JPH1186229A - Spin valve effect sensor - Google Patents

Spin valve effect sensor

Info

Publication number
JPH1186229A
JPH1186229A JP25015497A JP25015497A JPH1186229A JP H1186229 A JPH1186229 A JP H1186229A JP 25015497 A JP25015497 A JP 25015497A JP 25015497 A JP25015497 A JP 25015497A JP H1186229 A JPH1186229 A JP H1186229A
Authority
JP
Japan
Prior art keywords
film
ferromagnetic
crystal structure
antiferromagnetic
spin valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25015497A
Other languages
Japanese (ja)
Inventor
Shigekazu Suwabe
繁和 諏訪部
Shin Noguchi
伸 野口
Hidetoshi Hagiwara
英俊 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP25015497A priority Critical patent/JPH1186229A/en
Publication of JPH1186229A publication Critical patent/JPH1186229A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a sensor achieving a large exchange linking magnetic field, by forming an antiferromagnetic film of a CrMnPt film of a bcc crystal structure and a ferromagnetic film of the bcc crystal structure, preferably forming the ferromagnetic film of an FeNiCo film, and specifying compositions of the films. SOLUTION: A non-magnetic undercoat film 102 is a Ta film having a thickness of 2-10 nm and a free layer 103 of a ferromagnetic film is an FeNiCo film having a thickness of 3-10 nm in a bcc crystal structure. A non-magnetic intermediate film 104 is constituted of 1.5 to 5 nm-thick Cu in an fcc crystal structure, and a film layer 105 of a ferromagnetic film is an FeNiCo film having a thickness of 1.5-5 nm in the bcc crystal structure. An antiferromagnetic film 106 is a Cr30-70 Mn30-70 Pt3-30 (at.%) film having a thickness of 5-20 nm in the bcc crystal structure. A non-magnetic protecting film 107 is formed of Ta. In sputtering the Fe20-100 Ni0-38 Co80-0 (at.%) film of the fixed layer 105, a magnetic field in a constant direction is applied to the film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気ディスク装置に
用いられるスピンバルブ効果センサに関する。
The present invention relates to a spin valve effect sensor used for a magnetic disk drive.

【0002】[0002]

【従来の技術】磁気的に記録されたデータを検出するた
め異方性磁気抵抗効果を用いた磁気抵抗センサを使用す
ることはよく知られている。最近では、磁気抵抗センサ
の抵抗変化が、非磁性層を介する磁性層間での伝導電子
のスピン依存性伝送、および、それに付随する層界面で
のスピン依存性散乱に帰される、より顕著な磁気抵抗効
果の利用が研究されている。この磁気抵抗効果は、「巨
大磁気抵抗効果」や「スピンバルブ効果」などの名称で
呼ばれている。このような磁気抵抗センサは異方性磁気
抵抗効果を利用する磁気抵抗センサで観察されるよりも
感度が改善されて抵抗変化が大きい。
2. Description of the Related Art It is well known to use a magnetoresistive sensor utilizing the anisotropic magnetoresistance effect to detect magnetically recorded data. More recently, the change in resistance of a magnetoresistive sensor has been attributed to a more pronounced magnetoresistance attributed to spin-dependent transmission of conduction electrons between the magnetic layers through the non-magnetic layer and the associated spin-dependent scattering at the layer interface. The use of effects is being studied. This magnetoresistance effect is called by a name such as “giant magnetoresistance effect” or “spin valve effect”. Such a magnetoresistive sensor has improved sensitivity and a large resistance change as compared with a magnetoresistive sensor using the anisotropic magnetoresistive effect.

【0003】スピンバルブ効果センサは、非磁性膜によ
って分離された第一の強磁性膜および第二の強磁性膜を
含む積層構造が適切な物質上に形成されている。強磁性
膜の一つ、例えば第二の強磁性膜の磁化方向は、外部印
加磁界ゼロで、第一の強磁性膜の磁化方向と垂直に固定
されている。第二の強磁性膜の磁化方向の固定は、反強
磁性膜を隣接させ、反強磁性膜と第二の強磁性膜との交
換結合によって行われる。そこで第二の強磁性膜は「固
定層」と呼ばれることがある。その代表的な磁化の固定
方向は浮上面と垂直方向である。一方、第一の強磁性膜
の磁化方向は外部印加磁界に応じて自由に回転でき、
「自由層」と呼ばれることがある。外部印加磁界に応じ
て自由層の磁化方向が自由に回転し、必然的に固定層の
磁化方向と自由層の磁化方向との間の角度が変化する。
スピンバルブ効果センサは、これら磁化方向の角度変化
に応じて電気抵抗が変化することを利用し、媒体からの
磁気的信号を電気的信号に変換する磁気抵抗センサであ
る。
In a spin valve effect sensor, a laminated structure including a first ferromagnetic film and a second ferromagnetic film separated by a non-magnetic film is formed on a suitable material. The magnetization direction of one of the ferromagnetic films, for example, the second ferromagnetic film, is fixed perpendicular to the magnetization direction of the first ferromagnetic film with no externally applied magnetic field. The magnetization direction of the second ferromagnetic film is fixed by the exchange coupling between the antiferromagnetic film and the second ferromagnetic film with the antiferromagnetic film adjacent to the second ferromagnetic film. Therefore, the second ferromagnetic film is sometimes called a “fixed layer”. The typical magnetization fixing direction is a direction perpendicular to the air bearing surface. On the other hand, the magnetization direction of the first ferromagnetic film can be freely rotated according to the externally applied magnetic field,
Sometimes referred to as the "free layer." The magnetization direction of the free layer freely rotates according to the externally applied magnetic field, and the angle between the magnetization direction of the fixed layer and the magnetization direction of the free layer necessarily changes.
The spin valve effect sensor is a magnetoresistive sensor that converts a magnetic signal from a medium into an electric signal by using the fact that the electric resistance changes according to the change in the angle of the magnetization direction.

【0004】バイアス磁界印加手段としての反強磁性膜
には強磁性膜と反強磁性膜との間の交換結合磁界が大き
いこと、さらに交換結合磁界が消失する温度で定義され
る「ブロッキング温度」が高いことが要求される。欧州
特許EP490608A2号では、これらを満足する反
強磁性膜はFeMn,NiMn系反強磁性膜であること
が開示されている。これらの反強磁性膜と強磁性NiF
e膜との間に大きな交換結合磁界、ブロッキング温度を
示す。しかし、耐蝕性が著しく低く応用上困難な点が多
い。
The anti-ferromagnetic film serving as a bias magnetic field applying means has a large "exchange coupling magnetic field" between the ferromagnetic film and the anti-ferromagnetic film, and "blocking temperature" defined by a temperature at which the exchange coupling magnetic field disappears. Is required to be high. European Patent EP 490608 A2 discloses that an antiferromagnetic film satisfying these requirements is a FeMn, NiMn-based antiferromagnetic film. These antiferromagnetic films and ferromagnetic NiF
The film shows a large exchange coupling magnetic field and a blocking temperature with the e-film. However, corrosion resistance is remarkably low and there are many difficulties in application.

【0005】そこで、耐蝕性の高い反強磁性膜としてC
30-70 Mn30-70 Pt3-30(原子%)が特開平9−1
6923号などに提案されている。このCrMnPt膜
はCr含有量が多いために耐蝕性が改善されており、腐
蝕電流密度を測定すると、反強磁性CrMnPt膜は1
-4A/m2 であり反強磁性NiMn膜の10-2A/m
2 と比較して極めて優れている。
[0005] Therefore, as an antiferromagnetic film having high corrosion resistance, C
r 30-70 Mn 30-70 Pt 3-30 (atomic%) is disclosed in
No. 6923 and the like. Since this CrMnPt film has a high Cr content, the corrosion resistance has been improved. When the corrosion current density was measured, the antiferromagnetic CrMnPt film was found to be 1%.
0 −4 A / m 2 and 10 −2 A / m of the antiferromagnetic NiMn film.
Excellent compared to 2 .

【0006】この反強磁性CrMnPt膜は、bcc結
晶構造を有しているにもかかわらず、fcc結晶構造を
有している強磁性NiFe膜にエピタキシャル成長して
おり、このエピタキシャル成長するときに大きな交換結
合磁界が得られる、と特開平9−16923号は述べて
いる。
Although this antiferromagnetic CrMnPt film has a bcc crystal structure, it is epitaxially grown on a ferromagnetic NiFe film having an fcc crystal structure. Japanese Patent Application Laid-Open No. 9-16923 states that a magnetic field can be obtained.

【0007】[0007]

【発明が解決しようとする課題】しかし、bcc結晶構
造を有している反強磁性膜をfcc結晶構造の強磁性膜
の上にエピタキシャル成長させることは非常に難しく、
スパッタリングの条件によっては、隣接する結晶格子に
歪みが生じて、交換結合磁界が小さくなることがあっ
た。
However, it is very difficult to epitaxially grow an antiferromagnetic film having a bcc crystal structure on a ferromagnetic film having an fcc crystal structure.
Depending on the sputtering conditions, the adjacent crystal lattice may be distorted and the exchange coupling magnetic field may be reduced.

【0008】そこで、本発明では、反強磁性CrMnP
t膜と隣接する強磁性膜の結晶系を同じにすることによ
り、大きな交換結合磁界が得られるスピンバルブ効果セ
ンサを提供することを目的としている。
Therefore, in the present invention, antiferromagnetic CrMnP
It is an object of the present invention to provide a spin valve effect sensor capable of obtaining a large exchange coupling magnetic field by making the crystal system of a ferromagnetic film adjacent to a t film the same.

【0009】[0009]

【課題を解決するための手段】本発明のスピンバルブ効
果センサは、強磁性膜に反強磁性膜を隣接させてその膜
間の交換結合によって前記強磁性膜の磁化方向を固定し
ているものにおいて、前記反強磁性膜がbcc結晶構造
のCrMnPt膜であり、前記強磁性膜がbcc結晶構
造をしていることを特徴とするものである。
A spin valve effect sensor according to the present invention has an antiferromagnetic film adjacent to a ferromagnetic film and fixes the magnetization direction of the ferromagnetic film by exchange coupling between the films. Wherein the antiferromagnetic film is a CrMnPt film having a bcc crystal structure, and the ferromagnetic film has a bcc crystal structure.

【0010】また、前記反強磁性膜がCr30-70 Mn
30-70 Pt3-30(原子%)で示される組成を有すること
が好ましい。反強磁性CrMnPt膜の組成範囲は常温
においてbcc結晶構造を有するとともに、反強磁性を
示すものとして定めてある。ここで、Ptに代えてある
いはその一部をCu,Au,Co,Niあるいは白金族
の内から選択された一種以上の金属元素で置換したもの
も同様の効果が得られる。
The antiferromagnetic film is made of Cr 30-70 Mn.
It preferably has a composition represented by 30-70 Pt 3-30 (atomic%). The composition range of the antiferromagnetic CrMnPt film is defined as having a bcc crystal structure at room temperature and exhibiting antiferromagnetism. Here, a similar effect can be obtained by replacing Pt or a part thereof with one or more metal elements selected from Cu, Au, Co, Ni or platinum group.

【0011】また前記強磁性膜がFeNiCo膜である
ことが好ましく、更に好ましくはFe20-100Ni0-38
80-0(原子%)で示される組成である。強磁性FeN
iCo膜の組成範囲は常温においてbcc結晶構造を有
するものとして定めてある。
Preferably, the ferromagnetic film is a FeNiCo film, more preferably, Fe 20-100 Ni 0-38 C
o 80-0 (atomic%). Ferromagnetic FeN
The composition range of the iCo film is defined as having a bcc crystal structure at room temperature.

【0012】スピンバルブ効果センサは、Cu等からな
る非磁性膜によって分離されて、その非磁性膜の両側面
に強磁性膜が形成されていて、これら2つの強磁性膜の
一方が反強磁性膜と積層されて固定層となっており、2
つの強磁性膜の他方が自由層となっている。本発明にお
いて、固定層となっている強磁性膜全体をbcc結晶構
造とすることもできるが、固定層を2層以上の積層構造
として、Cu等からなる非磁性膜と隣接している側を例
えばCoを主成分としたfcc結晶構造を持った膜とし
て、bcc結晶構造を持った反強磁性CrMnPt膜と
隣接している部分の強磁性膜をbcc結晶構造とするこ
ともできる。
In the spin valve effect sensor, a ferromagnetic film is formed on both sides of the non-magnetic film separated by a non-magnetic film made of Cu or the like. It is laminated with a film to form a fixed layer.
The other of the two ferromagnetic films is a free layer. In the present invention, the entire ferromagnetic film serving as the pinned layer may have a bcc crystal structure. However, the pinned layer has a laminated structure of two or more layers, and the side adjacent to the nonmagnetic film made of Cu or the like is used. For example, as a film having an fcc crystal structure containing Co as a main component, a portion of the ferromagnetic film adjacent to an antiferromagnetic CrMnPt film having a bcc crystal structure may have a bcc crystal structure.

【0013】[0013]

【発明の実施の形態】図1に、本発明のスピンバルブ効
果センサの浮上面から見た拡大断面図を示す。ここで、
Al2 3 あるいはAl2 3 −TiCなどからなる基
板101の上に、非磁性下地膜102、強磁性膜からな
る自由層103、Cuなどからなる非磁性中間膜10
4、強磁性膜からなる固定層105、反強磁性膜10
6、非磁性保護膜107を順次積層した層で構成されて
いる。非磁性下地膜102は2〜10nm厚のTa膜、
強磁性膜からなる自由層103は3〜10nm厚のFe
NiCo膜でbcc結晶構造をしている。非磁性中間膜
104は1.5〜5nm厚のCuより構成されておりf
cc結晶構造をしている。強磁性膜からなる固定層10
5は1.5〜5nm厚のFeNiCo膜でbcc結晶構
造をしている。反強磁性膜106は5〜20nm厚のC
rMnPt膜でbcc結晶構造をしている。非磁性保護
膜107はTaである。
FIG. 1 is an enlarged sectional view of a spin valve effect sensor according to the present invention as viewed from the air bearing surface. here,
On the Al 2 O 3 or Al 2 O 3 and the like -TiC substrate 101, the non-magnetic base film 102, made of the free layer 103, Cu consisting of a ferromagnetic film non-magnetic intermediate layer 10
4. Fixed layer 105 made of ferromagnetic film, antiferromagnetic film 10
6. It is composed of layers in which the non-magnetic protective film 107 is sequentially laminated. The nonmagnetic base film 102 is a Ta film having a thickness of 2 to 10 nm,
The free layer 103 made of a ferromagnetic film has a thickness of 3 to 10 nm.
The NiCo film has a bcc crystal structure. The nonmagnetic intermediate film 104 is made of 1.5 to 5 nm thick Cu.
It has a cc crystal structure. Fixed layer 10 made of a ferromagnetic film
5 is a 1.5-5 nm thick FeNiCo film having a bcc crystal structure. The antiferromagnetic film 106 has a C thickness of 5 to 20 nm.
The rMnPt film has a bcc crystal structure. The non-magnetic protective film 107 is Ta.

【0014】これらの膜はスパッタリング法により室温
で真空中で連続的に形成した。固定層105のFeNi
Co膜をスパッタリングする際に膜に一方向の磁界を印
加して、固定層105の磁気モーメントを印加磁界の方
向に向けた。固定層105のFeNiCo膜の上に、反
強磁性膜106のCrMnPtをスパッタリングするこ
とによって、bcc結晶構造をしたFeNiCo膜の上
に、bcc結晶構造をしたCrMnPt膜がエピタキシ
ャル成長し、この反強磁性膜106の磁気モーメントが
揃えられた。これによって、反強磁性膜106と強磁性
膜105との間で交換結合磁界が発生し、強磁性膜10
5に一方向異方性を付与することができた。
These films were continuously formed in a vacuum at room temperature by a sputtering method. FeNi of the fixed layer 105
When sputtering the Co film, a magnetic field in one direction was applied to the film, and the magnetic moment of the fixed layer 105 was directed to the direction of the applied magnetic field. By sputtering CrMnPt of the antiferromagnetic film 106 on the FeNiCo film of the fixed layer 105, a CrMnPt film of the bcc crystal structure is epitaxially grown on the FeNiCo film of the bcc crystal structure. The magnetic moments of 106 were aligned. As a result, an exchange coupling magnetic field is generated between the antiferromagnetic film 106 and the ferromagnetic film 105, and the ferromagnetic film 10
5 was able to have unidirectional anisotropy.

【0015】比較のために、上記の強磁性FeNiCo
膜からなる固定層105に代えて、fcc結晶構造をし
た強磁性NiFe膜を用いた以外は、上記と同様に作製
した比較例のスピンバルブ効果センサを用意した。この
比較例のスピンバルブ効果センサと、図1に示す本発明
のスピンバルブ効果センサについて、交換結合磁界の強
さを強磁性膜固定層の厚み(nm)に対する関係で、比
較して示したグラフが図2である。図2で縦軸の交換結
合磁界(Hex)は任意単位で示しているが、fcc結
晶構造をした強磁性膜固定層を用いた比較例のものに比
して、bcc結晶構造をした強磁性膜固定層を用いてい
る本発明のスピンバルブ効果センサは極めて大きな交換
結合磁界を示す。別の測定では、bcc結晶構造の反強
磁性CrMnPt膜とfcc結晶構造をした3nm厚の
強磁性Co90Fe10(原子%)膜との間の交換結合磁界
は約300Oeであるのに対して、同じ反強磁性膜とb
cc結晶構造をした3nm厚の強磁性Fe80Ni10Co
10(原子%)膜の交換結合磁界は約400Oeであっ
た。
For comparison, the above ferromagnetic FeNiCo
A spin valve effect sensor of a comparative example manufactured in the same manner as described above except that a ferromagnetic NiFe film having an fcc crystal structure was used instead of the fixed layer 105 made of a film was prepared. A graph showing a comparison between the spin valve effect sensor of this comparative example and the spin valve effect sensor of the present invention shown in FIG. 1 in relation to the thickness (nm) of the pinned layer of the ferromagnetic film. Is shown in FIG. In FIG. 2, the exchange coupling magnetic field (Hex) on the vertical axis is shown in an arbitrary unit. The spin valve effect sensor of the present invention using the film fixed layer exhibits an extremely large exchange coupling magnetic field. In another measurement, the exchange coupling magnetic field between an antiferromagnetic CrMnPt film having a bcc crystal structure and a ferromagnetic Co 90 Fe 10 (at.%) Film having a thickness of 3 nm having an fcc crystal structure is about 300 Oe. , The same antiferromagnetic film and b
3 nm thick ferromagnetic Fe 80 Ni 10 Co with cc crystal structure
The exchange coupling magnetic field of the 10 (at.%) Film was about 400 Oe.

【0016】図3に、本発明のスピンバルブ効果センサ
の他の実施例について、浮上面から見た拡大断面図を示
している。図3で図1と同じ部分については同じ符号を
用いて示している。ここで強磁性膜自由層110は2層
構造をしており、非磁性下地膜102に隣接する層はf
cc結晶構造のNiFe膜111であり、非磁性中間膜
104と隣接する層はfcc結晶構造のCoFe膜11
2である。また強磁性膜固定層120も2層構造をして
おり、非磁性中間膜104と隣接する層はfcc結晶構
造のCoFe膜121であり、反強磁性膜106と隣接
する層はbcc結晶構造のFeNiCo膜122であ
る。この構造を持ったスピンバルブ効果センサは、Cu
などの非磁性中間膜104を挟んでいる強磁性膜をCo
合金としているので電子散乱効果が大で、磁気抵抗効果
が大きい。しかも、反強磁性膜106と隣接している強
磁性FeNiCo膜122がbcc結晶構造をしている
ので、これらの膜の間でエピタキシャル成長が起こして
いるので交換結合磁界が大きい。
FIG. 3 is an enlarged sectional view of another embodiment of the spin valve effect sensor according to the present invention as viewed from the air bearing surface. In FIG. 3, the same parts as those in FIG. 1 are denoted by the same reference numerals. Here, the ferromagnetic film free layer 110 has a two-layer structure, and the layer adjacent to the nonmagnetic underlayer 102 is f
a NiFe film 111 having a cc crystal structure, and a layer adjacent to the nonmagnetic intermediate film 104 is a CoFe film 11 having an fcc crystal structure.
2. The ferromagnetic film fixed layer 120 also has a two-layer structure, a layer adjacent to the nonmagnetic intermediate film 104 is a CoFe film 121 having an fcc crystal structure, and a layer adjacent to the antiferromagnetic film 106 is having a bcc crystal structure. This is the FeNiCo film 122. A spin valve effect sensor having this structure is made of Cu
The ferromagnetic film sandwiching the non-magnetic intermediate film 104 such as
Since it is an alloy, the electron scattering effect is large and the magnetoresistance effect is large. Moreover, since the ferromagnetic FeNiCo film 122 adjacent to the antiferromagnetic film 106 has a bcc crystal structure, an epitaxial coupling occurs between these films, so that the exchange coupling magnetic field is large.

【0017】[0017]

【発明の効果】本発明のスピンバルブ効果センサは反強
磁性膜として耐蝕性に優れたCrMnPt膜を有してい
るとともに、この反強磁性膜に隣接する強磁性膜の結晶
系をCrMnPt膜と同じbcc結晶構造としたことに
よって、大きな交換結合磁界が得られる。
The spin valve effect sensor of the present invention has a CrMnPt film having excellent corrosion resistance as an antiferromagnetic film, and the crystal system of the ferromagnetic film adjacent to the antiferromagnetic film is a CrMnPt film. By using the same bcc crystal structure, a large exchange coupling magnetic field can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のスピンバルブ効果センサの浮上面から
見た拡大断面図である。
FIG. 1 is an enlarged cross-sectional view of a spin valve effect sensor according to the present invention as viewed from an air bearing surface.

【図2】スピンバルブ効果センサの交換結合磁界の強さ
と強磁性膜固定層の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the strength of the exchange coupling magnetic field of the spin valve effect sensor and the ferromagnetic film fixed layer.

【図3】本発明のスピンバルブ効果センサの他の実施例
の浮上面から見た拡大断面図である。
FIG. 3 is an enlarged sectional view of another embodiment of the spin valve effect sensor according to the present invention, as viewed from the air bearing surface.

【符号の説明】[Explanation of symbols]

101 基板 102 非磁性下地膜 103、110 強磁性膜(自由層) 104 非磁性中間膜 105、120 強磁性膜(固定層) 106 反強磁性膜 107 非磁性保護膜 111 NiFe膜 112、121 CoFe膜 122 FeNiCo膜 DESCRIPTION OF SYMBOLS 101 Substrate 102 Nonmagnetic base film 103, 110 Ferromagnetic film (free layer) 104 Nonmagnetic intermediate film 105, 120 Ferromagnetic film (fixed layer) 106 Antiferromagnetic film 107 Nonmagnetic protective film 111 NiFe film 112, 121 CoFe film 122 FeNiCo film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 強磁性膜に反強磁性膜を隣接させてその
膜間の交換結合によって前記強磁性膜の磁化方向を固定
しているスピンバルブ効果センサにおいて、 前記反強磁性膜がbcc結晶構造のCrMnPt膜であ
り、前記強磁性膜がbcc結晶構造をしていることを特
徴とするスピンバルブ効果センサ。
1. A spin valve effect sensor in which an antiferromagnetic film is adjacent to a ferromagnetic film and the magnetization direction of the ferromagnetic film is fixed by exchange coupling between the films, wherein the antiferromagnetic film is a bcc crystal. A spin valve effect sensor comprising a CrMnPt film having a structure, wherein the ferromagnetic film has a bcc crystal structure.
【請求項2】 前記反強磁性膜がCr30-70 Mn30-70
Pt3-30(原子%)で示される組成を有することを特徴
とする請求項1記載のスピンバルブ効果センサ。
2. The method according to claim 1, wherein the antiferromagnetic film is Cr 30-70 Mn 30-70
2. The spin valve effect sensor according to claim 1, having a composition represented by Pt 3-30 (at.%).
【請求項3】 前記強磁性膜がFeNiCo膜であるこ
とを特徴とする請求項1あるいは2に記載のスピンバル
ブ効果センサ。
3. The spin valve effect sensor according to claim 1, wherein the ferromagnetic film is a FeNiCo film.
【請求項4】 前記FeNiCo膜がFe20-100Ni
0-38Co80-0(原子%)で示される組成を有することを
特徴とする請求項3に記載のスピンバルブ効果センサ。
4. The FeNiCo film is made of Fe 20-100 Ni.
Spin valve effect sensor according to claim 3, characterized in that it has a composition represented by 0-38 Co 80-0 (atomic%).
JP25015497A 1997-09-16 1997-09-16 Spin valve effect sensor Pending JPH1186229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25015497A JPH1186229A (en) 1997-09-16 1997-09-16 Spin valve effect sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25015497A JPH1186229A (en) 1997-09-16 1997-09-16 Spin valve effect sensor

Publications (1)

Publication Number Publication Date
JPH1186229A true JPH1186229A (en) 1999-03-30

Family

ID=17203634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25015497A Pending JPH1186229A (en) 1997-09-16 1997-09-16 Spin valve effect sensor

Country Status (1)

Country Link
JP (1) JPH1186229A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6498707B1 (en) * 1999-04-20 2002-12-24 Seagate Technology, Llc Giant magnetoresistive sensor with a CrMnPt pinning layer and a NiFeCr seed layer
US7126797B2 (en) 2003-02-26 2006-10-24 Alps Electric Co., Ltd. Spin valve magnetoresistive element having pinned magnetic layer composed of epitaxial laminated film having magnetic sublayers and nanomagnetic interlayer
CN100343899C (en) * 2004-03-11 2007-10-17 株式会社东芝 Magnetoresistive element, magnetic head, and magnetic recording and reproducing apparatus
CN100347748C (en) * 2003-12-25 2007-11-07 株式会社东芝 Magnetoresistive element, magnetic head, magnetic reproducing apparatus, and magnetic memory
US7525776B2 (en) 2004-11-09 2009-04-28 Kabushiki Kaisha Toshiba Magnetoresistive element, magnetoresistive head, magnetic recording apparatus, and magnetic memory
US7821748B2 (en) 2005-09-29 2010-10-26 Kabushiki Kaisha Toshiba Magneto-resistance effect element including a damping factor adjustment layer, magneto-resistance effect head, magnetic storage and magnetic memory
US8917485B2 (en) 2006-03-27 2014-12-23 Kabushiki Kaisha Toshiba Magnetoresistive effect element, magnetic head, and magnetic disk apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6498707B1 (en) * 1999-04-20 2002-12-24 Seagate Technology, Llc Giant magnetoresistive sensor with a CrMnPt pinning layer and a NiFeCr seed layer
US7126797B2 (en) 2003-02-26 2006-10-24 Alps Electric Co., Ltd. Spin valve magnetoresistive element having pinned magnetic layer composed of epitaxial laminated film having magnetic sublayers and nanomagnetic interlayer
CN100347748C (en) * 2003-12-25 2007-11-07 株式会社东芝 Magnetoresistive element, magnetic head, magnetic reproducing apparatus, and magnetic memory
US7426098B2 (en) 2003-12-25 2008-09-16 Kabushiki Kaisha Toshiba Magnetoresistive element having three-layer buffer layer, magnetic head, magnetic reproducing apparatus, and magnetic memory
CN100343899C (en) * 2004-03-11 2007-10-17 株式会社东芝 Magnetoresistive element, magnetic head, and magnetic recording and reproducing apparatus
US7525776B2 (en) 2004-11-09 2009-04-28 Kabushiki Kaisha Toshiba Magnetoresistive element, magnetoresistive head, magnetic recording apparatus, and magnetic memory
US7821748B2 (en) 2005-09-29 2010-10-26 Kabushiki Kaisha Toshiba Magneto-resistance effect element including a damping factor adjustment layer, magneto-resistance effect head, magnetic storage and magnetic memory
US8130477B2 (en) 2005-09-29 2012-03-06 Kabushiki Kaisha Toshiba Magneto-resistance effect element having a diffusive electron scattering layer, magneto-resistance effect head, magnetic storage and magnetic memory
US8305716B2 (en) 2005-09-29 2012-11-06 Kabushiki Kaisha Toshiba Magneto-resistance effect element including diffusive electron scattering layer, magneto-resistance effect head, magnetic storage and magnetic memory
US8917485B2 (en) 2006-03-27 2014-12-23 Kabushiki Kaisha Toshiba Magnetoresistive effect element, magnetic head, and magnetic disk apparatus

Similar Documents

Publication Publication Date Title
US6469878B1 (en) Data head and method using a single antiferromagnetic material to pin multiple magnetic layers with differing orientation
US8014109B2 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive sensor with antiparallel-pinned layer containing silicon
JP3263016B2 (en) Spin valve type thin film element
US6090498A (en) Magnetoresistance effect element and magnetoresistance device
US7450351B2 (en) Magnetoresistive element having current-perpendicular-to-plane structure, magnetic head, and magnetic memory apparatus thereof
US7599157B2 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive sensor with high-resistivity amorphous ferromagnetic layers
GB2422712A (en) CPP giant magnetoresistive element
EP1850144A1 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive sensor with antiparallel-free layer structure and low current-induced noise
US20020196590A1 (en) Spin-valve thin film magnetic element and thin film magnetic head
JPH10143822A (en) Thin-film magnetic structure and thin-film magnetic head
US6083632A (en) Magnetoresistive effect film and method of manufacture thereof
US6433972B1 (en) Giant magnetoresistive sensor with pinning layer
US7957107B2 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive sensor with antiparallel-free layer structure and low current-induced noise
US6051309A (en) Magnetoresistance effect film and method for making the same
JP2925542B1 (en) Magnetoresistive film and magnetoresistive head
US20010036046A1 (en) Magnetoresistive-effect thin film, magnetoresistive-effect element, and magnetoresistive-effect magnetic head
JP2924819B2 (en) Magnetoresistive film and method of manufacturing the same
JPH1186229A (en) Spin valve effect sensor
JPH10242544A (en) Magneto-resistance effect element and magnetic conversion element
US7005201B2 (en) Magnetic detecting element
JP3181512B2 (en) Dual spin valve type element and thin film magnetic head
JP3575672B2 (en) Magnetoresistance effect film and magnetoresistance effect element
JP2002314171A (en) Layer to be fixed, forming method therefor, spin valve structure and forming method therefor
JP2000150235A (en) Spin valve magnetoresistive sensor and thin-film magnetic head
JP3021785B2 (en) Magnetoresistive material and method of manufacturing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040205

A621 Written request for application examination

Effective date: 20040223

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Effective date: 20040310

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050526

A131 Notification of reasons for refusal

Effective date: 20050607

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050803

A02 Decision of refusal

Effective date: 20060530

Free format text: JAPANESE INTERMEDIATE CODE: A02