JP2005163177A - Waste-gas duct - Google Patents

Waste-gas duct Download PDF

Info

Publication number
JP2005163177A
JP2005163177A JP2004324848A JP2004324848A JP2005163177A JP 2005163177 A JP2005163177 A JP 2005163177A JP 2004324848 A JP2004324848 A JP 2004324848A JP 2004324848 A JP2004324848 A JP 2004324848A JP 2005163177 A JP2005163177 A JP 2005163177A
Authority
JP
Japan
Prior art keywords
exhaust gas
steel
duct
gas duct
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004324848A
Other languages
Japanese (ja)
Other versions
JP4571847B2 (en
Inventor
Akira Usami
明 宇佐見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004324848A priority Critical patent/JP4571847B2/en
Priority to KR1020067007407A priority patent/KR20060061857A/en
Priority to PCT/JP2004/017214 priority patent/WO2005047555A1/en
Priority to US10/579,172 priority patent/US20070122650A1/en
Publication of JP2005163177A publication Critical patent/JP2005163177A/en
Application granted granted Critical
Publication of JP4571847B2 publication Critical patent/JP4571847B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively provide a duct superior in durability/workability in a gas atmosphere in a metal-smelting furnace (a converter or an electric furnace) or an ash-melting furnace. <P>SOLUTION: The waste-gas duct has a structure made by welding a steel for the waste-gas duct, of which the face to be contacted with the gas in a waste-gas passage comprises, by mass%, 0.1-1% Cu, 0.01-0.5% Ni, 3.5-9.0% Cr, and 0.01-0.2% Sb, further one or two elements of 0.005-0.5% Mo and 0.005-0.5% W, and the balance being Fe with unavoidable impurities, with an austenitic welding material. Alternatively, the waste-gas duct has a structure made by welding the surface layer of a bilayer steel material having the above chemical composition on the surface side, with the austenitic welding material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、鉄鋼などの金属精錬における転炉、電気溶製炉の排ガス環境で優れた耐久性を示し、施工性、補修性、経済性にも優れた排ガスダクトに関する。   The present invention relates to an exhaust gas duct that exhibits excellent durability in an exhaust gas environment of a converter or an electromelting furnace in metal refining of steel or the like, and is excellent in workability, repairability, and economy.

以下、鉄鋼製造を行う精錬炉(転炉や電気炉など)を例に、背景技術を説明する。   Hereinafter, the background art will be described by taking a smelting furnace (converter, electric furnace, etc.) for producing steel as an example.

金属精錬炉の排ガスは腐食性のガス成分や金属ダストを含むため、排煙設備で排ガス流路は厳しい損耗を受ける。一般に、排ガスの温度は1200℃に達する。炉によっては、燃焼塔で可燃性ガスを燃焼させた上で、排煙設備に通風するケースもある。   Since the exhaust gas from the metal smelting furnace contains corrosive gas components and metal dust, the exhaust gas flow path suffers severe wear in the smoke exhaust system. In general, the temperature of the exhaust gas reaches 1200 ° C. In some furnaces, combustible gas is burned in a combustion tower and then vented to a smoke exhausting facility.

一般に、排煙ダクトは、炭素鋼板の溶接構造で二重筒構造とし、内筒に排ガスを通し内筒と外筒との間に冷却水を通すケースや、ダクト内面に鋼管を並べて水冷管パネルを作り、内部に冷却水を通す形式が使われている。以下、これらを排煙水冷ダクトと呼ぶ。   In general, the flue gas duct is a double-tube structure with a carbon steel plate welded structure, a case in which exhaust gas is passed through the inner cylinder and cooling water is passed between the inner cylinder and the outer cylinder, and a water-cooled tube panel with steel pipes arranged on the inner surface of the duct Is used, and cooling water is passed inside. Hereinafter, these are referred to as a flue gas cooling duct.

近年、排煙水冷ダクトの損耗が顕著になってきた。1990年代前半までは、板厚9mmの炭素鋼製内筒で5年以上の耐久性が得られていたが、最近では、板厚12mmに増厚しても半年〜1年で損耗する事例が多くなり、日常的な補修や取換工事が行われていた。また、転炉排ガス(OG)処理装置でも、最近、排煙水冷ダクトの耐久寿命が従前と比較して半分以下に短くなってきた。   In recent years, the exhaust of the flue gas water cooling duct has become prominent. Up to the first half of the 1990s, carbon steel inner cylinders with a plate thickness of 9 mm had a durability of 5 years or more, but recently, even if the plate thickness is increased to 12 mm, there is a case where wear occurs in half a year to a year. Increasingly, routine repairs and replacement work were performed. Further, in the converter exhaust gas (OG) treatment apparatus, recently, the endurance life of the flue gas cooling duct has been shortened to less than half compared with the conventional one.

損耗の原因としては、固体粒子の衝突による摩耗、ダストによる溶融塩腐食、吸湿による濃厚電解質形成に伴う湿食などが考えられるが、いずれの要因が損耗の支配プロセスなのかは、ほとんど解明されていないという課題があった。   Possible causes of wear include wear due to collision of solid particles, molten salt corrosion due to dust, and wet corrosion due to the formation of concentrated electrolyte due to moisture absorption, but it has been clarified which factor is the dominant process of wear. There was no problem.

排煙水冷ダクトの損耗を防止する従来技術では、排ガスと接触する面の材質を変更し、耐久性を確保する方法が提案されている。この方法は、排ガスに接する表面を改質する方法と、ダクトを構成する部材自身の材質を変更する方法に分類できる。   In the prior art for preventing wear and tear of the flue gas water cooling duct, a method for ensuring durability by changing the material of the surface in contact with the exhaust gas has been proposed. This method can be classified into a method of modifying the surface in contact with the exhaust gas and a method of changing the material of the member itself constituting the duct.

排ガスに接する表面を改質する方法としては、例えば、1)耐熱・耐火レンガで内張りする、2)無機系キャスターでライニングする、3)肉盛り溶射層を施す、4)高合金鋼を表層に持つクラッド鋼を採用する、等の方法が考えられ、一部は既に提案されている。   Examples of methods for modifying the surface in contact with the exhaust gas include 1) lining with heat-resistant and refractory bricks, 2) lining with inorganic casters, 3) applying a build-up sprayed layer, 4) high alloy steel on the surface A method such as adopting clad steel is considered, and some have already been proposed.

例えば、(特許文献1)に示されるようなステンレス系合金の溶射肉盛や、(特許文献2)に示されている800℃で酸化物を形成する成分の合金の溶射被覆層を形成する方法、さらに、(特許文献3)に示されているNi−Cr−Mo−B系に代表される自溶性溶射合金による被覆(基材と溶射金属による合金層を形成させる金属被覆)等が挙げられる。   For example, a method of forming a thermal spray coating of a stainless steel alloy as shown in (Patent Literature 1) or a thermal spray coating layer of an alloy of an alloy that forms an oxide at 800 ° C. as shown in (Patent Literature 2). Furthermore, coating with a self-fluxing sprayed alloy represented by Ni-Cr-Mo-B system shown in (Patent Document 3) (metal coating for forming an alloy layer with a base material and a sprayed metal) and the like can be mentioned. .

また、ダクトを構成する部材自身の材質を変更する方法としては、炭素鋼に代えて、耐久性に優れた構造材料、鋼SUS310Sなどの耐熱ステンレス鋼などを使用することが容易に考えられる。   In addition, as a method of changing the material of the member constituting the duct itself, it is easily considered to use a structural material having excellent durability, heat resistant stainless steel such as steel SUS310S, etc., instead of carbon steel.

レンガの内張り、金属溶射、無機系ライニング、高合金の内張りは、いずれも炭素鋼を裸で使用してきた排ガスダクトにおいては、材料・施工コストが極めて高くなるほか、炭素鋼との熱膨張率が不可避的に異なるため、1000℃程度の高温と室温近くの熱サイクルを1時間に1回のサイクルで受ける環境では、長期にわたり密着性を確保するのが難しいといった課題があった。   Brick lining, metal spraying, inorganic lining, and high alloy lining all have an extremely high material and construction cost in the exhaust gas duct that has been used bare carbon steel, and the thermal expansion coefficient with carbon steel is high. Since it is inevitably different, there is a problem that it is difficult to ensure adhesion over a long period of time in an environment where a high temperature of about 1000 ° C. and a thermal cycle near room temperature are received once a hour.

さらに、レンガや無機系ライニングを採用した場合、1)排ガスの冷却速度が遅くなるために、所定温度以下で集塵装置に排ガスを送るためには、排ガスダクトを延長する必要が生じるし、また、2)冷却速度が小さすぎると、ダイオキシンの発生を必ずしも十分に抑制できない、3)排ガスダクトの重量が増す、等の課題があった。   In addition, when bricks or inorganic linings are used, 1) the exhaust gas cooling rate becomes slow, so it is necessary to extend the exhaust gas duct in order to send the exhaust gas to the dust collector at a predetermined temperature or lower, and 2) If the cooling rate is too low, the generation of dioxins cannot be sufficiently suppressed, and 3) the weight of the exhaust gas duct increases.

炭素鋼に代えてステンレス鋼などの高合金鋼を用いる場合、素材および施工コストが極めて高くなるといった課題があった。また、SUS316L、SUS310Sなどのステンレス鋼でも、経済性に見合った耐久性が必ずしも得られないといった課題があった。   When high alloy steel such as stainless steel is used instead of carbon steel, there is a problem that the material and the construction cost become extremely high. Further, even with stainless steel such as SUS316L and SUS310S, there is a problem that durability corresponding to economic efficiency is not necessarily obtained.

以上述べたように、炭素鋼の片面を排ガスに接する面(接ガス面)とし、残る面を冷媒面とする排ガスダクトは、素材費、施工性、補修性、経済性に極めて優れている。したがって、炭素鋼製排ガスダクトと施工性、補修性が同等であり、さらに接ガス面の耐久性が飛躍的に優れ、経済的にも合致する排ガスダクトが強く求められていた。   As described above, an exhaust gas duct in which one surface of carbon steel is a surface in contact with exhaust gas (gas contact surface) and the remaining surface is a refrigerant surface is extremely excellent in material cost, workability, repairability, and economy. Accordingly, there has been a strong demand for an exhaust gas duct that is equivalent in construction work and repairability to the carbon steel exhaust gas duct, and that has excellent gas contact surface durability and is economically consistent.

特公平4−80089号公報Japanese Patent Publication No. 4-80089 特許第2565727号公報Japanese Patent No. 2565727 特開2003−231909号公報Japanese Patent Laid-Open No. 2003-231909

本発明は、前述の問題を克服してなされたもので、特に、鉄鋼などの溶製設備における転炉または電気炉、灰の溶融炉などの排ガス環境での耐久性、加工性、施工性に優れた排ガスダクトを提供することを目的とする。   The present invention has been made by overcoming the above-mentioned problems. In particular, the durability, workability, and workability in an exhaust gas environment such as a converter or an electric furnace or an ash melting furnace in a smelting facility such as steel are improved. An object is to provide an excellent exhaust gas duct.

本発明者らは、鉄鋼溶製炉および灰溶融炉の水冷排ガスダクトの損耗機構を詳細に検討した結果、特定の化学組成を満足する鋼が、当該環境で優れた耐久性を示し、かつ、炭素鋼並の加工性、施工性を具備することを知見した。   As a result of examining in detail the wear mechanism of the water-cooled exhaust gas duct of the steel melting furnace and ash melting furnace, the present inventors have shown that the steel satisfying a specific chemical composition exhibits excellent durability in the environment, and It has been found that it has workability and workability comparable to carbon steel.

また、先の特定の化学組成を満足する鋼を接ガス面とし、特定の公知の溶接材料と組み合わせることで、炭素鋼製排ガスダクトの製作と同等の施工能率で、排ガスダクトが得られることを知見した。   In addition, it is possible to obtain an exhaust gas duct with a construction efficiency equivalent to the production of a carbon steel exhaust gas duct by combining the above-mentioned steel satisfying a specific chemical composition as a gas contact surface and combining it with a specific known welding material. I found out.

本発明は前記知見に基づいて構成したものであり、その要旨は以下の通りである。   The present invention is configured based on the above findings, and the gist thereof is as follows.

(1) 排ガスダクトにおける排ガス流路の接ガス面が、質量%で、
C :0.001〜0.2%、
Cu:0.1〜1%、
Ni:0.01〜0.5%、
Cr:4.0%〜9.0%、
Sb:0.01〜0.2%、
を含有し、かつ、
Mo:0.005〜0.5%、
W :0.005〜0.5%
の1種または2種を含有し、残部がFeおよび不可避的不純物からなる鋼を、オーステナイト系溶接材料で溶接接合して構成されていることを特徴とする排ガスダクト。
(1) The gas contact surface of the exhaust gas flow path in the exhaust gas duct is mass%,
C: 0.001 to 0.2%,
Cu: 0.1 to 1%,
Ni: 0.01 to 0.5%,
Cr: 4.0% to 9.0%,
Sb: 0.01-0.2%
Containing, and
Mo: 0.005 to 0.5%,
W: 0.005-0.5%
An exhaust gas duct comprising a steel containing one or two of the above, the balance being Fe and inevitable impurities, welded together with an austenitic welding material.

(2) 排ガスダクトにおける排ガス流路の接ガス面が、質量%で、
C :0.001〜0.2%、
Cu:0.1〜1%、
Ni:0.01〜0.5%、
Cr:4.0%〜9.0%、
Sb:0.01〜0.2%、
を含有し、かつ、
Mo:0.005〜0.5%、
W :0.005〜0.5%
の1種または2種を含有し、残部がFeおよび不可避的不純物からなる鋼を表層に有する複層鋼材の表層部が、オーステナイト系溶接材料で溶接接合して構成されていることを特徴とする排ガスダクト。
(2) The gas contact surface of the exhaust gas flow path in the exhaust gas duct is mass%,
C: 0.001 to 0.2%,
Cu: 0.1 to 1%,
Ni: 0.01 to 0.5%,
Cr: 4.0% to 9.0%,
Sb: 0.01-0.2%
Containing, and
Mo: 0.005 to 0.5%,
W: 0.005-0.5%
A surface layer portion of a multilayer steel material containing one or two types of the above, the balance being steel composed of Fe and unavoidable impurities in the surface layer is formed by welding and joining with an austenitic welding material Exhaust gas duct.

(3) 排ガスダクトにおける排ガス流路の接ガス面の鋼および溶接金属の両方が、質量%で、
C :0.001〜0.2%、
Si:0.01〜0.5%
Mn:0.1〜2%、
Cu:0.1〜1%、
Ni:0.01〜0.5%、
Cr:4.0%〜6.0%、
Sb:0.01〜0.2%、
P :0.05%以下、
S :0.005〜0.02%、
を含有し、かつ、
Mo:0.005〜0.5%、
W :0.005〜0.5%
の1種または2種を含有し、残部がFeおよび不可避的不純物からなる鋼と溶接金属で構成されていることを特徴とする排ガスダクト。
(3) Both the steel and weld metal on the gas contact surface of the exhaust gas flow path in the exhaust gas duct are in mass%.
C: 0.001 to 0.2%,
Si: 0.01 to 0.5%
Mn: 0.1 to 2%,
Cu: 0.1 to 1%,
Ni: 0.01 to 0.5%,
Cr: 4.0% to 6.0%,
Sb: 0.01-0.2%
P: 0.05% or less,
S: 0.005 to 0.02%,
Containing, and
Mo: 0.005 to 0.5%,
W: 0.005-0.5%
An exhaust gas duct comprising one or two of the following, the balance being made of steel and weld metal made of Fe and inevitable impurities.

(4) 前記排ガスダクトが、二重筒型の水冷排ガスダクトであって、金属製外筒と金属製内筒とから構成され、内筒の内側を排ガス流路とし、外筒と内筒の間を冷媒流路とすることを特徴とする前記(1)〜(3)のいずれかに記載の排ガスダクト。   (4) The exhaust gas duct is a double-cylinder water-cooled exhaust gas duct, which is composed of a metal outer cylinder and a metal inner cylinder, and an inner side of the inner cylinder serves as an exhaust gas flow path. The exhaust gas duct according to any one of (1) to (3), characterized in that a gap is provided as a refrigerant flow path.

(5) 前記排ガスダクトが、排ガス流路の接ガス面と反対の面に、複数のパイプが接合配置された排ガスダクトであって、該パイプ中に冷媒を通過させる機能を有することを特徴とする前記(1)〜(3)のいずれかに記載の排ガスダクト。   (5) The exhaust gas duct is an exhaust gas duct in which a plurality of pipes are joined and disposed on a surface opposite to the gas contact surface of the exhaust gas flow path, and has a function of allowing a refrigerant to pass through the pipes. The exhaust gas duct according to any one of (1) to (3).

本発明の排ガスダクトは、金属溶製炉や灰溶融炉の排煙環境にて、優れた耐久性を示すとともに、炭素鋼製ダクト並の施工性、補修性、経済性を併せて有している。   The exhaust gas duct of the present invention exhibits excellent durability in a flue gas environment of a metal melting furnace and an ash melting furnace, and also has workability, repairability, and economic efficiency comparable to a carbon steel duct. Yes.

以下、本発明について詳細に説明する。以下、%は質量%を意味している。   Hereinafter, the present invention will be described in detail. Hereinafter,% means mass%.

本発明の骨子は、第一に、排ガス流路と冷却媒体の流路からなる強制冷却機構を有する排ガスダクト構造において、接ガス面を低C−Cr−Cu−Ni−(Mo、W、Mo+W)−Sb鋼とし、その片面を水冷する点であり、第二に、排ガスダクトは、前記の組成を有する鋼板をオーステナイト系の溶接材料、または、鋼と同じ成分系のフェライト系溶接材料を用いて溶接施工する点である。   The essence of the present invention is that, first, in an exhaust gas duct structure having a forced cooling mechanism comprising an exhaust gas channel and a cooling medium channel, the gas contact surface is made of low C—Cr—Cu—Ni— (Mo, W, Mo + W). ) -Sb steel, one side of which is water-cooled. Second, the exhaust gas duct uses a steel plate having the above-described composition using an austenitic welding material or a ferritic welding material of the same component system as steel. This is the point to be welded.

一般に、排煙処理設備接ガス面は、排ガスと材料との相互作用による損耗(板厚減少)により劣化する。損耗では、化学的な腐食現象や物理的な摩耗現象等が複合的に作用する。本発明では、排煙処理設備においてガスと接する部材面の板厚減少を招く現象を、損耗と呼ぶ。   In general, the gas contact surface of the flue gas treatment facility deteriorates due to wear (thickness reduction) due to the interaction between the exhaust gas and the material. In the wear and tear, a chemical corrosion phenomenon, a physical wear phenomenon, etc. act in a complex manner. In the present invention, the phenomenon that causes a reduction in the thickness of the member surface in contact with gas in the flue gas treatment facility is referred to as wear.

まず、損耗挙動に及ぼす合金組成の影響について述べる。図1は、表1に示した比較例A3を基本成分として、Cr量を変化させた鋼材を供試した結果で、鉄鋼電気炉の排ガスダクト内面における平均損耗速度および最大損耗速度に及ぼすCr単独添加量の影響を示すものである。   First, the influence of the alloy composition on the wear behavior will be described. FIG. 1 is a result of a test using a steel material in which the amount of Cr was changed using the comparative example A3 shown in Table 1 as a basic component. This shows the effect of the amount added.

図1から、平均損耗速度で充分な効果を得るためには、4.0%以上のCr添加が必要であることがわかる。また、Crの単独添加では、最大損耗深さが十分に低減されないことがわかる。それゆえ、4.0%以上のCr添加鋼の場合、第三元素の複合添加により耐損耗性を向上させる必要がある。   From FIG. 1, it can be seen that 4.0% or more of Cr is necessary to obtain a sufficient effect at the average wear rate. It can also be seen that the maximum wear depth is not sufficiently reduced by adding Cr alone. Therefore, in the case of 4.0% or more Cr-added steel, it is necessary to improve the wear resistance by composite addition of the third element.

本発明者らは、4.0%以上のCr含有鋼の耐損耗性に及ぼす複合添加元素の効果を検討した結果、耐損耗性の改善には、低C、Si、Cu、Ni、Mo、W、Sb、Sn、Pbの添加が有効であることが判明した。さらに、Cu−Ni−(Mo、W、Mo+W)−Sbの複合添加により、顕著な耐損耗性の改善効果が得られることが判明した。   As a result of studying the effect of composite additive elements on the wear resistance of 4.0% or more Cr-containing steel, the present inventors have found that low C, Si, Cu, Ni, Mo, It has been found that the addition of W, Sb, Sn, and Pb is effective. Furthermore, it has been found that a remarkable effect of improving wear resistance can be obtained by the combined addition of Cu—Ni— (Mo, W, Mo + W) —Sb.

図2は、排ガスダクトでの損耗環境に対する5%Cr鋼へのCu、Ni、Mo、Sbの複合添加の効果を示す。Cr添加鋼においてCu−Ni−Mo−Sbを複合添加すると、耐損耗性が飛躍的に改善されることがわかる。   FIG. 2 shows the effect of combined addition of Cu, Ni, Mo, Sb to 5% Cr steel on the wear environment in the exhaust gas duct. It can be seen that when Cu—Ni—Mo—Sb is added to the Cr-added steel, the wear resistance is drastically improved.

次に、本発明の限定要件を詳細に述べる。
〔化学組成〕
まず、排ガス流路の接ガス面に用いる鋼として、オーステナイト系溶接材料で溶接接合される鋼、または、オーステナイト系溶接材料で溶接接合される複層鋼材の表層部の鋼の化学組成を限定する理由を以下に述べる。なお、%は質量%を意味する。
Next, the limiting requirements of the present invention will be described in detail.
[Chemical composition]
First, as the steel used for the gas contact surface of the exhaust gas passage, the chemical composition of the steel in the surface layer portion of the steel that is welded and joined by the austenitic welding material or the multilayer steel material that is welded and joined by the austenitic welding material is limited. The reason is described below. In addition,% means the mass%.

Cは、排ガスダクト環境での耐損耗性の観点から、その量は少ないほど好ましいが、強度を確保するためには0.001%以上の添加が必要であるので、下限値を0.001%とした。0.2%を超えると、耐損耗性、冷間加工性、および、溶接性が損なわれるので、0.001〜0.2%を限定範囲とした。特に加工性が求められる場合、0.01〜0.06%が好ましい。   From the viewpoint of wear resistance in an exhaust gas duct environment, the amount of C is preferably as small as possible. However, since 0.001% or more of addition is necessary to ensure strength, the lower limit is set to 0.001%. It was. If it exceeds 0.2%, wear resistance, cold workability, and weldability are impaired, so 0.001 to 0.2% was set as a limited range. In particular, when workability is required, 0.01 to 0.06% is preferable.

Cuは、局部的な損耗を抑制するためには、Ni、(Mo、Wの1種以上)、Sbとともに0.1%以上の添加が必要である。1%を超えて添加すると、強度の過度の上昇および製造性、冷間加工性の低下を招くため、0.1〜1%を限定範囲とした。好ましくは、0.2〜0.5%の添加が、冷間加工性および耐損耗性のバランスに優れている。   In order to suppress local wear, Cu needs to be added in an amount of 0.1% or more together with Ni, (one or more of Mo and W), and Sb. If added over 1%, an excessive increase in strength and a decrease in manufacturability and cold workability are caused, so 0.1 to 1% was made the limited range. Preferably, the addition of 0.2 to 0.5% is excellent in the balance between cold workability and wear resistance.

Niは、局部的な損耗を抑制する目的に、Cu、Mo、Sbとともに0.01%以上添加するが、その効果は0.5%で十分なので、0.01〜0.5%を限定範囲とした。   Ni is added in an amount of 0.01% or more together with Cu, Mo and Sb for the purpose of suppressing local wear, but since 0.5% is sufficient for the effect, 0.01 to 0.5% is limited. It was.

Crは、耐損耗性を確保するために、4.0%以上添加する必要がある。9.0%を超えて添加しても耐損耗性は飽和するので、4.0〜9.0%を限定範囲とした。4.0〜9.0%Cr−Cu−Ni−Sb−(Mo、W、またはMo+W)の複合添加効果によって、耐損耗性は、4.0〜9.0%Cr単独添加系に比較して飛躍的に改善される。   In order to ensure wear resistance, Cr needs to be added by 4.0% or more. Even if added over 9.0%, the wear resistance is saturated, so 4.0-9.0% was made the limited range. Due to the combined effect of 4.0 to 9.0% Cr—Cu—Ni—Sb— (Mo, W, or Mo + W), the wear resistance is higher than that of the 4.0 to 9.0% Cr single additive system. And dramatically improved.

また、6.0%を超えると、Siを制限しても、アセチレンなどの吸熱性ガスによる切断性が低下し易いので、限定範囲を4.0〜6.0%とすることが好ましい。加工性および耐損耗性を考慮すると、4.5〜5.5%がより好ましい。   Moreover, if it exceeds 6.0%, even if Si is restricted, the cutting property by an endothermic gas such as acetylene tends to be lowered. Therefore, the limited range is preferably 4.0 to 6.0%. In consideration of workability and wear resistance, 4.5 to 5.5% is more preferable.

Sbは、局部的な損耗を抑制する目的に、Cu、Ni、(Mo、Wの1種以上)とともに0.01%以上添加するが、0.2%を超えて添加してもその効果は飽和するので、0.01〜0.2%を限定範囲とした。熱間加工性の観点から、0.05〜0.15%がより好ましい。   Sb is added in an amount of 0.01% or more together with Cu, Ni, (one or more of Mo and W) for the purpose of suppressing local wear. Since saturation occurs, 0.01 to 0.2% is set as a limited range. From the viewpoint of hot workability, 0.05 to 0.15% is more preferable.

Mo、Wは、局部的な損耗を抑制する目的に、少なくとも1種以上を、Cu、Ni、Sbとともに0.005%以上添加するが、0.5%を超えると、逆に、溶接性や耐損耗性を阻害するので、0.005〜0.5%を限定範囲とした。耐損耗性、経済性、溶接性の観点からは、0.01〜0.1%が好ましい。   Mo and W are added in an amount of 0.005% or more together with Cu, Ni and Sb for the purpose of suppressing local wear, but if over 0.5%, conversely, weldability and Since wear resistance is inhibited, 0.005 to 0.5% is set as a limited range. From the viewpoint of wear resistance, economy, and weldability, 0.01 to 0.1% is preferable.

その他の成分については、次の通りである。   Other components are as follows.

Siは、脱酸のために0.01%以上添加すると、ガス成分が低減することによりブローホールが減少して、ガス切断性を確保するための必須元素であるが、0.5%を超えると熱影響部(HAZ)靱性が劣化するので、0.01〜0.5%が好ましい。耐損耗性と良好なガス切断性を両立させるためには、0.01〜0.3%の添加が、より好ましい。鋼の製造性、溶接性などを考慮した場合、0.1〜0.3%が、さらに好ましい。   Si is an indispensable element for ensuring gas cutting properties by adding 0.01% or more for deoxidation and reducing gas components to reduce blowholes. However, it exceeds 0.5%. And the heat-affected zone (HAZ) toughness deteriorates, so 0.01 to 0.5% is preferable. In order to achieve both wear resistance and good gas cutting properties, addition of 0.01 to 0.3% is more preferable. When considering the manufacturability and weldability of steel, 0.1 to 0.3% is more preferable.

Mnは、鋼の強度確保および脱酸のため0.1%以上添加する必要があるが、過度の添加は、強度過剰および冷間加工性を損なうので、0.1〜2%が好ましい。   Mn needs to be added in an amount of 0.1% or more for securing the strength of the steel and deoxidizing, but excessive addition impairs the strength and cold workability, so 0.1 to 2% is preferable.

Pは、不純物元素であり、0.05%を超えると溶接性および耐損耗性が低下するので、0.05%以下が好ましい。なお、Pは、少ないほどその効果は良好となるため、0.02%以下が、より好ましい。なお、下限値は0%を含む。   P is an impurity element, and if it exceeds 0.05%, weldability and wear resistance deteriorate, so 0.05% or less is preferable. In addition, since the effect becomes so favorable that there is little P, 0.02% or less is more preferable. The lower limit value includes 0%.

Sは、不純物元素であり、0.02%を超えると耐ラメラテア性が低下するので、0.02%以下が好ましい。Sが0.005%未満になると、耐損耗性が低下するので、0.005〜0.02%が好ましい。   S is an impurity element, and if it exceeds 0.02%, the lamellar resistance is reduced, so 0.02% or less is preferable. When S is less than 0.005%, wear resistance decreases, so 0.005 to 0.02% is preferable.

なお、Alは、必要に応じて脱酸元素として0.005%以上添加できる。Al添加量の増加に従って耐損耗性は向上するが、過度の添加はガス切断性を損なうため、0.005〜0.5%の範囲が好ましい。   Al can be added in an amount of 0.005% or more as a deoxidizing element, if necessary. The wear resistance is improved as the Al content is increased, but excessive addition impairs the gas cutting property, so 0.005 to 0.5% is preferable.

さらに、接ガス面の鋼は、必要に応じて、Co、Ti、Nb、V、Ta、Zr、B、Mg、Ca、Y、La、Ce、Sn、Pbの1種または2種以上添加しても、本発明の効果は失われない。   Furthermore, the steel on the gas contact surface is added with one or more of Co, Ti, Nb, V, Ta, Zr, B, Mg, Ca, Y, La, Ce, Sn, and Pb as required. However, the effect of the present invention is not lost.

次に、排ガス流路の接ガス面に用いる鋼および溶接材料の両方ともに、同様の化学組成の鋼である場合、すなわち、共金系の溶接材料を使用する場合について、鋼の化学組成を限定する理由を以下に述べる。   Next, when both the steel used for the gas contact surface of the exhaust gas flow path and the welding material are steels having the same chemical composition, that is, when using a metal alloy welding material, the chemical composition of the steel is limited. The reason for doing this will be described below.

C、Cu、Ni、Sb、Mo、Wについては、前述のオーステナイト系溶接材料を使用する場合と、その限定範囲および限定理由は同様である。   About C, Cu, Ni, Sb, Mo, W, the case where the above-mentioned austenitic welding material is used and the limitation range and the limitation reason are the same.

しかし、Crは、オーステナイト系溶接材料を使用する場合と、共金系溶接材料を使用する場合で、限定範囲の上限値が異なる。   However, the upper limit value of Cr is different between Cr when an austenitic welding material is used and when a common metal welding material is used.

すなわち、共金系の溶接材料を使用する場合、耐損耗性を確保するためには、4.0%以上添加する必要がある。但し、6.0%を超えて添加すると、比較的高い温度での予熱、後熱処理が不可欠となり、溶接施工性が低下するので、4.0〜6.0%を限定範囲とした。溶接施工性、加工性および耐損耗性を考慮すると、4.0〜5.5%がより好ましい。   That is, when using a metal alloy welding material, it is necessary to add 4.0% or more in order to ensure wear resistance. However, if over 6.0% is added, preheating at a relatively high temperature and post-heat treatment become indispensable, and welding workability deteriorates, so 4.0 to 6.0% was made the limited range. In consideration of welding workability, workability and wear resistance, 4.0 to 5.5% is more preferable.

さらに、Si、Mn、P、Sについては、共金系の溶接材料を使用する場合、これらを必須の成分とすることが、オーステナイト系溶接材料を使用する場合とは異なる。但し、Si、Mn、P、Sの限定範囲および限定理由は、前述のオーステナイト系溶接材料を使用する場合と、基本的に同じである。   Furthermore, with respect to Si, Mn, P, and S, when using a common metal welding material, it is different from using an austenitic welding material that these are essential components. However, the limitation ranges and reasons for limiting Si, Mn, P, and S are basically the same as in the case of using the austenitic welding material described above.

本発明の排ガスダクトに用いる鋼は、転炉、電気炉等の溶製炉において鋼を溶製し、必要に応じて、脱ガス装置、取鍋などにおいて二次精錬を施して、所定の鋼成分とした後、この溶鋼を連続鋳造により、あるいは、鋼塊とした後、分塊圧延して、鋼片とする。   The steel used in the exhaust gas duct of the present invention is made by melting steel in a melting furnace such as a converter or an electric furnace, and if necessary, subjecting it to secondary refining in a degassing device, a ladle, etc. After making into a component, this molten steel is made into a steel piece by continuous casting or after making it into a steel ingot, and then into pieces.

その後、この鋼片を、加熱しあるいは加熱することなく、熱間圧延して、熱延薄鋼板や厚鋼板とし、さらに、冷間圧延して冷延薄鋼板等の鋼板として使用できるほか、熱間圧延により形鋼、棒鋼、線材あるいは鋼管など、その耐蝕用鋼部材として多様な形で使用することができる。   Then, this steel slab can be hot-rolled with or without heating to be a hot-rolled thin steel plate or a thick steel plate, and further cold-rolled to be used as a steel plate such as a cold-rolled thin steel plate. It can be used in various forms as a corrosion-resistant steel member such as a shape steel, steel bar, wire rod or steel pipe by hot rolling.

一般に、排煙処理設備の排ガスダクトは、鋼材の溶接構造で構成されるので、該鋼材には、所要特性の他、溶接施工性が要求される。従って、溶接金属の選択的な損耗を防止するとともに、本発明で炭素鋼並みの溶接施工性を確保するためには、溶接金属の合金組成が重要である。   In general, since the exhaust gas duct of the flue gas treatment facility is composed of a welded structure of steel material, the steel material is required to have welding workability in addition to the required characteristics. Therefore, the alloy composition of the weld metal is important in order to prevent the selective wear of the weld metal and to ensure the weldability comparable to that of carbon steel in the present invention.

耐損耗性に有効なCr、Ni、Cu、Moなどの含有量を高めたオーステナイト系の溶接材料、または、母材と同じく低C−Cr−Cu−Ni−(Mo、W、Mo+W)−Sb系のフェライト系の溶接材料を用いることが好ましい。オーステナイト系溶接材料としては、周知の技術を活用すれば良く、オーステナイト系ステンレス、例えばSUS309Lなどを用いるのが、常套である。   Austenitic welding material with increased content of Cr, Ni, Cu, Mo, etc. effective for wear resistance, or low C—Cr—Cu—Ni— (Mo, W, Mo + W) —Sb as in the base material It is preferable to use a ferrite-based welding material. As an austenitic welding material, a known technique may be used, and it is a common practice to use an austenitic stainless steel, such as SUS309L.

排ガス流路の接ガス面の材質としては、複層鋼材の場合、表層が耐損耗層として、本発明の化学組成を有する鋼成分であることが重要である。耐久性の観点から、耐損耗層は3mm以上が好ましいが、複層鋼よりも材質全体が本発明で限定した化学組成を有する鋼がより好ましい。   As the material of the gas contact surface of the exhaust gas passage, in the case of a multilayer steel material, it is important that the surface layer is a wear resistant layer and is a steel component having the chemical composition of the present invention. From the viewpoint of durability, the wear-resistant layer is preferably 3 mm or more, but steel having the chemical composition defined in the present invention is more preferable than the multilayer steel.

排ガスダクトの構造としては、以下の通り、水冷二重構造または水冷鋼管パネルで構成される排ガスダクトが好ましい。これは、水冷二重構造の場合、排ガスが300℃を超える高温でも、ダクトのメタル表面温度は高々数10℃となり、過酷な溶融塩腐食(一般にはメタル表面温度が300℃以上で生じる)による損耗を回避できるためである。   As the structure of the exhaust gas duct, an exhaust gas duct composed of a water-cooled double structure or a water-cooled steel tube panel is preferable as follows. This is because, in the case of a water-cooled double structure, even if the exhaust gas is at a high temperature exceeding 300 ° C., the metal surface temperature of the duct is at most several tens of degrees C. This is because wear can be avoided.

〔水冷二重構造の排ガスダクト〕
水冷二重構造の排ガスダクトの構造例を図3に示す。接ガス面の表層が本発明の特性組成を有するクラッド鋼または本発明の特定組成を有する鋼を母材とし、オーステナイト系の溶接材料(例えば、SUS309L)による溶接部とからなる内筒2と炭素鋼製の外筒1とで構成される二重構造の排ガスダクトである。図3中、3は冷却水の流路で、4は排ガスの流路である。
[Exhaust duct with water-cooled double structure]
An example of the structure of a water-cooled dual structure exhaust gas duct is shown in FIG. Inner cylinder 2 and carbon composed of a welded portion of an austenitic welding material (for example, SUS309L), whose base layer is a clad steel whose surface layer on the gas contact surface has the characteristic composition of the present invention or a steel having the specific composition of the present invention. It is a double-structured exhaust gas duct composed of a steel outer cylinder 1. In FIG. 3, 3 is a flow path for cooling water, and 4 is a flow path for exhaust gas.

本発明の特定組成を有する鋼を基材6上に被覆して耐損耗層5としたクラッド鋼とオースナイト系溶接材料による溶接部7とからなる内筒の構造例を図4に示す。なお、図4中、8が排ガスに接する面である。   FIG. 4 shows an example of the structure of an inner cylinder composed of clad steel coated with steel having a specific composition of the present invention on a base material 6 to form a wear-resistant layer 5 and a welded portion 7 made of an austenitic welding material. In FIG. 4, 8 is a surface in contact with the exhaust gas.

冷媒の温度は100℃以下が好ましく、冷媒としては水が好ましい。内筒の板厚は耐久性の観点から6mm以上が好ましく、より好ましくは9〜16mmである。内筒の製作方法は、板巻き、鋼管、スパイラル加工と溶接など、いずれの方法でもよい。必要に応じて、接ガス面表層は、本発明の限定範囲耐熱・耐摩耗材料で被覆してもよい。   The temperature of the refrigerant is preferably 100 ° C. or less, and water is preferred as the refrigerant. The plate thickness of the inner cylinder is preferably 6 mm or more, more preferably 9 to 16 mm from the viewpoint of durability. The manufacturing method of the inner cylinder may be any method such as plate winding, steel pipe, spiral processing and welding. If necessary, the gas contact surface layer may be coated with a limited range heat and wear resistant material of the present invention.

〔水冷鋼管パネルで構成される排ガスダクト〕
水冷鋼管パネルで構成される排ガスダクトの構造例を図5に示す。排ガスと接する面(接ガス面)とは反対の面に、複数の水冷管9が、通常、平行に配列されており、パネルと溶接接合されている。炭素鋼管を並べたパネル上に接ガス面板として、本発明で限定した組成を有する鋼板を、オースナイト系溶接材料で溶接接合する。必要に応じて、接ガス面表層は耐熱・耐摩耗材料で被覆してもよい。
[Exhaust gas duct composed of water-cooled steel pipe panel]
An example of the structure of an exhaust gas duct composed of water-cooled steel pipe panels is shown in FIG. A plurality of water-cooled tubes 9 are usually arranged in parallel on the surface opposite to the surface in contact with the exhaust gas (gas contact surface), and are welded to the panel. A steel plate having a composition limited in the present invention is welded and joined with an austenitic welding material as a gas contact face plate on a panel on which carbon steel pipes are arranged. If necessary, the gas contact surface layer may be coated with a heat and wear resistant material.

(実施例1)
表1に示す合金組成の鋼板(1000mm×500mm×12mm)を長手方向に2分割し、突合せ溶接で接合した後、内筒径に冷間曲げ加工し、その後、鉄筋棒鋼の電気溶製炉の排ガスダクト内筒(サイト1)、および、転炉OG排ガス処理設備の水冷ダクト(サイト2)にあらかじめ試験鋼板をはめ込む窓を切っておき、試験鋼板を溶接して取り付けた。
(Example 1)
A steel plate (1000 mm × 500 mm × 12 mm) having an alloy composition shown in Table 1 is divided into two in the longitudinal direction, joined by butt welding, and then cold-bended to the inner cylinder diameter. A window into which the test steel plate was fitted in advance was cut into the exhaust gas duct inner cylinder (site 1) and the water cooling duct (site 2) of the converter OG exhaust gas treatment facility, and the test steel plate was welded and attached.

なお、溶接は、入熱:約20kJ/cmのアーク溶接とし、溶接材料としてはオーステナイト系ステンレス(SUS309L)の被覆アーク溶接棒を用いた。   The welding was performed by arc welding with a heat input of about 20 kJ / cm, and an austenitic stainless steel (SUS309L) coated arc welding rod was used as the welding material.

予熱・後熱処理は、特に行わなかった。いずれの試験体も、溶接性は十分で炭素鋼並であった。6ヶ月後に、試験鋼板を取り付けたダクトのセクションをガスで切断した後、各試験片を切り出し、酸洗後に板厚計測を行い、平均損耗速度および局部的な最大損耗速度を求め、耐損耗性を評価した。   Preheating and post heat treatment were not performed. All the specimens had sufficient weldability and were comparable to carbon steel. After 6 months, cut the section of the duct with the test steel plate with gas, cut out each test piece, measure the thickness after pickling, determine the average wear rate and the local maximum wear rate, and wear resistance Evaluated.

表2に、上記のダクト内曝露試験結果を示す。   Table 2 shows the above-described in-duct exposure test results.

Figure 2005163177
Figure 2005163177

Figure 2005163177
Figure 2005163177

比較例であるA1は、市販の一般溶接構造用鋼(JIS G 3141 SS400)、A2は低合金鋼であるが、双方とも、耐損耗性が低い。また、A3は、4.9%Crを単独添加した低炭素鋼であり、平均損耗速度はA1、A2に比べてよいものの、最大損耗速度はA2と同等で、Crの添加効果が認められない。   A1, which is a comparative example, is a commercially available general welded steel (JIS G 3141 SS400), and A2 is a low alloy steel, both of which have low wear resistance. A3 is a low carbon steel to which 4.9% Cr is added alone, and the average wear rate is comparable to A1 and A2, but the maximum wear rate is the same as A2, and the effect of adding Cr is not recognized. .

また、A4、A5、A6、A7はCr5.1%を含有し、さらに、Si、Cu、Ni、Mo、Sbが複合添加されるが、A4はCuが、A5はNiが、A6はMoが、A7はSbがそれぞれ不足しているために、最大損耗速度の抑制は十分ではない。   A4, A5, A6, and A7 contain 5.1% Cr, and Si, Cu, Ni, Mo, and Sb are added in combination. A4 is Cu, A5 is Ni, and A6 is Mo. , A7 has insufficient Sb, so that the maximum wear rate is not sufficiently suppressed.

また、A8は、Cr含有量が3.0%と低いため、複合添加による平均および最大損耗速度の抑制は十分ではない。   In addition, since A8 has a low Cr content of 3.0%, the suppression of the average and maximum wear rate by composite addition is not sufficient.

これに対して、本発明例であるB1〜B5は、本願の規定する鋼組成範囲にあり、耐損耗性に優れていることがわかる。   On the other hand, B1-B5 which is an example of this invention exists in the steel composition range which this application prescribes, and it turns out that it is excellent in wear resistance.

(実施例2)
表3に示す合金組成の鋼板(300mm×300mm×12mm)を、試作した溶接フェライト系合金溶接棒で突合せ溶接し、溶接施工性、溶接割れ感受性を調査した。
(Example 2)
A steel plate (300 mm × 300 mm × 12 mm) having an alloy composition shown in Table 3 was butt welded with a trial welded ferrite alloy welding rod, and the weldability and weld crack sensitivity were investigated.

溶接棒は、耐損耗性の確保上重要なCr−Cu−Ni−Mo−Sbの溶接金属中の組成が鋼板の化学組成と同等程度になるように、表4に示す合金組成に調整した。溶接は、入熱:約20kJ/cmのアーク溶接とした。   The welding rod was adjusted to the alloy composition shown in Table 4 so that the composition in the weld metal of Cr—Cu—Ni—Mo—Sb, which is important for ensuring wear resistance, was comparable to the chemical composition of the steel plate. The welding was arc welding with heat input of about 20 kJ / cm.

Figure 2005163177
Figure 2005163177

Figure 2005163177
Figure 2005163177

その結果、溶接金属WM2の組成の溶接棒で比較例の鋼板C2を母材として突合せ溶接した溶接継手(以降、溶接継手C2と記載する)では、溶接金属で低温割れが認められた。一方、鋼板C1、C3、C4を母材として、それぞれ、WM1、WM3、WM4を溶接金属とした溶接継手(以降、それぞれ溶接継手C1、C3、C4と記載する)は、溶接施工性および割れ感受性は良好であった。   As a result, in a welded joint (hereinafter referred to as a welded joint C2) in which the steel plate C2 of the comparative example was butt welded with a welding rod having a composition of the weld metal WM2, low temperature cracking was observed in the weld metal. On the other hand, the welded joints (hereinafter referred to as welded joints C1, C3, and C4, respectively) having the steel plates C1, C3, and C4 as the base materials and the welded metals of WM1, WM3, and WM4, respectively, have weldability and crack sensitivity. Was good.

そこで、溶接継手C2を除いた、溶接継手C1、C3、C4を、実施例1と同様に、鋼精錬電気炉の排煙二重水冷ダクトの接ガス面に取り付け、6ヶ月後に、試験鋼板を取り付けたダクトのセクションをガスで切断した後、各試験片を切り出し、酸洗後に板厚計測を行い、平均損耗速度および局部的な最大損耗速度を求め、耐損耗性を評価した。   Therefore, the welded joints C1, C3, and C4, excluding the welded joint C2, were attached to the gas contact surface of the flue gas double water-cooled duct of the steel refining electric furnace in the same manner as in Example 1. After cutting the section of the installed duct with gas, each test piece was cut out, the plate thickness was measured after pickling, the average wear rate and the local maximum wear rate were determined, and the wear resistance was evaluated.

表5に、上記のダクト内曝露試験結果を示す。   Table 5 shows the above-mentioned in-duct exposure test results.

Figure 2005163177
Figure 2005163177

比較例の溶接継手C1は、Cr量が母材および溶接金属ともに、前記(3)の発明で規定したCr量の下限値以下であるので、耐損耗性が本発明例C3、C4に比べて劣っていることがわかる。また、前記の通り、比較例の溶接継手C2は、Cr量が母材および溶接金属ともに、前記(3)の発明で規定したCr量の上限値を超えているので、十分な溶接性が得られないことがわかる。   Since the weld joint C1 of the comparative example has a Cr amount equal to or less than the lower limit value of the Cr amount defined in the invention of (3) for both the base metal and the weld metal, the wear resistance is higher than that of the inventive examples C3 and C4. It turns out that it is inferior. As described above, the weld joint C2 of the comparative example has sufficient weldability because the Cr amount exceeds the upper limit value of the Cr amount defined in the invention of (3) for both the base metal and the weld metal. I can't understand.

以上の結果から、母材および溶接金属ともに、Cr量が前記(3)の発明で規定したCr量の範囲であれば、フェライト系溶接材料を使用しても、優れた耐損耗性と溶接施工性をガス切断性とともに両立可能であることがわかる。   From the above results, both the base metal and the weld metal have excellent wear resistance and welding performance even when a ferrite-based welding material is used, provided that the Cr content is in the Cr content range specified in the invention of (3). It can be seen that it is possible to achieve compatibility with gas cutting properties.

本発明の排ガスダクトは、製鋼電気炉、製鋼転炉の排ガス処理装置、灰溶融炉の排ガス処理装置、廃棄物や汚泥などの焼却施設の排ガス処理装置において、例えば、ダクト、熱交換器ケーシング、電気集塵機やバグフィルターのケーシング、冷却塔のケーシング、煙突内筒などに使用すれば、優れた耐久性による設備寿命の延伸を図りながら、従来の炭素鋼と同じ維持管理および補修方法を継続でき、その産業上の価値は極めて高い。   The exhaust gas duct of the present invention is a steelmaking electric furnace, an exhaust gas treatment device for a steelmaking converter, an exhaust gas treatment device for an ash melting furnace, an exhaust gas treatment device for an incineration facility such as waste or sludge, for example, a duct, a heat exchanger casing, If it is used for casings of electrostatic precipitators and bag filters, casings of cooling towers, chimney inner cylinders, etc., the same maintenance and repair methods as conventional carbon steel can be continued while extending the equipment life due to excellent durability. Its industrial value is extremely high.

鋼の溶製電気炉の水冷ダクト内筒でのCr単独添加鋼の最大・平均損耗速度に及ぼすCr量の影響を示す図である。It is a figure which shows the influence of the amount of Cr which has on the maximum and average wear rate of the steel with single Cr addition in the water cooling duct inner cylinder of the steel melting electric furnace. 水冷排ガスダクトの内筒環境における5%Cr鋼の損耗速度に及ぼすCu、Ni、Sbの複合添加の効果を示す図である。It is a figure which shows the effect of combined addition of Cu, Ni, and Sb which has on the wear rate of 5% Cr steel in the inner cylinder environment of a water-cooled exhaust gas duct. 二重水冷ダクトの構造例を示す図である。It is a figure which shows the structural example of a double water cooling duct. 二重水冷ダクトの内筒の構造例を示す図である。It is a figure which shows the structural example of the inner cylinder of a double water cooling duct. 水冷パネルで構成されるダクトの構造例を示す図である。(a)は、ダクトの断面を示し、(b)は、水冷管の断面を拡大して示す図である。It is a figure which shows the structural example of the duct comprised with a water cooling panel. (A) shows the cross section of a duct, (b) is an enlarged view of the cross section of a water-cooled tube.

符号の説明Explanation of symbols

1 外筒
2 内筒
3 冷却水の流路
4 排ガスの流路
5 耐損耗層
6 基材
7 オーステナイト系溶接材料による溶接部
8 排ガスに接する面
9 水冷管
10 ダクトのスカート
11 フィン
DESCRIPTION OF SYMBOLS 1 Outer cylinder 2 Inner cylinder 3 Cooling water flow path 4 Exhaust gas flow path 5 Wear-resistant layer 6 Base material 7 Welded part by austenitic welding material 8 Surface in contact with exhaust gas 9 Water-cooled pipe 10 Duct skirt 11 Fin

Claims (5)

排ガスダクトにおける排ガス流路の接ガス面が、質量%で、
C :0.001〜0.2%、
Cu:0.1〜1%、
Ni:0.01〜0.5%、
Cr:4.0%〜9.0%、
Sb:0.01〜0.2%、
を含有し、かつ、
Mo:0.005〜0.5%、
W :0.005〜0.5%
の1種または2種を含有し、残部がFeおよび不可避的不純物からなる鋼を、オーステナイト系溶接材料で溶接接合して構成されていることを特徴とする排ガスダクト。
The gas contact surface of the exhaust gas passage in the exhaust gas duct is mass%,
C: 0.001 to 0.2%,
Cu: 0.1 to 1%,
Ni: 0.01 to 0.5%,
Cr: 4.0% to 9.0%,
Sb: 0.01-0.2%
Containing, and
Mo: 0.005 to 0.5%,
W: 0.005-0.5%
An exhaust gas duct comprising a steel containing one or two of the above, the balance being Fe and inevitable impurities, welded together with an austenitic welding material.
排ガスダクトにおける排ガス流路の接ガス面が、質量%で、
C :0.001〜0.2%、
Cu:0.1〜1%、
Ni:0.01〜0.5%、
Cr:4.0%〜9.0%、
Sb:0.01〜0.2%、
を含有し、かつ、
Mo:0.005〜0.5%、
W :0.005〜0.5%
の1種または2種を含有し、残部がFeおよび不可避的不純物からなる鋼を表層に有する複層鋼材の表層部が、オーステナイト系溶接材料で溶接接合して構成されていることを特徴とする排ガスダクト。
The gas contact surface of the exhaust gas passage in the exhaust gas duct is mass%,
C: 0.001 to 0.2%,
Cu: 0.1 to 1%,
Ni: 0.01 to 0.5%,
Cr: 4.0% to 9.0%,
Sb: 0.01-0.2%
Containing, and
Mo: 0.005 to 0.5%,
W: 0.005-0.5%
A surface layer portion of a multilayer steel material containing one or two types of the above, the balance being steel composed of Fe and unavoidable impurities in the surface layer is formed by welding and joining with an austenitic welding material Exhaust gas duct.
排ガスダクトにおける排ガス流路の接ガス面の鋼および溶接金属の両方が、質量%で、
C :0.001〜0.2%、
Si:0.01〜0.5%、
Mn:0.1〜2%、
Cu:0.1〜1%、
Ni:0.01〜0.5%、
Cr:4.0%〜6.0%、
Sb:0.01〜0.2%、
P :0.05%以下、
S :0.005〜0.02%、
を含有し、かつ、
Mo:0.005〜0.5%、
W :0.005〜0.5%
の1種または2種を含有し、残部がFeおよび不可避的不純物からなる鋼と溶接金属で構成されていることを特徴とする排ガスダクト。
Both the steel and weld metal on the gas contact surface of the exhaust gas flow path in the exhaust gas duct are in% by mass.
C: 0.001 to 0.2%,
Si: 0.01 to 0.5%,
Mn: 0.1 to 2%,
Cu: 0.1 to 1%,
Ni: 0.01 to 0.5%,
Cr: 4.0% to 6.0%,
Sb: 0.01-0.2%
P: 0.05% or less,
S: 0.005 to 0.02%,
Containing, and
Mo: 0.005 to 0.5%,
W: 0.005-0.5%
An exhaust gas duct comprising one or two of the following, the balance being made of steel and weld metal made of Fe and inevitable impurities.
前記排ガスダクトが、二重筒型の水冷排ガスダクトであって、金属製外筒と金属製内筒とから構成され、内筒の内側を排ガス流路とし、外筒と内筒の間を冷媒流路とすることを特徴とする請求項1〜3のいずれか1項に記載の排ガスダクト。   The exhaust gas duct is a double-cylinder type water-cooled exhaust gas duct, and is composed of a metal outer cylinder and a metal inner cylinder. The inside of the inner cylinder serves as an exhaust gas flow path, and a refrigerant is provided between the outer cylinder and the inner cylinder. It is set as a flow path, The exhaust gas duct of any one of Claims 1-3 characterized by the above-mentioned. 前記排ガスダクトが、排ガス流路の接ガス面と反対の面に、複数のパイプが接合配置された排ガスダクトであって、該パイプ中に冷媒を通過させる機能を有することを特徴とする請求項1〜3のいずれか1項に記載の排ガスダクト。   The exhaust gas duct is an exhaust gas duct in which a plurality of pipes are joined to a surface opposite to a gas contact surface of an exhaust gas flow path, and has a function of allowing a refrigerant to pass through the pipes. The exhaust gas duct according to any one of 1 to 3.
JP2004324848A 2003-11-14 2004-11-09 Metal refining furnace exhaust gas duct Expired - Fee Related JP4571847B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004324848A JP4571847B2 (en) 2003-11-14 2004-11-09 Metal refining furnace exhaust gas duct
KR1020067007407A KR20060061857A (en) 2003-11-14 2004-11-12 Steel product for flue gas treatment facilities excellent in capability of being cut by gas and/or wear resistance, and flue gas duct
PCT/JP2004/017214 WO2005047555A1 (en) 2003-11-14 2004-11-12 Steel product for flue gas treatment facilities excellent in capability of being cut by gas and/or wear resistance, and flue gas duct
US10/579,172 US20070122650A1 (en) 2003-11-14 2004-11-12 Steel for exhaust gas processing equipment and exhaust gas duct excellent in wear resistance or wear resistance and gas cutting property

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003385593 2003-11-14
JP2004324848A JP4571847B2 (en) 2003-11-14 2004-11-09 Metal refining furnace exhaust gas duct

Publications (2)

Publication Number Publication Date
JP2005163177A true JP2005163177A (en) 2005-06-23
JP4571847B2 JP4571847B2 (en) 2010-10-27

Family

ID=34741801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004324848A Expired - Fee Related JP4571847B2 (en) 2003-11-14 2004-11-09 Metal refining furnace exhaust gas duct

Country Status (1)

Country Link
JP (1) JP4571847B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019045110A (en) * 2017-09-06 2019-03-22 Dowaエコシステム株式会社 Front dust collector of melting furnace
JP2020100964A (en) * 2018-12-20 2020-07-02 三菱重工機械システム株式会社 Chimney and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09279293A (en) * 1996-04-15 1997-10-28 Nkk Corp Steel excellent in exhaust gas corrosion resistance
JP2000256782A (en) * 1999-03-11 2000-09-19 Nkk Corp Steel for lng combustion exhaust gas flow passage
JP2000256781A (en) * 1999-03-11 2000-09-19 Nkk Corp Steel for lng combustion exhaust gas flow passage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09279293A (en) * 1996-04-15 1997-10-28 Nkk Corp Steel excellent in exhaust gas corrosion resistance
JP2000256782A (en) * 1999-03-11 2000-09-19 Nkk Corp Steel for lng combustion exhaust gas flow passage
JP2000256781A (en) * 1999-03-11 2000-09-19 Nkk Corp Steel for lng combustion exhaust gas flow passage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019045110A (en) * 2017-09-06 2019-03-22 Dowaエコシステム株式会社 Front dust collector of melting furnace
JP2020100964A (en) * 2018-12-20 2020-07-02 三菱重工機械システム株式会社 Chimney and its manufacturing method
JP7232639B2 (en) 2018-12-20 2023-03-03 三菱重工機械システム株式会社 Chimney and chimney manufacturing method

Also Published As

Publication number Publication date
JP4571847B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
KR100835750B1 (en) Low alloy steel excellent in resistance to corrosion by hydrochloric acid and corrosion by sulfuric acid and weld joint comprising the same
JP3892782B2 (en) Gas shielded arc welding wire for low alloy steel excellent in hydrochloric acid resistance and sulfuric acid resistance and gas shielded arc welding method using the same
JP7135420B2 (en) steel
JP7348463B2 (en) steel material
JP2008126279A (en) Flux-cored wire for gas shielded arc welding
CN111485166A (en) Cold-rolled low-temperature-resistant acid dew point corrosion steel and manufacturing method thereof
JP3222307B2 (en) Alloy and multi-layer steel pipe having corrosion resistance in an environment in which a fuel containing V, Na, S, Cl is burned
JP4571847B2 (en) Metal refining furnace exhaust gas duct
JP7269467B2 (en) steel
JP7124432B2 (en) steel material
JP3296111B2 (en) Steel with excellent exhaust gas corrosion resistance
JP7127355B2 (en) steel
JP4571848B2 (en) Steel for metal smelting furnace flue gas treatment equipment with excellent wear resistance and gas cutting properties
WO2005047555A1 (en) Steel product for flue gas treatment facilities excellent in capability of being cut by gas and/or wear resistance, and flue gas duct
JP2004090042A (en) Flux cored wire for gas shielded arc welding of low alloy steel excellent in resistance to hydrochloric acid and sulfuric acid
JP7218524B2 (en) steel
JPH09279293A (en) Steel excellent in exhaust gas corrosion resistance
JP4827047B2 (en) Steel structure with corrosion resistance, wear resistance and heat crack resistance
JPH11131179A (en) Steel for welded structure, excellent in sulfuric acid dew point corrosion resistance, and its production
TW200521252A (en) A steel of an apparatus for processing exhaust smoke having excellent wear resistance or excellent wear resistance and property for oxy-fuel gas cutting, and an exhaust gas duct thereof
JP2007224377A (en) Steel material superior in acid-corrosion resistance
JP6787530B1 (en) Steel
JP3527458B2 (en) Cladding steel and chimney for the inner cylinder of a coal-fired power plant with excellent corrosion resistance at the weld zone
CN114599804B (en) Steel material
CN114641586B (en) Hot rolled steel material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4571847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees