JPH09270545A - Multilayer magnetoresistance effect film, magnetoresistance effect element and magnetoresistance effect type magnetic head - Google Patents
Multilayer magnetoresistance effect film, magnetoresistance effect element and magnetoresistance effect type magnetic headInfo
- Publication number
- JPH09270545A JPH09270545A JP8077976A JP7797696A JPH09270545A JP H09270545 A JPH09270545 A JP H09270545A JP 8077976 A JP8077976 A JP 8077976A JP 7797696 A JP7797696 A JP 7797696A JP H09270545 A JPH09270545 A JP H09270545A
- Authority
- JP
- Japan
- Prior art keywords
- film
- magnetic field
- magnetoresistive effect
- multilayer
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 251
- 230000000694 effects Effects 0.000 title claims abstract description 239
- 239000010408 film Substances 0.000 claims description 174
- 239000010409 thin film Substances 0.000 claims description 26
- 239000004020 conductor Substances 0.000 claims description 13
- 229910003271 Ni-Fe Inorganic materials 0.000 claims description 12
- 229910045601 alloy Inorganic materials 0.000 claims description 11
- 239000000956 alloy Substances 0.000 claims description 11
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims description 4
- 229910000640 Fe alloy Inorganic materials 0.000 claims description 3
- 229910001316 Ag alloy Inorganic materials 0.000 claims description 2
- 229910001020 Au alloy Inorganic materials 0.000 claims description 2
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 2
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 229910002070 thin film alloy Inorganic materials 0.000 claims 1
- 230000008878 coupling Effects 0.000 abstract description 20
- 238000010168 coupling process Methods 0.000 abstract description 20
- 238000005859 coupling reaction Methods 0.000 abstract description 20
- 230000005290 antiferromagnetic effect Effects 0.000 abstract description 18
- 239000010410 layer Substances 0.000 description 69
- 230000001747 exhibiting effect Effects 0.000 description 10
- 230000035945 sensitivity Effects 0.000 description 10
- 239000000696 magnetic material Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 229910000889 permalloy Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 230000003667 anti-reflective effect Effects 0.000 description 1
- 239000002772 conduction electron Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
Landscapes
- Magnetic Heads (AREA)
- Hall/Mr Elements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、磁性層と非磁性層
とが積層された多層膜を有し、巨大磁気抵抗効果を示す
多層磁気抵抗効果膜に関する。また、本発明は、このよ
うな多層磁気抵抗効果膜を用いた磁気抵抗効果素子及び
磁気抵抗効果型磁気ヘッドに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-layered magnetoresistive film having a multi-layered film in which a magnetic layer and a non-magnetic layer are laminated and showing a giant magnetoresistive effect. The present invention also relates to a magnetoresistive effect element and a magnetoresistive effect type magnetic head using such a multilayer magnetoresistive effect film.
【0002】[0002]
【従来の技術】磁気抵抗効果素子は、磁界検出用の素子
であり、通常、短冊状に形成された磁気抵抗効果膜と、
磁気抵抗効果膜の両端に取り付けられた一対の電極とを
備えている。ここで、磁気抵抗効果膜は、外部磁界の大
きさによって抵抗値が変化する薄膜である。そして、磁
気抵抗効果素子を用いて外部磁界を検出する際は、通
常、一対の電極を介して磁気抵抗効果膜に一定のセンス
電流を供給し、このセンス電流の電圧変化を検出する。
すなわち、磁気抵抗効果素子では、外部磁界の変化によ
って磁気抵抗効果膜の抵抗が変化し、この抵抗変化がセ
ンス電流の電圧変化として検出される。2. Description of the Related Art A magnetoresistive effect element is an element for detecting a magnetic field, and usually has a magnetoresistive effect film formed in a strip shape,
And a pair of electrodes attached to both ends of the magnetoresistive film. Here, the magnetoresistive film is a thin film whose resistance value changes according to the magnitude of the external magnetic field. When detecting an external magnetic field using the magnetoresistive element, normally, a fixed sense current is supplied to the magnetoresistive film via a pair of electrodes, and a voltage change of the sense current is detected.
That is, in the magnetoresistive element, the resistance of the magnetoresistive film changes due to a change in the external magnetic field, and this resistance change is detected as a voltage change of the sense current.
【0003】そして、このような磁気抵抗効果素子は、
例えば、再生用磁気ヘッドに使用されている。ここで、
磁気抵抗効果素子を用いた再生用磁気ヘッドは、磁気抵
抗効果型磁気ヘッドと呼ばれており、記録媒体からの信
号磁界を磁気抵抗効果素子の抵抗変化として検出する。[0003] Such a magnetoresistive element is
For example, it is used for a reproducing magnetic head. here,
A reproducing magnetic head using a magnetoresistive element is called a magnetoresistive head, and detects a signal magnetic field from a recording medium as a change in resistance of the magnetoresistive element.
【0004】ところで、従来、このような磁気抵抗効果
素子としては、磁気抵抗効果膜として異方性磁気抵抗効
果を示すNi−Fe合金膜(いわゆるパーマロイ膜)を
用いた磁気抵抗効果素子が広く使用されている。しかし
ながら、パーマロイ膜を用いた磁気抵抗効果素子は、磁
気抵抗変化率が小さく、より大きな磁気抵抗変化率を示
す磁気抵抗効果素子が望まれている。Heretofore, as such a magnetoresistive element, a magnetoresistive element using a Ni—Fe alloy film (so-called permalloy film) exhibiting an anisotropic magnetoresistive effect as the magnetoresistive effect film has been widely used. Have been. However, a magnetoresistance effect element using a permalloy film has a small magnetoresistance change rate, and a magnetoresistance effect element exhibiting a larger magnetoresistance change rate is desired.
【0005】特に、パーマロイ膜を用いた磁気抵抗効果
素子の磁気抵抗変化率は、磁気ヘッド等に用いられるよ
うな条件下では、約2%以下と非常に小さなものとなっ
てしまう。そのため、磁気記録の高密度化に伴って、磁
気抵抗効果型磁気ヘッドに使用される磁気抵抗効果素子
として、より大きな磁気抵抗効果を示すものが強く求め
られている。[0005] In particular, the magnetoresistance change rate of a magnetoresistive element using a permalloy film is as small as about 2% or less under conditions used for a magnetic head or the like. Therefore, with the increase in the density of magnetic recording, there is a strong demand for a magnetoresistive element having a greater magnetoresistance effect to be used in a magnetoresistive magnetic head.
【0006】これに対して、近年、異種の金属等を数原
子層ずつ交互に積層した人工格子膜構造の多層膜におい
て、非常に大きな磁気抵抗効果(いわゆる巨大磁気抵抗
効果)が得られることが報告されている。具体的には、
例えば、M.N.Baibich らにより、”Phys.Rev.Lett.61,p
2472(1988)”において、Feからなる磁性層と、Crか
らなる非磁性導体層とを積層した人工格子膜構造の多層
膜が巨大磁気抵抗効果を示すことが報告されている。ま
た、例えば、S.S.P.Parkinらにより、”Phys.Rev.Lett.
66,p2152(1991) ”において、Coからなる磁性層と、
Cuからなる非磁性導体層とを積層した人工格子膜構造
の多層膜が巨大磁気抵抗効果を示すことが報告されてい
る。On the other hand, in recent years, an extremely large magnetoresistance effect (so-called giant magnetoresistance effect) has been obtained in a multilayer film having an artificial lattice film structure in which different kinds of metals and the like are alternately stacked by several atomic layers. It has been reported. In particular,
For example, MNBaibich et al., “Phys. Rev. Lett. 61, p.
2472 (1988) ", it has been reported that a multilayer film having an artificial lattice film structure in which a magnetic layer made of Fe and a nonmagnetic conductor layer made of Cr are stacked exhibits a giant magnetoresistance effect. SSPParkin et al., “Phys. Rev. Lett.
66, p2152 (1991) ", wherein a magnetic layer made of Co;
It has been reported that a multilayer film having an artificial lattice film structure in which a nonmagnetic conductor layer made of Cu is laminated exhibits a giant magnetoresistance effect.
【0007】このような人工格子膜構造の多層膜におい
て、巨大磁気抵抗効果が得られる原因は、非磁性導体層
中の伝導電子を介して磁性層間でRKKY(ルーダーマ
ン・キッテル・糟谷・芳田)相互作用が働き、相対する
磁性層が反強磁性結合することによって反平行スピン状
態が発生し、その結果、スピン依存散乱が生じるためで
ある考えられている。The giant magnetoresistance effect is obtained in the multilayer film having such an artificial lattice film structure because the RKKY (Ruderman-Kittel-Kasuya-Yoshida) mutual between the magnetic layers via conduction electrons in the non-magnetic conductor layer. It is considered that the anti-ferromagnetic coupling between the opposing magnetic layers causes an antiparallel spin state to occur, and as a result, spin-dependent scattering occurs.
【0008】そして、このような人工格子膜構造の多層
膜からなる磁気抵抗効果膜(以下、多層磁気抵抗効果膜
と称する。)は、従来のパーマロイ膜によって得られる
磁気抵抗効果よりも遥かに大きな磁気抵抗効果を示すた
め、磁気抵抗効果素子への応用、並びに磁気抵抗効果型
磁気ヘッド等のデバイスへの応用が期待されている。A magnetoresistive film composed of a multilayer film having such an artificial lattice film structure (hereinafter, referred to as a multilayer magnetoresistive film) is much larger than a magnetoresistive effect obtained by a conventional permalloy film. In order to exhibit the magnetoresistance effect, application to a magnetoresistance effect element and application to devices such as a magnetoresistance effect type magnetic head are expected.
【0009】しかし、多層磁気抵抗効果膜は、抵抗値の
変化量は大きいが、抵抗変化に要する磁界変化量が大き
いという問題がある。すなわち、多層磁気抵抗効果膜
は、磁気ヘッド等のように微弱な磁界を検出する必要が
あるデバイスに用いるには、感度が不十分である。した
がって、多層磁気抵抗効果膜を、磁気ヘッド等のように
微弱な磁界を検出する必要があるデバイスに適用するに
は、小さな磁界変化でも大きな抵抗変化を得られるよう
にすることが必要となっている。[0009] However, the multilayer magnetoresistive film has a problem that although the amount of change in the resistance value is large, the amount of change in the magnetic field required for the resistance change is large. That is, the sensitivity of the multilayer magnetoresistive film is insufficient for use in a device that needs to detect a weak magnetic field, such as a magnetic head. Therefore, in order to apply a multilayer magnetoresistive film to a device that needs to detect a weak magnetic field, such as a magnetic head, it is necessary to obtain a large resistance change even with a small magnetic field change. I have.
【0010】そこで、より小さな磁界変化でも大きな抵
抗変化が得られる多層磁気抵抗効果膜として、例えば、
多層磁気抵抗効果膜を構成する磁性層に、NiFe又は
NiFeCo等の軟磁性材料を使用したものが提案され
ている。Therefore, as a multilayer magnetoresistive film capable of obtaining a large resistance change even with a smaller magnetic field change, for example,
It has been proposed to use a soft magnetic material such as NiFe or NiFeCo for the magnetic layer forming the multilayer magnetoresistive effect film.
【0011】[0011]
【発明が解決しようとする課題】しかしながら、上述の
ような多層磁気抵抗効果膜を用いた磁気抵抗効果素子
は、外部磁界を検出するためにセンス電流を流したとき
に、センス電流によって生じる磁界により、多層磁気抵
抗効果膜内の反強磁性結合が破壊されてしまい、磁気抵
抗効果が低下してしまうという問題がある。However, the magnetoresistive effect element using the multilayer magnetoresistive effect film as described above is not affected by the magnetic field generated by the sense current when the sense current is passed to detect the external magnetic field. However, there is a problem that the antiferromagnetic coupling in the multilayer magnetoresistive effect film is broken and the magnetoresistive effect is lowered.
【0012】特に、NiFeやNiFeCo等の軟磁性
材料を磁性層に使用した多層磁気抵抗効果膜では、セン
ス電流によって生じる磁界により、多層磁気抵抗効果膜
内の反強磁性結合が破壊されやすい。したがって、より
小さな磁界変化でも大きな抵抗変化が得られるように、
NiFeやNiFeCo等の軟磁性材料を磁性層に使用
した多層磁気抵抗効果膜において、センス電流によって
生じる磁界による反強磁性結合の破壊が大きな問題とな
っている。In particular, in a multilayer magnetoresistive effect film using a soft magnetic material such as NiFe or NiFeCo for the magnetic layer, the antiferromagnetic coupling in the multilayer magnetoresistive effect film is easily broken by the magnetic field generated by the sense current. Therefore, in order to obtain a large resistance change with a smaller magnetic field change,
In a multilayer magnetoresistive effect film using a soft magnetic material such as NiFe or NiFeCo for a magnetic layer, breaking of antiferromagnetic coupling due to a magnetic field generated by a sense current is a serious problem.
【0013】このように、センス電流を供給すると反強
磁性結合が破壊されてしまうような磁気抵抗効果素子で
は、センス電流を供給したときに磁気抵抗効果が低下し
てしまうため、大きな磁気抵抗効果が得られず、磁界検
出用の素子として不適である。そして、当然の事なが
ら、このような磁気抵抗効果素子を磁気ヘッド等のデバ
イスに使用しても、大きな磁気抵抗効果が得られないた
め、再生出力の増大は図れない。As described above, in the magnetoresistive effect element in which the antiferromagnetic coupling is destroyed when the sense current is supplied, the magnetoresistive effect is lowered when the sense current is supplied, so that a large magnetoresistive effect is obtained. Is not obtained and is not suitable as an element for magnetic field detection. As a matter of course, even if such a magnetoresistive effect element is used in a device such as a magnetic head, a large magnetoresistive effect cannot be obtained, so that the reproduction output cannot be increased.
【0014】本発明は、このような従来の実情に鑑みて
提案されたものであり、センス電流を供給しても、反強
磁性結合が破壊され難く、しかも、良好な巨大磁気抵抗
効果を示す多層磁気抵抗効果膜を提供することを目的と
している。また、本発明は、このような多層磁気抵抗効
果膜を用いることにより、微弱な磁界や微少な磁界変化
を高感度に検出することを可能とした磁気抵抗効果素子
を提供することも目的としている。更に、本発明は、こ
のような多層磁気抵抗効果膜を用いることにより、高い
再生出力を得ることを可能とした磁気抵抗効果型磁気ヘ
ッドを提供することも目的としている。The present invention has been proposed in view of such a conventional situation, and even if a sense current is supplied, the antiferromagnetic coupling is not easily broken, and a good giant magnetoresistive effect is exhibited. It is intended to provide a multilayer magnetoresistive effect film. Another object of the present invention is to provide a magnetoresistive effect element capable of detecting a weak magnetic field or a minute magnetic field change with high sensitivity by using such a multilayer magnetoresistive effect film. . Another object of the present invention is to provide a magnetoresistive effect type magnetic head capable of obtaining a high reproduction output by using such a multilayer magnetoresistive effect film.
【0015】[0015]
【課題を解決するための手段】本発明者は、上述の目的
を達成するために様々な特性の多層磁気抵抗効果膜につ
いて検討を重ねた結果、多層磁気抵抗効果膜の磁気抵抗
効果に異方性を持たせることにより、センス電流によっ
て生じる磁界の影響を受け難い多層磁気抵抗効果膜が得
られることを見出し、本発明を成すに至った。The present inventor has conducted studies on multilayer magnetoresistive films having various characteristics in order to achieve the above-mentioned object, and as a result, has anisotropy in the magnetoresistive effect of the multilayer magnetoresistive films. It was found that a multi-layered magnetoresistive effect film that is not easily affected by the magnetic field generated by the sense current can be obtained by imparting the property, and thus the present invention has been accomplished.
【0016】すなわち、本発明に係る多層磁気抵抗効果
膜は、磁性層と非磁性導体層とが積層された多層膜を有
する多層磁気抵抗効果膜であって、互いに直交するx方
向の磁界とy方向の磁界について、x方向の磁界変化に
対しては、磁界の大きさが小さくても急峻な磁気抵抗変
化を示し、y方向の磁界変化に対しては、磁界の大きさ
が小さいうちは緩やかな磁気抵抗変化を示すことを特徴
とするものである。That is, the multi-layered magnetoresistive effect film according to the present invention is a multi-layered magnetoresistive effect film having a multi-layered film in which a magnetic layer and a non-magnetic conductor layer are laminated, and the magnetic field in the x direction and y which are orthogonal to each other Regarding the magnetic field in the direction, a steep reluctance change is shown with respect to the change of the magnetic field in the x direction even if the magnitude of the magnetic field is small, and is gentle with respect to the change of the magnetic field in the y direction while the magnitude of the magnetic field is small. It is characterized by exhibiting a large change in magnetic resistance.
【0017】上記多層磁気抵抗効果膜は、磁気抵抗効果
が異方性を持っているため、高い磁気抵抗効果を維持し
つつ、センス電流によって生じる磁界の影響を軽減して
反強磁性結合の破壊を防止することができる。Since the magnetoresistive effect of the multilayer magnetoresistive film has anisotropy, the effect of the magnetic field generated by the sense current is reduced while maintaining the high magnetoresistive effect, and the antiferromagnetic coupling is destroyed. Can be prevented.
【0018】すなわち、検出すべき外部磁界が、磁界の
大きさが小さくても急峻な磁気抵抗変化を示す方向に印
加するようにするとともに、センス電流によって生じる
磁界が、磁界の大きさが小さいうちは緩やかな磁気抵抗
変化を示す方向に印加するようにすることにより、この
多層磁気抵抗効果膜は、外部磁界に対しては敏感で良好
な磁気抵抗効果を示し、しかも、センス電流によって生
じる磁界に対しては鈍感で影響をあまり受けないように
なる。このとき、多層磁気抵抗効果膜は、外部磁界に対
しては敏感で良好な磁気抵抗効果を示すため、外部磁界
を高感度にて検出することができる。しかも、この多層
磁気抵抗効果膜は、センス電流によって生じる磁界の影
響はあまり受けないため、センス電流によって生じる磁
界による反強磁性結合の破壊が発生し難い。That is, the external magnetic field to be detected is applied in a direction showing a steep magnetoresistance change even when the magnitude of the magnetic field is small, and the magnetic field generated by the sense current is small while the magnitude of the magnetic field is small. Is applied in the direction showing a gradual change in magnetoresistance, this multilayer magnetoresistance effect film is sensitive to an external magnetic field and exhibits a good magnetoresistance effect. On the other hand, they are less sensitive and less affected. At this time, since the multilayer magnetoresistive effect film is sensitive to an external magnetic field and exhibits a favorable magnetoresistive effect, the external magnetic field can be detected with high sensitivity. Moreover, since the multilayer magnetoresistive effect film is not much affected by the magnetic field generated by the sense current, the antiferromagnetic coupling is less likely to be broken by the magnetic field generated by the sense current.
【0019】そして、本発明に係る磁気抵抗効果素子
は、上述のような本発明に係る多層磁気抵抗効果膜を少
なくとも一部に用いていることを特徴とするものであ
る。この磁気抵抗効果素子は、反強磁性結合が破壊され
難く、しかも、良好な巨大磁気抵抗効果を示す多層磁気
抵抗効果膜を用いているので、微弱な磁界や微少な磁界
変化を高感度に検出することが可能である。The magnetoresistive effect element according to the present invention is characterized in that the above-mentioned multilayer magnetoresistive effect film according to the present invention is used at least in part. This magnetoresistive element uses a multi-layered magnetoresistive effect film that has a good anti-ferromagnetic coupling and is capable of exhibiting excellent giant magnetoresistive effect. Therefore, it can detect weak magnetic fields and minute magnetic field changes with high sensitivity. It is possible to
【0020】また、本発明に係る磁気抵抗効果型磁気ヘ
ッドは、上述のような本発明に係る多層磁気抵抗効果膜
を少なくとも一部に用いていることを特徴とするもので
ある。この磁気抵抗効果型磁気ヘッドは、反強磁性結合
が破壊され難く、しかも、良好な巨大磁気抵抗効果を示
す多層磁気抵抗効果膜を用いているので、微弱な磁界や
微少な磁界変化を高感度に検出することが可能であり、
したがって、大きな再生出力を得ることが可能である。The magnetoresistive effect magnetic head according to the present invention is characterized in that the above-described multilayer magnetoresistive effect film according to the present invention is used at least in part. This magnetoresistive effect magnetic head uses a multi-layered magnetoresistive effect film in which the antiferromagnetic coupling is hard to be destroyed and which exhibits a good giant magnetoresistive effect, and thus is sensitive to a weak magnetic field and a minute magnetic field change. It is possible to detect
Therefore, a large reproduction output can be obtained.
【0021】[0021]
【発明の実施の形態】以下、本発明を適用した具体的な
実施の形態について、図面を参照しながら詳細に説明す
る。なお、本発明は以下の例に限定されるものではな
く、本発明の要旨を逸脱しない範囲で、形状や材質等を
任意に変更することが可能であることは言うまでもな
い。Embodiments of the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the following examples, and it goes without saying that the shape, material, and the like can be arbitrarily changed without departing from the gist of the present invention.
【0022】まず、本発明を適用した多層磁気抵抗効果
膜の実施の形態の一例について説明する。First, an example of an embodiment of a multilayer magnetoresistive film to which the present invention is applied will be described.
【0023】本実施の形態に係る多層磁気抵抗効果膜
は、巨大磁気抵抗効果を示す磁気抵抗効果膜であり、ス
パッタ法によって形成されたものである。なお、スパッ
タを行うとき、到達真空度は1×10-4Pa以下とし、
Arガス圧は0.1〜0.5Paとした。The multilayer magnetoresistive effect film according to the present embodiment is a magnetoresistive effect film exhibiting a giant magnetoresistive effect and is formed by a sputtering method. When performing sputtering, the ultimate vacuum degree is set to 1 × 10 −4 Pa or less,
Ar gas pressure was 0.1-0.5 Pa.
【0024】図1に示すように、この多層磁気抵抗効果
膜1は、基板2上に形成された下部磁性層3と、下部磁
性層3上に積層された多層膜4と、多層膜4上に積層さ
れた上部磁性層5とから構成される。As shown in FIG. 1, the multilayer magnetoresistive effect film 1 includes a lower magnetic layer 3 formed on a substrate 2, a multilayer film 4 laminated on the lower magnetic layer 3, and a multilayer film 4. And the upper magnetic layer 5 laminated on the.
【0025】ここで、下部磁性層3及び上部磁性層5
は、強磁性材料からなる磁性薄膜であり、下部磁性層3
は、膜厚が約7nmのNi−Fe薄膜からなり、上部磁
性層5は、膜厚が約5nmのNi−Fe薄膜からなる。
また、多層膜4は、非磁性導体層10と磁性層11と
が、8周期繰り返し積層されてなる。ここで、非磁性層
10は、膜厚が約2.1nmのCu薄膜からなり、磁性
層11は、膜厚が約0.42nmのFe薄膜からなる第
1の磁性層11aと、膜厚が約1.58nmのNi薄膜
からなる第2の磁性層11bとが積層されてなる。そし
て、多層膜4を構成している各磁性層11は、反強磁性
結合しており、外部磁界がないとき、それらの磁化方向
は交互に逆方向となっている。Here, the lower magnetic layer 3 and the upper magnetic layer 5
Is a magnetic thin film made of a ferromagnetic material, and is a lower magnetic layer 3
Is a Ni—Fe thin film having a thickness of about 7 nm, and the upper magnetic layer 5 is a Ni—Fe thin film having a thickness of about 5 nm.
The multilayer film 4 is formed by repeatedly stacking the nonmagnetic conductor layer 10 and the magnetic layer 11 for eight cycles. Here, the non-magnetic layer 10 is made of a Cu thin film having a thickness of about 2.1 nm, and the magnetic layer 11 is made of an Fe thin film having a thickness of about 0.42 nm and the first magnetic layer 11a. A second magnetic layer 11b made of a Ni thin film having a thickness of about 1.58 nm is laminated. The magnetic layers 11 constituting the multilayer film 4 are antiferromagnetically coupled, and their magnetization directions are alternately reversed in the absence of an external magnetic field.
【0026】なお、この多層磁気抵抗効果膜を構成する
各層は、上記の例に限定されるものではなく、多層磁気
抵抗効果膜全体として巨大磁気抵抗効果を示すような構
成となっていればよい。The layers constituting the multilayer magnetoresistive effect film are not limited to the above-mentioned examples, and it is sufficient that the multilayer magnetoresistive effect film as a whole exhibits a giant magnetoresistive effect. .
【0027】以上のように、本実施の形態に係る多層磁
気抵抗効果膜1は、下部磁性層3の上に、Ni/Fe/
Cuよりなる積層膜が8周期繰り返し積層されてなる多
層膜4が積層され、この多層膜4の最上層に形成された
第2の磁性層11bの上に、上部磁性層5が形成されて
いる。ここで、多層膜4を構成する磁性層11の膜厚、
すなわち第1の磁性層11aの膜厚と第2の磁性層11
bの膜厚の合計は、約2.0nmである。すなわち、こ
の多層磁気抵抗効果膜1は、多層膜4を構成する磁性層
11よりも厚い下部磁性層3が多層膜4の下部に配され
るとともに、多層膜4を構成する磁性層11よりも厚い
上部磁性層5が多層膜4の上部に配されて構成されてい
る。As described above, the multilayer magnetoresistive effect film 1 according to this embodiment has the Ni / Fe / on the lower magnetic layer 3.
A multilayer film 4 formed by repeatedly stacking stacked films made of Cu for 8 cycles is stacked, and the upper magnetic layer 5 is formed on the second magnetic layer 11b formed on the uppermost layer of the multilayer film 4. . Here, the film thickness of the magnetic layer 11 forming the multilayer film 4,
That is, the film thickness of the first magnetic layer 11a and the second magnetic layer 11
The total film thickness of b is about 2.0 nm. That is, in the multilayer magnetoresistive effect film 1, the lower magnetic layer 3 thicker than the magnetic layer 11 forming the multilayer film 4 is arranged below the multilayer film 4 and the magnetic layer 11 forming the multilayer film 4 is formed. A thick upper magnetic layer 5 is arranged on the multilayer film 4 and is configured.
【0028】なお、上記多層膜4を構成する磁性層11
は、上述のようなNi薄膜とFe薄膜との積層膜に限定
されるものではなく、例えば、Ni合金薄膜とFe合金
薄膜との積層膜や、Ni−Fe系合金薄膜とNi−Fe
系合金薄膜との積層膜や、Ni−Fe系合金薄膜とこの
Ni−Fe系合金薄膜とは組成の異なるNi−Fe系合
金薄膜との積層膜等も好適である。また、上記多層膜4
を構成する非磁性導体層10の材料は、Cuに限定され
るものではなく、例えば、Cu、Ag、Au、Cu合
金、Ag合金又はAu合金から選ばれる少なくとも1種
を含むもの等が広く使用可能である。The magnetic layer 11 forming the multilayer film 4 is described.
Is not limited to the laminated film of the Ni thin film and the Fe thin film as described above. For example, a laminated film of the Ni alloy thin film and the Fe alloy thin film or a Ni—Fe alloy thin film and the Ni—Fe thin film.
A laminated film with a system alloy thin film, a laminated film with a Ni—Fe system alloy thin film and a Ni—Fe system alloy thin film having a composition different from that of the Ni—Fe system alloy thin film are also suitable. In addition, the multilayer film 4
The material of the non-magnetic conductor layer 10 constituting the is not limited to Cu. For example, a material containing at least one selected from Cu, Ag, Au, Cu alloy, Ag alloy or Au alloy is widely used. It is possible.
【0029】以上のような多層磁気抵抗効果膜1にセン
ス電流Isを供給して、磁気抵抗効果を測定した結果を
図2に示す。ここで、図2(a)は、多層磁気抵抗効果
膜1の主面に平行で、センス電流Isが流れる方向に対
して平行な方向をx方向としたとき、x方向に磁界Hを
印加したときの磁気抵抗効果曲線を示している。また、
図2(b)は、多層磁気抵抗効果膜1の主面に平行で、
センス電流Isが流れる方向に対して垂直な方向をy方
向としたとき、y方向に磁界Hを印加したときの磁気抵
抗効果曲線を示している。すなわち、図2(a)は、セ
ンス電流Isに対して平行に磁界Hを印加して測定した
磁気抵抗効果曲線を示しており、図2(b)は、センス
電流Isに対して垂直に磁界Hを印加して測定した磁気
抵抗効果曲線を示している。FIG. 2 shows the results of measuring the magnetoresistive effect by supplying the sense current Is to the multilayer magnetoresistive effect film 1 as described above. Here, in FIG. 2A, when the direction parallel to the main surface of the multilayer magnetoresistive effect film 1 and parallel to the direction in which the sense current Is flows is the x direction, the magnetic field H is applied in the x direction. The magnetic resistance effect curve at this time is shown. Also,
FIG. 2B is parallel to the main surface of the multilayer magnetoresistive effect film 1,
When the direction perpendicular to the direction in which the sense current Is flows is the y direction, the magnetoresistive effect curve when the magnetic field H is applied in the y direction is shown. That is, FIG. 2A shows a magnetoresistive effect curve measured by applying a magnetic field H parallel to the sense current Is, and FIG. 2B shows a magnetic field perpendicular to the sense current Is. The magnetoresistive effect curve measured by applying H is shown.
【0030】図2(a)及び図2(b)から明らかなよ
うに、この多層磁気抵抗効果膜1の磁気抵抗効果は異方
性を持っており、x方向の磁界変化に対しては、磁界の
大きさが小さくても急峻な磁気抵抗変化を示し、y方向
の磁界変化に対しては、磁界の大きさが小さいうちは緩
やかな磁気抵抗変化を示す。As is apparent from FIGS. 2A and 2B, the magnetoresistive effect of this multilayer magnetoresistive effect film 1 has anisotropy, and it is Even if the magnitude of the magnetic field is small, the magnetic resistance changes abruptly, and with respect to the change in the magnetic field in the y direction, the magnetic resistance changes gradually while the magnitude of the magnetic field is small.
【0031】すなわち、この多層磁気抵抗効果膜1は、
x方向の磁界変化に対しては、磁界の増加とともに、抵
抗値が直ぐに単調に低下するような特性を示すが、y方
向の磁界変化に対しては、ある程度の磁界までは高い抵
抗値を保持するような特性を示す。That is, the multilayer magnetoresistive effect film 1 is
It shows a characteristic that the resistance value immediately and monotonously decreases as the magnetic field increases in response to a change in the magnetic field in the x direction, but maintains a high resistance value up to a certain magnetic field in response to a change in the magnetic field in the y direction. Shows the characteristics that
【0032】このように、本実施の形態に係る多層磁気
抵抗効果膜1は、x方向の磁界変化に対しては敏感であ
り、y方向の磁界変化に対しては鈍感である。したがっ
て、検出すべき外部磁界がx方向に印加するようにする
とともに、センス電流Isによって生じる磁界がy方向
に印加するようにすることにより、高い磁気抵抗効果を
維持しつつ、センス電流Isによって生じる磁界の影響
を軽減して反強磁性結合の破壊を防止することができ
る。As described above, the multilayer magnetoresistive effect film 1 according to the present embodiment is sensitive to a magnetic field change in the x direction and insensitive to a magnetic field change in the y direction. Therefore, by applying the external magnetic field to be detected in the x direction and applying the magnetic field generated by the sense current Is in the y direction, the magnetic field generated by the sense current Is is maintained while maintaining a high magnetoresistive effect. The influence of the magnetic field can be reduced to prevent breakage of the antiferromagnetic coupling.
【0033】すなわち、この多層磁気抵抗効果膜1は、
x方向の磁界変化に対しては敏感であるので、検出すべ
き外部磁界がx方向に印加するようにすることにより、
外部磁界を高感度にて検出することができる。しかも、
この多層磁気抵抗効果膜1は、y方向の磁界変化に対し
ては鈍感であるので、センス電流Isによって生じる磁
界がy方向に印加するようにすることにより、センス電
流Isによって生じる磁界による反強磁性結合の破壊を
防止することができる。That is, the multilayer magnetoresistive effect film 1 is
Since it is sensitive to magnetic field changes in the x-direction, by applying an external magnetic field to be detected in the x-direction,
The external magnetic field can be detected with high sensitivity. Moreover,
Since the multilayer magnetoresistive effect film 1 is insensitive to the change in the magnetic field in the y direction, by applying the magnetic field generated by the sense current Is in the y direction, anti-strength due to the magnetic field generated by the sense current Is is exerted. It is possible to prevent breakage of magnetic coupling.
【0034】なお、このような磁気抵抗効果の異方性
は、例えば、多層磁気抵抗効果膜1を構成する各層を成
膜するときの条件を制御することにより、実現すること
ができる。具体的には、例えば、多層磁気抵抗効果膜1
を構成する各層を成膜するときに、スパッタ粒子の入射
角度を制御したり、外部から磁界を印加することによ
り、上述のような磁気抵抗効果の異方性を実現すること
ができる。Incidentally, such anisotropy of the magnetoresistive effect can be realized by controlling the conditions when forming each layer constituting the multilayer magnetoresistive effect film 1, for example. Specifically, for example, the multilayer magnetoresistive effect film 1
When the respective layers constituting the above are formed, the anisotropy of the magnetoresistive effect as described above can be realized by controlling the incident angle of the sputtered particles or applying a magnetic field from the outside.
【0035】ここで、比較例として、従来の多層磁気抵
抗効果膜の磁気抵抗効果曲線を図3に示す。ここで、図
3(a)は、x方向に磁界Hを印加したときの磁気抵抗
効果曲線、すなわち、センス電流Isに対して平行に磁
界Hを印加して測定した磁気抵抗効果曲線を示してい
る。また、図3(b)は、y方向に磁界Hを印加したと
きの磁気抵抗効果曲線、すなわち、センス電流Isに対
して垂直に磁界Hを印加して測定した磁気抵抗効果曲線
を示している。このように、従来の多層磁気抵抗効果膜
の磁気抵抗効果は等方的であり、x方向に磁界を印加し
たときも、y方向に磁界を印加したときも、同様な磁気
抵抗効果が生じる。Here, as a comparative example, a magnetoresistive effect curve of a conventional multilayer magnetoresistive effect film is shown in FIG. Here, FIG. 3A shows a magnetoresistive effect curve when the magnetic field H is applied in the x direction, that is, a magnetoresistive effect curve measured by applying the magnetic field H parallel to the sense current Is. There is. Further, FIG. 3B shows a magnetoresistive effect curve when the magnetic field H is applied in the y direction, that is, a magnetoresistive effect curve measured by applying the magnetic field H perpendicular to the sense current Is. . As described above, the magnetoresistive effect of the conventional multi-layered magnetoresistive film is isotropic, and the same magnetoresistive effect occurs when a magnetic field is applied in the x direction and when a magnetic field is applied in the y direction.
【0036】このような多層磁気抵抗効果膜は、図3か
ら明らかなように、x方向とy方向のいずれの方向の磁
界変化に対しても敏感に反応する。したがって、センス
電流Isによって生じる磁界がy方向に印加するように
しても、x方向に印加するようにしても、この多層磁気
抵抗効果膜は、センス電流Isによって生じる磁界の影
響を受けやすい。そのため、等方的な磁気抵抗効果を示
す従来の多層磁気抵抗効果膜は、センス電流Isによっ
て生じる磁界により、反強磁性結合が破壊されやすく、
センス電流Isを供給して外部磁界を検出するような用
途には不適であった。As is clear from FIG. 3, such a multilayer magnetoresistive film sensitively reacts to changes in the magnetic field in either the x direction or the y direction. Therefore, whether the magnetic field generated by the sense current Is is applied in the y direction or the x direction, the multilayer magnetoresistive effect film is easily affected by the magnetic field generated by the sense current Is. Therefore, in the conventional multilayer magnetoresistive film exhibiting an isotropic magnetoresistive effect, the antiferromagnetic coupling is easily broken by the magnetic field generated by the sense current Is,
It was not suitable for applications such as supplying a sense current Is to detect an external magnetic field.
【0037】これに対して、本実施の形態に係る多層磁
気抵抗効果膜1は、上述したように、センス電流Isを
供給しても、反強磁性結合が破壊され難いので、センス
電流Isを供給して外部磁界を検出するような用途に対
して非常に好適である。On the other hand, in the multilayer magnetoresistive effect film 1 according to the present embodiment, as described above, even if the sense current Is is supplied, the antiferromagnetic coupling is hard to be broken, so that the sense current Is is reduced. It is very suitable for applications such as supplying and detecting external magnetic fields.
【0038】なお、「日本応用磁気学会誌」Vol.1
7、No.2、395頁(1993年)に記載されてい
る、NiFeCo膜を用いた多層磁気抵抗効果膜などで
も、磁気抵抗効果の異方性の存在は指摘されている。Incidentally, "Journal of Applied Magnetics of Japan" Vol. 1
7, No. The existence of anisotropy in the magnetoresistive effect is also pointed out in the multilayer magnetoresistive effect film using the NiFeCo film, which is described on page 2, 395 (1993).
【0039】しかしながら、このような従来公知の多層
磁気抵抗効果膜では、磁気抵抗効果に異方性が見られた
としても、それらは、全ての方向からの磁界に対して磁
界の増加とともに抵抗値が単調に減少する傾向を示して
いる。However, in such a conventionally known multilayer magnetoresistive effect film, even if anisotropy is observed in the magnetoresistive effect, they have resistance values with respect to magnetic fields from all directions as the magnetic field increases. Shows a tendency to decrease monotonically.
【0040】すなわち、従来公知の多層磁気抵抗効果膜
では、x方向の磁界変化に対する磁気抵抗効果特性と、
y方向の磁界変化に対する磁気抵抗効果特性とに多少の
違いが見られても、それらはいずれも外部磁界の増大に
伴って抵抗値が直ぐに単調に低下するような特性であ
り、本実施の形態に係る多層磁気抵抗効果膜のように、
y方向の磁界変化に対しては、ある程度の磁界まで高い
抵抗値を保持するような特性は見られない。That is, in the conventionally known multilayer magnetoresistive effect film, the magnetoresistive effect characteristic with respect to the change in the magnetic field in the x direction,
Even if there is a slight difference in the magnetoresistive effect characteristics with respect to the change in the magnetic field in the y direction, all of them have such characteristics that the resistance value immediately and monotonously decreases as the external magnetic field increases. Like the multilayer magnetoresistive film according to
With respect to the change in the magnetic field in the y direction, there is no characteristic that maintains a high resistance up to a certain magnetic field.
【0041】したがって、従来公知の多層磁気抵抗効果
膜では、磁気抵抗効果に異方性が見られたとしても、上
述の比較例と同様に、センス電流Isによって生じる磁
界の影響を受けやすく、反強磁性結合が破壊されやすい
ことに変わりはない。Therefore, in the conventionally known multilayer magnetoresistive effect film, even if anisotropy is observed in the magnetoresistive effect, as in the above-mentioned comparative example, it is easily affected by the magnetic field generated by the sense current Is, and the anti-reflective effect is reversed. It is still the case that ferromagnetic coupling is easily broken.
【0042】つぎに、本発明を適用した磁気抵抗効果素
子の実施の形態の一例について説明する。Next, an example of an embodiment of a magnetoresistive effect element to which the present invention is applied will be described.
【0043】図4に示すように、本実施の形態に係る磁
気抵抗効果素子20は、短冊状の多層磁気抵抗効果膜2
1と、多層磁気抵抗効果膜21の両端に取り付けられた
一対の電極22,23とを備えている。As shown in FIG. 4, the magnetoresistive effect element 20 according to the present embodiment has a strip-shaped multi-layered magnetoresistive effect film 2.
1 and a pair of electrodes 22 and 23 attached to both ends of the multilayer magnetoresistive effect film 21.
【0044】上記多層磁気抵抗効果膜21は、外部磁界
の大きさによって抵抗値が大きく変化する巨大磁気抵抗
効果を示す多層膜であり、上記実施の形態に係る多層磁
気抵抗効果膜1を、長軸方向が磁界変化に対して敏感な
方向となり、単軸方向が磁界変化に対して鈍感な方向と
なるように、短冊状に加工したものである。なお、本実
施の形態では、多層磁気抵抗効果膜21の幅Wは約2μ
mとし、長さLは約10μmとした。The multilayer magnetoresistive effect film 21 is a multilayer film exhibiting a giant magnetoresistive effect in which the resistance value greatly changes depending on the magnitude of the external magnetic field. It is processed into a strip shape so that the axial direction is sensitive to the magnetic field change and the single axis direction is insensitive to the magnetic field change. In this embodiment, the width W of the multilayer magnetoresistive effect film 21 is about 2 μm.
m, and the length L was about 10 μm.
【0045】また、多層磁気抵抗効果膜21の両端に取
り付けられた一対の電極22,23は、外部磁界を検出
する際に、多層磁気抵抗効果膜21にセンス電流Isを
供給するためのものである。なお、本実施の形態では、
電極22と電極23との間の距離D、すなわち磁気抵抗
効果素子20の感磁部となる部分の長さは、約8μmと
した。The pair of electrodes 22 and 23 attached to both ends of the multilayer magnetoresistive effect film 21 are for supplying a sense current Is to the multilayer magnetoresistive effect film 21 when detecting an external magnetic field. is there. In the present embodiment,
The distance D between the electrode 22 and the electrode 23, that is, the length of the magnetic sensitive portion of the magnetoresistive effect element 20 was set to about 8 μm.
【0046】以上のような磁気抵抗効果素子20によっ
て外部磁界を検出する際は、一対の電極22,23を介
して、多層磁気抵抗効果膜21の長軸方向に対して平行
に、多層磁気抵抗効果膜21にセンス電流Isを供給す
る。When the external magnetic field is detected by the magnetoresistive effect element 20 as described above, the multilayer magnetoresistive film is parallel to the long axis direction of the multilayer magnetoresistive effect film 21 through the pair of electrodes 22 and 23. A sense current Is is supplied to the effect film 21.
【0047】このとき、センス電流Isによって生じる
磁界は、多層磁気抵抗効果膜21の短軸方向に対してほ
ぼ平行に発生する。そして、本実施の形態に係る磁気抵
抗効果素子20では、上述したように、多層磁気抵抗効
果膜21の短軸方向を、磁界変化に対して鈍感な方向と
している。そのため、この磁気抵抗効果素子20の多層
磁気抵抗効果膜21は、センス電流Isによって生じる
磁界の影響を受けづらく、反強磁性結合が破壊され難
い。したがって、この磁気抵抗効果素子20は、センス
電流Isを供給しても、安定した磁気抵抗効果を示す。At this time, the magnetic field generated by the sense current Is is generated substantially parallel to the minor axis direction of the multilayer magnetoresistive effect film 21. Then, in the magnetoresistive effect element 20 according to the present embodiment, as described above, the minor axis direction of the multilayer magnetoresistive effect film 21 is made insensitive to the magnetic field change. Therefore, the multilayer magnetoresistive effect film 21 of the magnetoresistive effect element 20 is hardly affected by the magnetic field generated by the sense current Is, and the antiferromagnetic coupling is hard to be broken. Therefore, the magnetoresistive effect element 20 exhibits a stable magnetoresistive effect even when the sense current Is is supplied.
【0048】また、この磁気抵抗効果素子20によって
外部磁界を検出する際、検出対象の外部磁界は、図4中
矢印Hに示すように、センス電流Isが流れる方向に対
して平行に、すなわち多層磁気抵抗効果膜21の長軸方
向に印加するようにする。上述したように、本実施の形
態に係る磁気抵抗効果素子20では、多層磁気抵抗効果
膜21の長軸方向を、磁界変化に対して敏感な方向とし
ている。したがって、外部磁界が多層磁気抵抗効果膜2
1の長軸方向に印加するようにすることにより、外部磁
界を高感度にて検出することが可能となる。Further, when the external magnetic field is detected by the magnetoresistive effect element 20, the external magnetic field to be detected is parallel to the direction in which the sense current Is flows, that is, the multilayer structure, as shown by an arrow H in FIG. It is applied in the major axis direction of the magnetoresistive film 21. As described above, in the magnetoresistive effect element 20 according to the present embodiment, the major axis direction of the multilayer magnetoresistive effect film 21 is made sensitive to the magnetic field change. Therefore, the external magnetic field causes the multilayer magnetoresistive film 2
The external magnetic field can be detected with high sensitivity by applying the magnetic field in the long axis direction of 1.
【0049】以上のような磁気抵抗効果素子20によっ
て外部磁界を検出したときの出力を測定した結果を表1
に示す。ここで、出力は、センス電流Isの電圧変化と
して得られるものである。なお、表1には、比較例とし
て、等方的な磁気抵抗効果を示す従来の多層磁気抵抗効
果膜を用いて、上記磁気抵抗効果素子20と同様に形成
した磁気抵抗効果素子の測定結果についても併記してい
る。すなわち、表1において、実施例は、本実施の形態
に係る磁気抵抗効果素子20を示しており、比較例は、
等方的な磁気抵抗効果を示す多層磁気抵抗効果膜を用い
た従来の磁気抵抗効果素子を示している。Table 1 shows the results of measuring the output when the external magnetic field is detected by the magnetoresistive effect element 20 as described above.
Shown in Here, the output is obtained as a voltage change of the sense current Is. In Table 1, as a comparative example, measurement results of a magnetoresistive effect element formed in the same manner as the magnetoresistive effect element 20 using a conventional multilayer magnetoresistive effect film exhibiting an isotropic magnetoresistive effect are shown. Is also shown. That is, in Table 1, the example shows the magnetoresistive element 20 according to the present embodiment, and the comparative example shows
The conventional magnetoresistive effect element using the multilayer magnetoresistive effect film which shows an isotropic magnetoresistive effect is shown.
【0050】[0050]
【表1】 [Table 1]
【0051】表1に示すように、本実施の形態に係る磁
気抵抗効果素子20は、従来の磁気抵抗効果素子に比べ
て、約1.8倍の感度が得られている。すなわち、本実
施の形態に係る磁気抵抗効果素子20では、微弱な磁界
や微少な磁界変化を非常に高感度に検出することが可能
となっている。As shown in Table 1, the magnetoresistive effect element 20 according to the present embodiment has a sensitivity about 1.8 times higher than that of the conventional magnetoresistive effect element. That is, the magnetoresistive effect element 20 according to the present embodiment can detect a weak magnetic field or a minute magnetic field change with extremely high sensitivity.
【0052】つぎに、本発明を適用した磁気抵抗効果型
磁気ヘッドの実施の形態の一例について説明する。Next, an example of an embodiment of a magnetoresistive effect type magnetic head to which the present invention is applied will be described.
【0053】本実施例に係る磁気抵抗効果型磁気ヘッド
は、磁気抵抗効果膜の長軸方向が記録媒体の摺動方向に
対して垂直となるように磁気抵抗効果膜を配した、いわ
ゆる縦型の磁気抵抗効果型磁気ヘッドである。なお、縦
型の磁気抵抗効果型磁気ヘッドについては、例えば、”
H.Suyama et al. IEEE(アメリカ電気通信学会)Transa
ction on Magnetics,MAG-24,p2612(1988) ”に記載され
ている。The magnetoresistive effect magnetic head according to the present embodiment is a so-called vertical type in which the magnetoresistive effect film is arranged so that the major axis direction of the magnetoresistive effect film is perpendicular to the sliding direction of the recording medium. Is a magnetoresistive effect type magnetic head. Regarding the vertical type magnetoresistive effect magnetic head, for example, "
H.Suyama et al. IEEE (Institute of Telecommunications) Transa
ction on Magnetics, MAG-24, p2612 (1988) ”.
【0054】図5に示すように、本実施の形態に係る磁
気抵抗効果型磁気ヘッド30は、非磁性材料からなる基
体31の上に非磁性層32を介して形成されており、非
磁性層32上に形成された下部シールドコア33と、下
部シールドコア33上に形成された非磁性層34と、非
磁性層34上に形成された磁気抵抗効果素子35と、磁
気抵抗効果素子35上に形成された非磁性層36と、磁
気抵抗効果素子35の上部を通過するように非磁性層3
6内に配されたバイアス導体37と、非磁性層36上に
形成された上部シールドコア38とを備えている。な
お、この磁気抵抗効果型磁気ヘッド30の上には、図示
していないが、磁気抵抗効果型磁気ヘッド30を保護す
るための保護層が形成される。As shown in FIG. 5, the magnetoresistive effect magnetic head 30 according to the present embodiment is formed on a substrate 31 made of a nonmagnetic material with a nonmagnetic layer 32 interposed therebetween. On the lower shield core 33 formed on the lower shield core 33, the non-magnetic layer 34 formed on the lower shield core 33, the magnetoresistive effect element 35 formed on the non-magnetic layer 34, and the magnetoresistive effect element 35. The formed nonmagnetic layer 36 and the nonmagnetic layer 3 so as to pass over the magnetoresistive effect element 35.
6, a bias conductor 37 arranged in the inner part 6 and an upper shield core 38 formed on the non-magnetic layer 36. Although not shown, a protective layer for protecting the magnetoresistive head 30 is formed on the magnetoresistive head 30.
【0055】上記磁気抵抗効果型磁気ヘッド30におい
て、下部シールドコア33は、磁気抵抗効果素子35の
下部を磁気的にシールドするためのものであり、磁性材
料からなる。同様に、上部シールドコア38は、磁気抵
抗効果素子35の上部を磁気的にシールドするためのも
のであり、磁性材料からなる。また、下部シールドコア
33と磁気抵抗効果素子35との間に配された非磁性層
34は、下部シールドコア33と磁気抵抗効果素子35
との間に磁気ギャップを形成するためのものであり、非
磁性の絶縁材料からなる。同様に、磁気抵抗効果素子3
5と上部シールドコア38との間に配された非磁性層3
6は、磁気抵抗効果素子35と上部シールドコア38と
の間に磁気ギャップを形成するためのものであり、非磁
性の絶縁材料からなる。In the magnetoresistive effect magnetic head 30, the lower shield core 33 serves to magnetically shield the lower part of the magnetoresistive effect element 35 and is made of a magnetic material. Similarly, the upper shield core 38 is for magnetically shielding the upper portion of the magnetoresistive effect element 35, and is made of a magnetic material. The non-magnetic layer 34 disposed between the lower shield core 33 and the magneto-resistance effect element 35
To form a magnetic gap between them, and is made of a non-magnetic insulating material. Similarly, the magnetoresistive element 3
5 and the upper magnetic shield 38 and the non-magnetic layer 3 disposed between
6 is for forming a magnetic gap between the magnetoresistive effect element 35 and the upper shield core 38, and is made of a non-magnetic insulating material.
【0056】そして、非磁性層34と非磁性層36との
間に配された磁気抵抗効果素子35は、上記実施の形態
に係る磁気抵抗効果素子20と同様な構成を有してお
り、本発明を適用した多層磁気抵抗効果膜35aと、多
層磁気抵抗効果膜35aの前端部から導出された電極3
5bと、多層磁気抵抗効果膜35aの後端部から導出さ
れた電極35cとから構成されている。The magnetoresistive effect element 35 arranged between the nonmagnetic layer 34 and the nonmagnetic layer 36 has the same structure as the magnetoresistive effect element 20 according to the above-mentioned embodiment, and The multilayer magnetoresistive effect film 35a to which the invention is applied, and the electrode 3 derived from the front end portion of the multilayer magnetoresistive effect film 35a.
5b and an electrode 35c led out from the rear end of the multilayer magnetoresistive effect film 35a.
【0057】ここで、多層磁気抵抗効果膜35aは、上
記実施の形態に係る磁気抵抗効果素子20の多層磁気抵
抗効果膜21と同様に、短冊状に形成されており、その
前端部が記録媒体対向面Aに露出している。Here, the multilayer magnetoresistive effect film 35a is formed in a strip shape like the multilayer magnetoresistive effect film 21 of the magnetoresistive effect element 20 according to the above-mentioned embodiment, and the front end portion thereof is a recording medium. It is exposed on the facing surface A.
【0058】この多層磁気抵抗効果膜35aを形成する
際は、例えば、記録媒体対向面Aに臨むように、非磁性
層34の上に多層磁気抵抗効果膜35aを被着形成し、
その後、既知のフォトリソグラフィ技術を用いて、当該
多層磁気抵抗効果膜35aを所定の短冊状のパターンに
パターニングする。ここで、パターニングは、例えば、
フォトレジストの塗布、パターン露光、現像及びこれを
マスクとしたイオンビームエッチング等の工程を施すこ
とによって行われる。When the multilayer magnetoresistive effect film 35a is formed, for example, the multilayer magnetoresistive effect film 35a is deposited on the nonmagnetic layer 34 so as to face the recording medium facing surface A,
Thereafter, the multilayer magnetoresistive film 35a is patterned into a predetermined strip pattern by using a known photolithography technique. Here, the patterning is, for example,
This is performed by applying processes such as application of a photoresist, pattern exposure, development, and ion beam etching using the photoresist as a mask.
【0059】この多層磁気抵抗効果膜35aの前端部か
ら導出された電極35b、及び後端部から導出された電
極35cは、多層磁気抵抗効果膜35aにセンス電流I
sを供給するためのものであり、良導体材料からなる。
そして、これらの電極35b,35cも、多層磁気抵抗
効果膜35aと同様に、フォトリソグラフィ技術によっ
て所定のパターンにパターニングされて形成される。The electrode 35b led out from the front end portion and the electrode 35c led out from the rear end portion of the multilayer magnetoresistive effect film 35a have a sense current I applied to the multilayer magnetoresistive effect film 35a.
s, and is made of a good conductor material.
These electrodes 35b and 35c are also formed by patterning into a predetermined pattern by a photolithography technique, similarly to the multilayer magnetoresistive film 35a.
【0060】このような磁気抵抗効果素子35の上部を
通過するように形成されたバイアス導体37は、磁気抵
抗効果素子35の感度を向上するために、磁気抵抗効果
素子35にバイアス磁界を印加するためのものであり、
磁気抵抗効果素子35の感磁部の部分、すなわち多層磁
気抵抗効果膜35aの上部を通過するようにパターニン
グされている。The bias conductor 37 formed so as to pass above the magnetoresistive effect element 35 applies a bias magnetic field to the magnetoresistive effect element 35 in order to improve the sensitivity of the magnetoresistive effect element 35. Is for
The magnetoresistive effect element 35 is patterned so as to pass through the magnetic sensitive portion, that is, the upper portion of the multilayer magnetoresistive effect film 35a.
【0061】以上のような磁気抵抗効果型磁気ヘッド3
0により、記録媒体から情報信号を再生する様子を図6
に示す。ここで、図6は、上記磁気抵抗効果型磁気ヘッ
ド30による情報信号再生の様子を模式的に示す図であ
り、上記磁気抵抗効果型磁気ヘッド30の要部と、記録
媒体40とを図示している。The magnetoresistive effect type magnetic head 3 as described above.
FIG. 6 shows how an information signal is reproduced from a recording medium by 0.
Shown in Here, FIG. 6 is a diagram schematically showing how the magnetoresistive effect magnetic head 30 reproduces an information signal, and illustrates the essential part of the magnetoresistive effect magnetic head 30 and the recording medium 40. ing.
【0062】この図6に示すように、記録媒体40から
情報信号を再生する際は、磁気抵抗効果型磁気ヘッド3
0の記録媒体対向面Aを記録媒体40の記録トラックに
対向させるとともに、電極35b,35cから多層磁気
抵抗効果膜35aに一定のセンス電流Isを供給し、こ
のときの電極35bと電極35cとの間の電圧変化を検
出する。As shown in FIG. 6, when reproducing an information signal from the recording medium 40, the magnetoresistive head 3 is used.
The recording medium facing surface A of the recording medium 40 is opposed to the recording track of the recording medium 40, and a constant sense current Is is supplied from the electrodes 35b and 35c to the multilayer magnetoresistive film 35a. Detects a voltage change between them.
【0063】すなわち、上記磁気抵抗効果型磁気ヘッド
30では、記録媒体40の記録トラックに記録された磁
界の向きの変化によって、多層磁気抵抗効果膜35aの
抵抗が変化する。そこで、この多層磁気抵抗効果膜35
aの抵抗変化を電極35bと電極35cとの間の電圧変
化として検出することにより、記録媒体40からの情報
信号が再生されることとなる。That is, in the magnetoresistive effect magnetic head 30, the resistance of the multilayer magnetoresistive effect film 35a changes according to the change in the direction of the magnetic field recorded on the recording track of the recording medium 40. Therefore, the multilayer magnetoresistive film 35
The information signal from the recording medium 40 is reproduced by detecting the resistance change of a as a voltage change between the electrode 35b and the electrode 35c.
【0064】以上のような磁気抵抗効果型磁気ヘッド3
0において、センス電流Isによって生じる磁界は、多
層磁気抵抗効果膜35aの短軸方向に対してほぼ平行に
発生する。そして、本実施の形態に係る磁気抵抗効果型
磁気ヘッド30では、多層磁気抵抗効果膜35aの短軸
方向を、磁界変化に対して鈍感な方向としている。その
ため、この多層磁気抵抗効果膜35aは、センス電流I
sによって生じる磁界の影響を受けづらく、反強磁性結
合が破壊され難い。したがって、この磁気抵抗効果型磁
気ヘッド30では、安定した大きな出力を得ることがで
きる。The magnetoresistive effect type magnetic head 3 as described above.
At 0, the magnetic field generated by the sense current Is is generated substantially parallel to the minor axis direction of the multilayer magnetoresistive effect film 35a. In the magnetoresistive effect magnetic head 30 according to the present embodiment, the minor axis direction of the multilayer magnetoresistive effect film 35a is insensitive to the magnetic field change. Therefore, the multi-layer magnetoresistive effect film 35a has a sense current I
It is hard to be affected by the magnetic field generated by s, and the antiferromagnetic coupling is not easily broken. Therefore, the magnetoresistive effect magnetic head 30 can obtain a stable and large output.
【0065】また、以上のような磁気抵抗効果型磁気ヘ
ッド30では、多層磁気抵抗効果膜35aの長軸方向が
記録媒体40の摺動方向に対して垂直となるように、多
層磁気抵抗効果膜35aが配されている。したがって、
記録媒体40からの信号磁界は、センス電流Isが流れ
る方向に対して平行に、すなわち多層磁気抵抗効果膜3
5aの長軸方向に印加することとなる。そして、本実施
の形態に係る磁気抵抗効果型磁気ヘッド30では、多層
磁気抵抗効果膜35aの長軸方向を磁界変化に対して敏
感な方向としている。したがって、この磁気抵抗効果型
磁気ヘッド30は、記録媒体40からの信号磁界を高感
度にて検出することができる。In the magnetoresistive effect type magnetic head 30 as described above, the multilayer magnetoresistive effect film is arranged so that the major axis direction of the multilayer magnetoresistive effect film 35a is perpendicular to the sliding direction of the recording medium 40. 35a is arranged. Therefore,
The signal magnetic field from the recording medium 40 is parallel to the direction in which the sense current Is flows, that is, the multilayer magnetoresistive effect film 3
It will be applied in the major axis direction of 5a. In the magnetoresistive effect magnetic head 30 according to the present embodiment, the major axis direction of the multilayer magnetoresistive effect film 35a is made sensitive to the magnetic field change. Therefore, the magnetoresistive effect magnetic head 30 can detect the signal magnetic field from the recording medium 40 with high sensitivity.
【0066】なお、本実施の形態では、磁気抵抗効果を
利用したデバイスとして、磁気抵抗効果型磁気ヘッドを
挙げたが、本発明に係る多層磁気抵抗効果膜や磁気抵抗
効果素子は、磁気抵抗効果型磁気ヘッド以外のデバイス
にも適用可能である。具体的には、本発明に係る多層磁
気抵抗効果膜や磁気抵抗効果素子は、例えば、地磁気方
位センサのような磁気センサ等にも適用可能である。In the present embodiment, the magnetoresistive effect type magnetic head is mentioned as the device utilizing the magnetoresistive effect. However, the multilayer magnetoresistive effect film and the magnetoresistive effect element according to the present invention have the magnetoresistive effect. It is also applicable to devices other than the magnetic head. Specifically, the multilayered magneto-resistance effect film and the magneto-resistance effect element according to the present invention can be applied to, for example, a magnetic sensor such as a geomagnetic direction sensor.
【0067】[0067]
【発明の効果】以上の説明から明らかなように、本発明
に係る多層磁気抵抗効果膜では、外部磁界に対する磁気
抵抗効果を高く維持したまま、センス電流Isによって
生じる磁界の影響を軽減して、反強磁性結合の破壊を防
止することができる。すなわち、本発明によれば、セン
ス電流を供給したときにも、反強磁性結合が破壊され難
く、良好な巨大磁気抵抗効果を示す多層磁気抵抗効果膜
を提供することができる。As is apparent from the above description, the multilayer magnetoresistive effect film according to the present invention reduces the influence of the magnetic field generated by the sense current Is while maintaining a high magnetoresistive effect against the external magnetic field. It is possible to prevent breakage of the antiferromagnetic coupling. That is, according to the present invention, it is possible to provide a multilayer magnetoresistive effect film in which the antiferromagnetic coupling is not easily broken even when a sense current is supplied, and which exhibits a good giant magnetoresistive effect.
【0068】そして、本発明に係る磁気抵抗効果素子
は、上述のように良好な巨大磁気抵抗効果を示す多層磁
気抵抗効果膜を用いているので、微弱な磁界や微少な磁
界変化を高感度に検出することが可能である。すなわ
ち、本発明によれば、特に磁気ヘッド等のように微弱な
磁界を検出する必要があるデバイスに対して好適な磁気
抵抗効果素子を提供することができる。Since the magnetoresistive effect element according to the present invention uses the multi-layered magnetoresistive effect film exhibiting a good giant magnetoresistive effect as described above, it is highly sensitive to a weak magnetic field and a minute magnetic field change. It is possible to detect. That is, according to the present invention, it is possible to provide a magnetoresistive effect element suitable for a device that needs to detect a weak magnetic field, such as a magnetic head.
【0069】また、本発明に係る磁気抵抗効果型磁気ヘ
ッドは、上述のように良好な巨大磁気抵抗効果を示す多
層磁気抵抗効果膜を用いているので、微弱な信号磁界で
あっても大きな再生出力を得ることが可能である。すな
わち、本発明によれば、再生特性が非常に優れており、
高密度記録に適した磁気抵抗効果型磁気ヘッドを提供す
ることができる。Further, since the magnetoresistive effect magnetic head according to the present invention uses the multi-layered magnetoresistive effect film exhibiting a good giant magnetoresistive effect as described above, a large reproduction is achieved even with a weak signal magnetic field. It is possible to get the output. That is, according to the present invention, the reproduction characteristics are very excellent,
A magnetic resistance effect type magnetic head suitable for high density recording can be provided.
【図1】本発明を適用した多層磁気抵抗効果膜の一構成
例を示す断面図である。FIG. 1 is a cross-sectional view showing a structural example of a multilayer magnetoresistive effect film to which the present invention is applied.
【図2】本発明を適用した多層磁気抵抗効果膜の磁気抵
抗効果曲線の一例を示す図である。FIG. 2 is a diagram showing an example of a magnetoresistive effect curve of a multilayer magnetoresistive effect film to which the present invention is applied.
【図3】従来の多層磁気抵抗効果膜の磁気抵抗効果曲線
の一例を示す図である。FIG. 3 is a diagram showing an example of a magnetoresistive effect curve of a conventional multilayer magnetoresistive effect film.
【図4】本発明を適用した磁気抵抗効果素子の一構成例
の概略を示す平面図である。FIG. 4 is a plan view showing an outline of a configuration example of a magnetoresistive effect element to which the present invention is applied.
【図5】本発明を適用した磁気抵抗効果型磁気ヘッドの
一構成例を示す断面図である。FIG. 5 is a cross-sectional view showing a configuration example of a magnetoresistive effect magnetic head to which the present invention is applied.
【図6】図5に示した磁気抵抗効果型磁気ヘッドによる
情報信号再生の様子を模式的に示す要部斜視図である。6 is a main-part perspective view schematically showing how an information signal is reproduced by the magnetoresistive effect magnetic head shown in FIG.
1 多層磁気抵抗効果膜、 2 基板、 3 下部磁性
層、 4 多層膜、5 上部磁性層、10 非磁性導体
層、11 磁性層、11a 第1の磁性層、11b 第
2の磁性層、20 磁気抵抗効果素子、21 多層磁気
抵抗効果膜、22,23 電極、30 磁気抵抗効果型
磁気ヘッド、31 基体、32 非磁性層、33 下部
シールドコア、34 非磁性層、35 磁気抵抗効果素
子、35a 多層磁気抵抗効果膜、35b,35c 電
極、36 非磁性層、37 バイアス導体、38 上部
シールドコア、40 記録媒体、Is センス電流DESCRIPTION OF SYMBOLS 1 multi-layer magnetoresistive film, 2 substrate, 3 lower magnetic layer, 4 multi-layer film, 5 upper magnetic layer, 10 non-magnetic conductor layer, 11 magnetic layer, 11a first magnetic layer, 11b second magnetic layer, 20 magnetic Resistance effect element, 21 Multi-layered magneto-resistance effect film, 22, 23 Electrodes, 30 Magneto-resistance effect type magnetic head, 31 Base body, 32 Non-magnetic layer, 33 Lower shield core, 34 Non-magnetic layer, 35 Magneto-resistance effect element, 35a Multi-layer Magnetoresistive film, 35b and 35c electrodes, 36 non-magnetic layer, 37 bias conductor, 38 upper shield core, 40 recording medium, Is sense current
Claims (7)
層膜を有する多層磁気抵抗効果膜において、 互いに直交するx方向の磁界とy方向の磁界とについ
て、x方向の磁界変化に対しては磁界の大きさが小さく
ても急峻な磁気抵抗変化を示し、y方向の磁界変化に対
しては磁界の大きさが小さいうちは緩やかな磁気抵抗変
化を示すことを特徴とする多層磁気抵抗効果膜。1. A multilayer magnetoresistive effect film having a multilayer film in which a magnetic layer and a non-magnetic conductor layer are laminated, with respect to a magnetic field in the x direction and a magnetic field in the y direction which are orthogonal to each other, with respect to a change in the magnetic field in the x direction. The multi-layered magnetoresistive device is characterized in that it exhibits a steep change in magnetic resistance even if the magnitude of the magnetic field is small, and exhibits a gentle change in magnetic field in the y direction while the magnitude of the magnetic field is small. Effect film.
積層膜、Ni合金薄膜とFe合金薄膜との積層膜、Ni
−Fe系合金薄膜とNi−Fe系合金薄膜との積層膜、
又はNi−Fe系合金薄膜とこのNi−Fe系合金薄膜
とは組成の異なるNi−Fe系合金薄膜との積層膜から
なることを特徴とする請求項1記載の多層磁気抵抗効果
膜。2. The magnetic layer comprises a laminated film of Ni thin film and Fe thin film, a laminated film of Ni alloy thin film and Fe alloy thin film, Ni
A laminated film of a -Fe alloy thin film and a Ni-Fe alloy thin film,
2. The multilayer magnetoresistive film according to claim 1, wherein the Ni-Fe alloy thin film and the Ni-Fe alloy thin film are laminated films of Ni-Fe alloy thin films having different compositions.
層膜の上下に配されていることを特徴とする請求項1記
載の多層磁気抵抗効果膜。3. The multilayer magnetoresistive effect film according to claim 1, wherein a magnetic layer thicker than the magnetic layer is provided above and below the multilayer film.
が、NiFe系合金からなることを特徴とする請求項3
記載の多層磁気抵抗効果膜。4. The magnetic layers disposed above and below the multilayer film are made of a NiFe-based alloy.
The multilayer magnetoresistive film described.
u、Cu合金、Ag合金又はAu合金から選ばれる少な
くとも1種を含むことを特徴とする請求項1記載の多層
磁気抵抗効果膜。5. The non-magnetic conductor layer comprises Cu, Ag, A
2. The multilayer magnetoresistive effect film according to claim 1, containing at least one selected from u, Cu alloy, Ag alloy, and Au alloy.
磁界について、x方向の磁界変化に対しては磁界の大き
さが小さくても急峻な磁気抵抗変化を示し、y方向の磁
界変化に対しては磁界の大きさが小さいうちは緩やかな
磁気抵抗変化を示す多層磁気抵抗効果膜を、少なくとも
一部に用いていることを特徴とする磁気抵抗効果素子。6. Regarding a magnetic field in the x direction and a magnetic field in the y direction which are orthogonal to each other, a steep magnetic resistance change is exhibited with respect to the change in the magnetic field in the x direction even if the magnitude of the magnetic field is small, and a change in the magnetic field in the y direction occurs. On the other hand, the magnetoresistive effect element is characterized in that a multi-layered magnetoresistive effect film that exhibits a gradual magnetoresistive change while the magnitude of the magnetic field is small is used in at least a part thereof.
磁界について、x方向の磁界変化に対しては磁界の大き
さが小さくても急峻な磁気抵抗変化を示し、y方向の磁
界変化に対しては磁界の大きさが小さいうちは緩やかな
磁気抵抗変化を示す多層磁気抵抗効果膜を、少なくとも
一部に用いていることを特徴とする磁気抵抗効果型磁気
ヘッド。7. An x-direction magnetic field and a y-direction magnetic field which are orthogonal to each other exhibit a steep magnetoresistance change with respect to the x-direction magnetic field change even if the magnitude of the magnetic field is small, and the y-direction magnetic field change occurs. On the other hand, the magnetoresistive effect magnetic head is characterized in that a multi-layered magnetoresistive effect film that exhibits a gradual magnetoresistive change while the magnitude of the magnetic field is small is used in at least a part thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8077976A JPH09270545A (en) | 1996-03-29 | 1996-03-29 | Multilayer magnetoresistance effect film, magnetoresistance effect element and magnetoresistance effect type magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8077976A JPH09270545A (en) | 1996-03-29 | 1996-03-29 | Multilayer magnetoresistance effect film, magnetoresistance effect element and magnetoresistance effect type magnetic head |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09270545A true JPH09270545A (en) | 1997-10-14 |
Family
ID=13648935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8077976A Withdrawn JPH09270545A (en) | 1996-03-29 | 1996-03-29 | Multilayer magnetoresistance effect film, magnetoresistance effect element and magnetoresistance effect type magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09270545A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100392677B1 (en) * | 1999-08-09 | 2003-07-28 | 알프스 덴키 가부시키가이샤 | A magneto-impedance effect element and method for manufacturing the same |
-
1996
- 1996-03-29 JP JP8077976A patent/JPH09270545A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100392677B1 (en) * | 1999-08-09 | 2003-07-28 | 알프스 덴키 가부시키가이샤 | A magneto-impedance effect element and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6137662A (en) | Magnetoresistive sensor with pinned SAL | |
US20060152862A1 (en) | Magnetoresistance effect elements, magnetic heads and magnetic storage apparatus | |
US5764445A (en) | Exchange biased magnetoresistive transducer | |
JP2000276720A (en) | Dual stripe spin valve sensor without antiferromagnetic pinning layer | |
JP2001319313A (en) | Method and device for forming end face junction tmr for high surface density magnetic recording | |
JP2001331913A (en) | Magnetic tunnel junction type read-in head, its manufacturing method and magnetic field detecting device | |
JP3231313B2 (en) | Magnetic head | |
JP2004538591A (en) | GMR magnetic transducer with nano-oxide exchange-coupled free layer | |
US6621666B2 (en) | Magnetoresistive-effect element having electrode layers oppositely disposed on main surfaces of a magnetoresistive-effect thin film having hard magnetic bias layers with a particular resistivity | |
JPH0950613A (en) | Magnetoresistive effect element and magnetic field detecting device | |
US20090080125A1 (en) | Magnetic head | |
JP2004152334A (en) | Magnetic sensor, its manufacturing method and magnetic recording and reproducing device employing the sensor | |
KR100284779B1 (en) | Spin valve magnetoresistance effect magnetic head and magnetic disk device | |
US20010036046A1 (en) | Magnetoresistive-effect thin film, magnetoresistive-effect element, and magnetoresistive-effect magnetic head | |
JP2005109243A (en) | Magnetoresistance effect element and magnetic head | |
US20020163767A1 (en) | Magnetoresistive sensor and a thin film magnetic head | |
JP3984839B2 (en) | Magnetoresistive head | |
JP2937237B2 (en) | Magnetoresistive head and its initialization method | |
JP3575672B2 (en) | Magnetoresistance effect film and magnetoresistance effect element | |
JP2001229515A (en) | Magneto-resistive magnetic head and magnetic reproducing device using the same | |
JPH076329A (en) | Magneto-resistance effect element and magnetic head using the same and magnetic recording and reproducing device | |
JP3190193B2 (en) | How to use thin film magnetic head | |
JPH1049834A (en) | Multilayer magnetoresistance film, magnetoresistance element, and magnetoresistance magnetic head | |
JPH1186229A (en) | Spin valve effect sensor | |
JP3261698B2 (en) | Magnetic head and magnetoresistive element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20030603 |