparative steel
After being melted and cast in an induction heating melting furnace, it was soaked at 1150 ° C. and rolled to a thickness of 15 mm by a hot rolling mill. The rolling finishing temperature is set at 850 ° C., and water cooling was performed immediately after rolling to cut out test pieces.

【0034】腐食試験は80℃純水中に、ガスバブリン
グした飽和濃度溶液中に浸漬して行った。ガス組成は1
0%CO2 残部N2 ガスであり、LNG専焼の排ガスを
シミュレートしている。
The corrosion test was carried out by immersing in pure water at 80 ° C. in a saturated solution having gas bubbling. Gas composition is 1
It is 0% CO 2 balance N 2 gas, and simulates the exhaust gas of LNG exclusive combustion.

【0035】溶接試験は、斜めY型溶接われ試験を行
い、母材熱影響部に割れの発生しなくなる予熱温度によ
り、低温割れ感受性の評価を行った。溶接材料として
は、JIS Z 3211に定められる低水素系被覆材
(D4316)のもので、心線としてはJIS G 3
523の1種(SWY11)に該当するものを用いた。
入熱は17kJ/cmとした。
In the welding test, an oblique Y-shaped weld cracking test was carried out, and the low temperature cracking susceptibility was evaluated by the preheating temperature at which cracking did not occur in the heat affected zone of the base material. The welding material is a low hydrogen type coating material (D4316) defined in JIS Z 3211, and the core wire is JIS G 3
One corresponding to one of 523 (SWY11) was used.
The heat input was 17 kJ / cm.

【0036】表中の1〜17が本発明鋼であり、18〜
26が比較鋼である。これらの元素の耐食性に及ぼす影
響を先に示したDW値で整理したものが図1である。図
においては横軸にDW値を、縦軸に腐食減量をとって示
している。(なお、図中には、表1中に示していない鋼
の結果ものせており、表1の鋼とは厳密に対応していな
い。) 腐食減量はDW値の増加とともに減少傾向を示し、DW
値が1.0以下では比較的大きな腐食減量であることが
分かる。
In the table, 1 to 17 are the steels of the present invention, and 18 to
26 is a comparative steel. FIG. 1 shows the effects of these elements on the corrosion resistance arranged by the DW values shown above. In the figure, the horizontal axis represents the DW value and the vertical axis represents the corrosion weight loss. (In the figure, the results of steels not shown in Table 1 are also shown, and they do not correspond exactly to the steels of Table 1.) The corrosion weight loss shows a decreasing tendency as the DW value increases, DW
It can be seen that when the value is 1.0 or less, the corrosion weight loss is relatively large.

【0037】次に、これらの元素の溶接性に及ぼす影響
を先に示したPC値で整理したものが図2である。図に
おいては横軸にPC値を、縦軸に溶接試験において割れ
の生じなくなる予熱温度をとって示している。(なお、
図中には、表1中に示していない鋼の結果ものせてお
り、表1の鋼とは厳密に対応していない。) 割れを生じない予熱温度はPC値の増加とともに上昇す
る傾向を示し、PC値が0.4を越えると急激に上昇す
ることが分かる。
Next, FIG. 2 shows the effects of these elements on the weldability arranged by the PC values shown above. In the figure, the horizontal axis represents the PC value, and the vertical axis represents the preheating temperature at which cracking does not occur in the welding test. (Note that
In the figure, the results of the steels not shown in Table 1 are also shown, and the steels in Table 1 do not correspond exactly. ) It can be seen that the preheating temperature at which cracking does not occur tends to rise as the PC value increases, and rises sharply when the PC value exceeds 0.4.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【発明の効果】本発明鋼は、LNGを主成分とする等の
比較的クリーンな燃料を用いる火力プラントの煙道およ
び煙突用として、良好な耐食性を示す。また、LNG以
外の成分、すなわち、重油、ナフサ、石炭等を混焼する
場合も、それらがある範囲内に限定されているかぎりは
同様であり、さらにLNG以外の燃料を用いる火力プラ
ントの場合も、排ガスが比較的クリーンな場合は、同様
に優れた耐食性を示すと期待される。
INDUSTRIAL APPLICABILITY The steel of the present invention exhibits good corrosion resistance as a flue and a chimney of a thermal power plant that uses a relatively clean fuel such as one containing LNG as a main component. Further, when components other than LNG, that is, heavy oil, naphtha, coal, etc. are co-firing, as long as they are limited within a certain range, the same is true, and also in the case of a thermal power plant that uses a fuel other than LNG, When the exhaust gas is relatively clean, it is expected to show excellent corrosion resistance as well.

【0040】さらに、合金量を適正に制御することによ
り、溶接時の低温割れ感受性を低く抑えることができ、
高温での予後熱が不要となるため、溶接施工性に優れて
いる。
Further, by appropriately controlling the amount of alloy, the cold cracking susceptibility during welding can be suppressed to a low level,
It has excellent weldability because it does not require prognostic heat at high temperatures.

【0041】実用性の上からも、本発明鋼は、使用上の
制限が多くかつ高価なステンレス鋼またはステンレスク
ラッド鋼等に比較して、合金元素の添加量が少ない鋼で
あるため、経済性や省資源の観点からも極めて有用な鋼
である。
In terms of practicality, the steel of the present invention is economical because it contains less alloying elements than stainless steel, stainless clad steel, etc., which have many restrictions on use and are expensive. It is also an extremely useful steel from the viewpoint of resource saving.

【0042】なお、本発明鋼は、厚板圧延、ホットスト
リップミル圧延等による鋼鈑および鋼帯、マンネスマン
法、ユージンセジュルネ法等による継目無鋼管、電縫
管、スパイラル鋼管、UOE鋼管等の各種溶接鋼管、条
鋼、棒鋼等のすべての熱間圧延鋼材、およびそれらの冷
間、温間圧延および加工品においても、以上に示した特
性を発揮するものであり、製造方法および製品形状は問
わない。
The steel of the present invention includes steel plates and strips obtained by plate rolling, hot strip mill rolling, etc., seamless steel pipes such as the Mannesmann method, the Eugene Sejournet method, electric resistance welded pipes, spiral steel pipes, UOE steel pipes, etc. All of the hot rolled steel products such as various welded steel pipes, bar steels, and bar steels, as well as cold, warm rolled and processed products thereof, exhibit the above-mentioned characteristics, regardless of the manufacturing method and product shape. Absent.

【図面の簡単な説明】[Brief description of drawings]

【図1】LNG専焼の排ガスの露点腐食をシミュレート
した腐食試験における、腐食減量とDW値の関係を示し
た図。
FIG. 1 is a diagram showing a relationship between a corrosion weight loss and a DW value in a corrosion test simulating the dew point corrosion of an LNG-exhausted exhaust gas.

【図2】斜めY型溶接われ試験における、割れを生じな
くなる予熱温度とPC値の関係を示した図。
FIG. 2 is a diagram showing a relationship between a PC value and a preheating temperature at which cracking does not occur in a diagonal Y-type weld crack test.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年9月12日[Submission date] September 12, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0004】また、さらに腐食性の大きい排ガスが流通
する重油専焼ボイラや石炭焚きボイラにおいては、SU
S304鋼以上にCr含有量を高めた、例えば25Cr
オーステナイト系ステンレス鋼が用いられる場合もあ
る。
Further, in a heavy oil fired boiler or a coal-fired boiler in which an exhaust gas having a higher corrosiveness flows, the SU
Higher Cr content than S304 steel, eg 25Cr
Austenitic stainless steel may also be used.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0030[Correction target item name] 0030

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0030】以上の限定に加え、有効元素の重量%の一
次式として、DW=0.7Cr+Cu+2Ni+Mo+
5Sb+6Sn+5Pb>1.0(1)を満たすものと
する。(ただし添加しない元素は、ゼロとして取り扱
う。)上式が満たされない場合は、有効元素の量が不足
するため、CO2 腐食環境中における耐全面腐食性が十
分でない。
In addition to the above-mentioned limitations, DW = 0.7Cr + Cu + 2Ni + Mo +
It is assumed that 5Sb + 6Sn + 5Pb> 1.0 (1) is satisfied. (However, elements that are not added are treated as zero.) If the above formula is not satisfied, the amount of effective elements is insufficient, so that general corrosion resistance in a CO 2 corrosive environment is insufficient.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0031[Correction target item name] 0031

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0031】また、 PC=C+Si/30+Mn/20+Cr/20+Cu/20+Ni/60+M o/15+Sb/40+Sn/40+Pb/60<0.4(2) を満たすものとする。(ただし添加しない元素は、ゼロ
として取り扱う。)上式が満たされない場合は、溶接に
おける耐低温割れ性が著しく劣化し、溶接施工時に高温
の予後熱が必要となり、溶接施工性を著しく阻害する。
Further, it is assumed that PC = C + Si / 30 + Mn / 20 + Cr / 20 + Cu / 20 + Ni / 60 + Mo / 15 + Sb / 40 + Sn / 40 + Pb / 60 <0.4 (2). (However, elements that are not added are treated as zero.) If the above formula is not satisfied, cold crack resistance in welding is significantly deteriorated, and high-temperature prognosis is required during welding work, which significantly impairs weldability.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.15%以下、Si:
1.0%以下、Mn:2.0%以下、Cr:0.5〜6
%、Cu:0.1〜1.0%、Ni:0.05〜1.0
%、Mo:0.02〜1.0%、Al:0.1%以下、
N:0.001〜0.05%、Sb:0.2%以下(0
%を含む)、Sn:0.1%以下(0%を含む)、P
b:0.1%以下(0%を含む)を含み、残部がFeお
よび不可避的不純物よりなり、さらに、(1)式および
(2)式を満たすことを特徴とする耐排ガス腐食性に優
れた鋼。 DW=0.7Cr+Cu+2Ni+Mo+5Sb+6Sn+5Pb>1.0 … (1) PC=C+Si/30+Mn/20+Cr/20+Cu/20+Ni/60+M o/15+Sb/40+Sn/40+Pb/60<0.4 …(2) ただし、(1)式および(2)式において、各元素記号
はその元素の重量%を表し、添加しない元素は0として
扱う。
C. 0.15% or less by weight, Si:
1.0% or less, Mn: 2.0% or less, Cr: 0.5 to 6
%, Cu: 0.1 to 1.0%, Ni: 0.05 to 1.0
%, Mo: 0.02-1.0%, Al: 0.1% or less,
N: 0.001 to 0.05%, Sb: 0.2% or less (0
%), Sn: 0.1% or less (including 0%), P
b: 0.1% or less (including 0%), the balance consisting of Fe and unavoidable impurities, and further excellent in exhaust gas corrosion resistance characterized by satisfying formulas (1) and (2) Steel. DW = 0.7Cr + Cu + 2Ni + Mo + 5Sb + 6Sn + 5Pb> 1.0 (1) PC = C + Si / 30 + Mn / 20 + Cr / 20 + Cu / 20 + Ni / 60 + Mo / 15 + Sb / 40 + Sn / 40 + Pb / 60 <0.4 (2) However, the formula (1) and In the formula (2), each element symbol represents the weight% of the element, and the element not added is treated as 0.
JP8092551A 1996-04-15 1996-04-15 Steel excellent in exhaust gas corrosion resistance Pending JPH09279293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8092551A JPH09279293A (en) 1996-04-15 1996-04-15 Steel excellent in exhaust gas corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8092551A JPH09279293A (en) 1996-04-15 1996-04-15 Steel excellent in exhaust gas corrosion resistance

Publications (1)

Publication Number Publication Date
JPH09279293A true JPH09279293A (en) 1997-10-28

Family

ID=14057545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8092551A Pending JPH09279293A (en) 1996-04-15 1996-04-15 Steel excellent in exhaust gas corrosion resistance

Country Status (1)

Country Link
JP (1) JPH09279293A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256781A (en) * 1999-03-11 2000-09-19 Nkk Corp Steel for lng combustion exhaust gas flow passage
WO2005047555A1 (en) * 2003-11-14 2005-05-26 Nippon Steel Corporation Steel product for flue gas treatment facilities excellent in capability of being cut by gas and/or wear resistance, and flue gas duct
JP2005163177A (en) * 2003-11-14 2005-06-23 Nippon Steel Corp Waste-gas duct
JP2005163178A (en) * 2003-11-14 2005-06-23 Nippon Steel Corp Steel material for smoke-control facility superior in wearing resistance and gas sectility
US7718014B2 (en) 2001-11-19 2010-05-18 Nippon Steel Corporation Low alloy steel and weld joint thereof excellent in corrosion resistance to hydrochloric acid and sulfuric acid
KR20140138770A (en) * 2012-03-19 2014-12-04 닛신 세이코 가부시키가이샤 Steel having acid dew corrosion resistance, and exhaust gas flow path constituent member
JP2022511465A (en) * 2018-11-30 2022-01-31 ポスコ Steel sheet having corrosion resistance in a combined condensation environment of sulfuric acid and sulfuric acid / hydrochloric acid and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244560A (en) * 1985-08-19 1987-02-26 Kawasaki Steel Corp Steel for heat-insulated double pipe excellent in hydrogen permeation resistance
JPH0617539B2 (en) * 1985-06-05 1994-03-09 三菱重工業株式会社 Exhaust gas economizer steel
JPH07286241A (en) * 1994-02-28 1995-10-31 Nippon Steel Corp Corrosion resisting low alloy steel
JPH08120403A (en) * 1994-10-18 1996-05-14 Nkk Corp Steel excellent in exhaust gas corrosion resistance
JPH08144012A (en) * 1994-09-21 1996-06-04 Nippon Steel Corp Steel for stack and flue for natural gas firing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617539B2 (en) * 1985-06-05 1994-03-09 三菱重工業株式会社 Exhaust gas economizer steel
JPS6244560A (en) * 1985-08-19 1987-02-26 Kawasaki Steel Corp Steel for heat-insulated double pipe excellent in hydrogen permeation resistance
JPH07286241A (en) * 1994-02-28 1995-10-31 Nippon Steel Corp Corrosion resisting low alloy steel
JPH08144012A (en) * 1994-09-21 1996-06-04 Nippon Steel Corp Steel for stack and flue for natural gas firing
JPH08120403A (en) * 1994-10-18 1996-05-14 Nkk Corp Steel excellent in exhaust gas corrosion resistance

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256781A (en) * 1999-03-11 2000-09-19 Nkk Corp Steel for lng combustion exhaust gas flow passage
US7718014B2 (en) 2001-11-19 2010-05-18 Nippon Steel Corporation Low alloy steel and weld joint thereof excellent in corrosion resistance to hydrochloric acid and sulfuric acid
US7731896B2 (en) 2001-11-19 2010-06-08 Nippon Steel Corporation Low alloy steel and weld joint thereof excellent in corrosion resistance to hydrochloric acid and sulfuric acid
WO2005047555A1 (en) * 2003-11-14 2005-05-26 Nippon Steel Corporation Steel product for flue gas treatment facilities excellent in capability of being cut by gas and/or wear resistance, and flue gas duct
JP2005163177A (en) * 2003-11-14 2005-06-23 Nippon Steel Corp Waste-gas duct
JP2005163178A (en) * 2003-11-14 2005-06-23 Nippon Steel Corp Steel material for smoke-control facility superior in wearing resistance and gas sectility
JP4571848B2 (en) * 2003-11-14 2010-10-27 新日本製鐵株式会社 Steel for metal smelting furnace flue gas treatment equipment with excellent wear resistance and gas cutting properties
JP4571847B2 (en) * 2003-11-14 2010-10-27 新日本製鐵株式会社 Metal refining furnace exhaust gas duct
KR20140138770A (en) * 2012-03-19 2014-12-04 닛신 세이코 가부시키가이샤 Steel having acid dew corrosion resistance, and exhaust gas flow path constituent member
JP2022511465A (en) * 2018-11-30 2022-01-31 ポスコ Steel sheet having corrosion resistance in a combined condensation environment of sulfuric acid and sulfuric acid / hydrochloric acid and its manufacturing method

Similar Documents

Publication Publication Date Title
KR0180206B1 (en) Heat resistant ferritic stainless steel excellent in low-temperature, weldability &amp; heat resistance
JP4823930B2 (en) Acid corrosion resistant steel
JP3584636B2 (en) Sulfuric acid / hydrochloric acid dew-point corrosion resistant steel with excellent hot workability
JP6016331B2 (en) Austenitic stainless steel with excellent corrosion resistance and brazing
JP2003213367A (en) Low alloy steel having excellent hydrochloric acid- corrosion and sulfuric acid-corrosion resistance and welded joint thereof
JP4656251B1 (en) Ni-based alloy material
JP2002241900A (en) Austenitic stainless steel having excellent sulfuric acid corrosion resistance and workability
JPH0925536A (en) Acid dew point corrosion resistant steel
JP3296111B2 (en) Steel with excellent exhaust gas corrosion resistance
JPH09279293A (en) Steel excellent in exhaust gas corrosion resistance
JP2002327236A (en) Steel superior in cold workability, high-temperature property, and corrosion resistance at low temperature, and manufacturing method therefor
JP7385106B2 (en) steel material
JP7127355B2 (en) steel
JPH0533104A (en) Heat resisting ferritic stainless steel excellent in heat resistance toughness at low temperature, and weldability
JP2000015447A (en) Welding method of martensitic stainless steel
JPH11131179A (en) Steel for welded structure, excellent in sulfuric acid dew point corrosion resistance, and its production
JP3713833B2 (en) Ferritic stainless steel for engine exhaust members with excellent heat resistance, workability, and weld corrosion resistance
JPH06248393A (en) Alustenitic stainless steel excellent in high temperature corrosion resistance
JPH11106872A (en) Stainless steel for sulfuric acid dew point corrosion resistance excellent in hot workability
JP3300747B2 (en) Corrosion and heat resistant Ni-based alloy for waste incinerator
JP3527458B2 (en) Cladding steel and chimney for the inner cylinder of a coal-fired power plant with excellent corrosion resistance at the weld zone
JP4290260B2 (en) Highly corrosion resistant austenitic stainless steel for waste heat incineration plant boiler heat transfer tubes
JP2000256781A (en) Steel for lng combustion exhaust gas flow passage
JPH04224657A (en) Ferritic stainless steel excellent in strength at high temperature and toughness in weld heat-affected zone
JPS60238423A (en) Improvement of corrosion resistance in weld zone of two-phase stainless steel