JPH09268058A - Dielectric porcelain composition for high frequency wave - Google Patents

Dielectric porcelain composition for high frequency wave

Info

Publication number
JPH09268058A
JPH09268058A JP8077851A JP7785196A JPH09268058A JP H09268058 A JPH09268058 A JP H09268058A JP 8077851 A JP8077851 A JP 8077851A JP 7785196 A JP7785196 A JP 7785196A JP H09268058 A JPH09268058 A JP H09268058A
Authority
JP
Japan
Prior art keywords
bao
dielectric
high frequency
value
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8077851A
Other languages
Japanese (ja)
Other versions
JP3336190B2 (en
Inventor
Yasuhiko Nishioka
尉彦 西岡
Ei Sagara Jiyuniadei
エイ サガラ ジュニアディ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP07785196A priority Critical patent/JP3336190B2/en
Publication of JPH09268058A publication Critical patent/JPH09268058A/en
Application granted granted Critical
Publication of JP3336190B2 publication Critical patent/JP3336190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Ceramic Capacitors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a dielectric porcelain composition for high frequency waves, capable of readily controlling the temperature coefficient of the resonance frequency, providing a sufficient porcelain density and improving the strength and having a high Q value even when baked at low temperatures. SOLUTION: This dielectric porcelain composition for high frequency waves comprises at least Ba, Sr, Mg and W as metallic elements and (a), (b), (x), (y) and (z) satisfy 0<(a)<1, 0.01<=(b)<=0.7, 0.40<=(x)<=0.55, 0.15<=(y)<=0.30, 0.20<=(z)<=0.30 and [(x)+(y)+(z)]=1 when the compositional formula is represented by x (1-a)BaO.aSrO}.y (1-b)MGo.bAO}.zWO3 (A is at least one of an iron family metal and Zn). Furthermore, the dielectric porcelain composition comprises a perovskite type crystal represented by the formula, (Ba1-a Sra ) (Mg1-b Ab )1/2 W1/2 }O3 [0<(a)<1, 0.01<=(b)<=0.7] as the main crystal phase.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロ波、ミリ
波等の高周波領域において高い比誘電率及び高いQ値を
有する高周波用誘電体磁器組成物に関し、特に、誘電体
共振器,フィルタ,コンデンサ等の高周波用の電子部品
やMIC用誘電体基板,ミリ波用導波路に適する高周波
用誘電体磁器組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high frequency dielectric ceramic composition having a high relative permittivity and a high Q value in a high frequency region such as a microwave and a millimeter wave, and particularly to a dielectric resonator, a filter and a capacitor. The present invention relates to a high-frequency dielectric porcelain composition suitable for high-frequency electronic components such as MIC dielectric substrates, MIC dielectric substrates, and millimeter-wave waveguides.

【0002】[0002]

【従来技術】従来、誘電体磁器は、マイクロ波,ミリ波
等の高周波領域において、誘電体共振器やMIC用誘電
体基板等に広く利用されている。また最近では、ミリ波
用導波路に誘電体線路が応用されている。
2. Description of the Related Art Hitherto, dielectric porcelain has been widely used in dielectric resonators, MIC dielectric substrates, and the like in high-frequency regions such as microwaves and millimeter waves. Recently, dielectric waveguides have been applied to millimeter wave waveguides.

【0003】従来より、この種の誘電体磁器としては、
例えばZrO2 −SnO2 −TiO2 系材料、BaO−
TiO2 系材料、(Ba,Sr)(Zr,Ti)O3
材料及びBa(Zn,Ta)O3 系材料等が知られてお
り、これらの材料は各種の改良により周波数500MH
z〜5GHzにおいて比誘電率20〜40、Q値が10
00〜3000(Qf=15000以下)、さらに共振
周波数の温度係数(τf )が0ppm/℃付近の特性を
有している。
[0003] Conventionally, as this kind of dielectric porcelain,
For example, ZrO 2 —SnO 2 —TiO 2 based material, BaO—
TiO 2 -based materials, (Ba, Sr) (Zr, Ti) O 3 -based materials and Ba (Zn, Ta) O 3 -based materials are known, and these materials have a frequency of 500 MHz through various improvements.
In the range of z to 5 GHz, the relative dielectric constant is 20 to 40, and the Q value is 10
It has a characteristic in which the temperature coefficient (τf) of the resonance frequency is around 0 ppm / ° C. (Qf = 15000 or less).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、最近で
は使用する周波数がより高くなる傾向にあるとともに誘
電体材料に対してさらに優れた誘電特性、特にQ値の向
上が要求されつつある。
However, recently, there has been a tendency to use higher frequencies and dielectric materials have been required to have more excellent dielectric properties, particularly to improve the Q value.

【0005】ところが、前述した従来の誘電体材料で
は、高周波、例えば10GHzの使用周波数領域におい
て実用的レベルの高いQ値(Qf=15000以下)を
有していないのが現状である。
However, under the present circumstances, the above-mentioned conventional dielectric material does not have a practically high Q value (Qf = 15000 or less) at a high frequency, for example, a frequency range of 10 GHz.

【0006】また、磁器密度を向上するために高温で焼
成しなければならず、また高温で焼成しても十分な磁器
密度を得ることが困難であり、強度が弱く、高Q値を得
にくいという問題があった。
Further, it is necessary to fire at a high temperature in order to improve the density of the porcelain, and it is difficult to obtain a sufficient porcelain density even when firing at a high temperature, and the strength is weak, and it is difficult to obtain a high Q value. There was a problem.

【0007】本発明者等は、高周波領域において高い比
誘電率および高いQ値を有する組成物としてBaO、M
gOおよびWO3 を含む複合酸化物からなる誘電体磁器
組成物や、SrO、MgO、およびWO3 を含む複合酸
化物からなる誘電体磁器組成物を先に提案した(特開平
5−205524号、特開平6−5117号)。
The inventors of the present invention have reported that BaO, M and M are used as compositions having a high relative dielectric constant and a high Q value in the high frequency region.
A dielectric ceramic composition composed of a composite oxide containing gO and WO 3 and a dielectric ceramic composition composed of a composite oxide containing SrO, MgO and WO 3 were previously proposed (Japanese Patent Laid-Open No. 5-205524, JP-A-6-5117).

【0008】しかしながら、これらの誘電体磁器組成物
では高周波領域において高いQ値が得られるものの、共
振周波数の温度係数(τf )がマイナス側に偏り過ぎて
いるために、マイクロ波誘電体材料として使用する場
合、その利用分野が制限されるなど実用面で問題があっ
た。
However, although these dielectric ceramic compositions can obtain a high Q value in a high frequency region, they are used as microwave dielectric materials because the temperature coefficient (τf) of the resonance frequency is too biased to the negative side. In that case, there was a problem in practical use such as limitation of the field of use.

【0009】また、焼成温度が高く、製造コストが高く
なるため、その利用分野が制限されるなど実用面で問題
があった。例えば、BaO50モル%、MgO25モル
%、WO3 25モル%からなる磁器では、10GHzの
測定周波数で比誘電率20、Q値13000と高い値を
示すが、焼成温度が1600℃と高い。
Further, since the firing temperature is high and the manufacturing cost is high, there is a problem in practical use such that the field of use thereof is limited. For example, a porcelain composed of 50 mol% of BaO, 25 mol% of MgO and 25 mol% of WO 3 shows a high relative dielectric constant of 20 and a Q value of 13000 at a measurement frequency of 10 GHz, but the firing temperature is high at 1600 ° C.

【0010】[0010]

【課題を解決するための手段】本発明者等は、上記問題
点に対して種々検討を加えた結果、先に提案した2種類
の酸化物を複合させること、即ちBaO、SrO、Mg
O、WO3 からなる組成物を作製し、さらに、これに対
して、コバルト(Co)、ニッケル(Ni)、亜鉛(Z
n)等を少なくとも1種類以上を所定量含有させること
により、焼成温度を低くしたとしても高Q値を有するこ
とができ、共振周波数の温度係数(τf)をマイナス側
からプラス側に移行できるとともに、磁器密度(かさ比
重)を向上し、磁器強度を向上することができることを
知見し、本発明に至った。
Means for Solving the Problems As a result of various studies on the above problems, the present inventors have found that the previously proposed two kinds of oxides should be compounded, that is, BaO, SrO, Mg.
A composition of O and WO 3 was prepared, and further, cobalt (Co), nickel (Ni), zinc (Z
By containing at least one kind of n) or the like in a predetermined amount, a high Q value can be obtained even if the firing temperature is lowered, and the temperature coefficient (τf) of the resonance frequency can be shifted from the negative side to the positive side. The inventors have found that the porcelain density (bulk specific gravity) can be improved and the porcelain strength can be improved, and the present invention has been accomplished.

【0011】即ち、本発明の高周波用誘電体磁器組成物
は、金属元素として少なくともBa、Sr、Mgおよび
Wを含有し、これらの金属元素酸化物のモル比による組
成式を、x{(1−a)BaO・aSrO}・y{(1
−b)MgO・bAO}・zWO3 (Aは鉄族金属およ
びZnのうち少なくとも一種)と表した時、前記a、
b、x、yおよびzが、0<a<1、0.01≦b≦
0.7、0.40≦x≦0.55、0.15≦y≦0.
30、0.20≦z≦0.30、x+y+z=1を満足
するものである。ここで、一般式(Ba1-a Sra
{(Mg1-b b 1/ 2 1/2 }O3 で表されるペロブ
スカイト型結晶(0<a<1、0.01≦b≦0.7)
を主結晶相とすることが望ましい。
That is, the high frequency dielectric porcelain composition of the present invention contains at least Ba, Sr, Mg and W as metal elements, and the composition formula based on the molar ratio of these metal element oxides is x {(1 -A) BaO · aSrO} · y {(1
-B) When expressed as MgO · bAO} · zWO 3 (A is at least one of iron group metals and Zn),
b, x, y and z are 0 <a <1, 0.01 ≦ b ≦
0.7, 0.40 ≦ x ≦ 0.55, 0.15 ≦ y ≦ 0.
30, 0.20 ≦ z ≦ 0.30, x + y + z = 1. Here, the general formula (Ba 1-a Sr a )
{(Mg 1-b A b ) 1/2 W 1/2} O 3 perovskite crystal represented (0 <a <1,0.01 ≦ b ≦ 0.7)
Is preferably used as the main crystal phase.

【0012】[0012]

【作用】本発明の高周波用誘電体磁器組成物では、組成
式がx{(1−a)BaO・aSrO}・y{(1−
b)MgO・bAO}・zWO3 と表される組成物にお
いて、BaO及びSrOのモル比を変化させることによ
り共振周波数の温度係数(τf )をマイナス側からプラ
ス側の一定領域で自由に制御することができるととも
に、コバルト(Co)、ニッケル(Ni)、亜鉛(Z
n)等の少なくとも1種類以上を所定量含有することに
より、従来よりも150℃程度低温での焼成が可能とな
り、焼成温度を低下させた場合でも高Q値を有すること
ができ、高い磁器密度(かさ比重)による高強度を実現
することができる。
In the high frequency dielectric ceramic composition of the present invention, the composition formula is x {(1-a) BaO.aSrO} .y {(1-
b) a composition represented as MgO · bAO} · zWO 3, be freely controlled in certain areas of the positive temperature coefficient of resonant frequency (.tau.f) from the negative side by changing the molar ratio of BaO and SrO Cobalt (Co), nickel (Ni), zinc (Z
By containing at least one kind of n) or the like in a predetermined amount, it becomes possible to perform firing at a temperature lower by about 150 ° C. than before, and it is possible to have a high Q value even when the firing temperature is lowered, and to have a high porcelain density. High strength can be realized by (bulk specific gravity).

【0013】即ち、主成分であるBaO、SrO、Mg
O、WO3 からなる組成物に対して、所定量のコバルト
(Co)、ニッケル(Ni)、亜鉛(Zn)等の少なく
とも1種類以上を含有させることにより、低温で焼結が
促進し、高い磁器強度及び高Q値を得ることができるの
である。
That is, the main components of BaO, SrO, Mg
By adding a predetermined amount of at least one of cobalt (Co), nickel (Ni), zinc (Zn) and the like to the composition comprising O and WO 3 , sintering is promoted at a low temperature and high The porcelain strength and high Q value can be obtained.

【0014】また、従来、マイナスの共振周波数の温度
係数(τf)を有する組成物に対して、プラスの共振周
波数の温度係数(τf)を有する組成物を添加して、プ
ラスの共振周波数の温度係数(τf)を有するように制
御していた。この場合には共振周波数の温度係数(τ
f)が0のものが1点存在することになる。
Conventionally, a composition having a temperature coefficient of positive resonance frequency (τf) is added to a composition having a temperature coefficient of negative resonance frequency (τf) to obtain a temperature of positive resonance frequency. It controlled so that it might have a coefficient ((tau) f). In this case, the temperature coefficient of resonance frequency (τ
There will be one point where f) is 0.

【0015】本発明では、マイナスの共振周波数の温度
係数(τf)を有する二つの組成物を複合させることに
より、例えば、BaO−MgO−WO3 を含む複合酸化
物からなる誘電体磁器組成物や、SrO−MgO−WO
3 を含む複合酸化物からなる誘電体磁器組成物のみでは
達成できなかった、共振周波数の温度係数(τf)をプ
ラス側に移行させるという全く新規な技術的思想に基づ
いてなされたものである。本発明の誘電体磁器組成物で
は、共振周波数の温度係数(τf)が0のものが2点存
在することになり、共振周波数の温度係数の制御を容易
に行うことができる。
In the present invention, by combining two compositions having a negative resonance frequency temperature coefficient (τf), for example, a dielectric ceramic composition composed of a composite oxide containing BaO-MgO-WO 3 or , SrO-MgO-WO
This is based on a completely new technical idea of shifting the temperature coefficient (τf) of the resonance frequency to the positive side, which could not be achieved only by the dielectric ceramic composition composed of the complex oxide containing 3 . In the dielectric ceramic composition of the present invention, there are two points where the temperature coefficient (τf) of the resonance frequency is 0, and the temperature coefficient of the resonance frequency can be easily controlled.

【0016】例えば、BaO:MgO:WO3 =2:
1:1(モル比)からなる磁器組成物では、10GHz
の測定周波数で比誘電率20、Q値13000と高い値
を示すが、共振周波数の温度係数(τf)が−30pp
m/℃とマイナス側に大きい。
For example, BaO: MgO: WO 3 = 2:
In a porcelain composition consisting of 1: 1 (molar ratio), 10 GHz
Shows a high relative permittivity of 20 and a Q value of 13000 at the measurement frequency, but the temperature coefficient (τf) of the resonance frequency is -30pp
It is large on the minus side with m / ° C.

【0017】また、SrO:MgO:WO3 =2:1:
1(モル比)からなる磁器組成物では10GHzの測定
周波数で比誘電率20、Q値6000と高い値を示す
が、共振周波数の温度係数(τf)が−60ppm/℃
とマイナス側に大きい。本発明に基づきBa及びSrを
固溶させることにより、共振周波数の温度係数(τf)
を−60ppm/℃から+35ppm/℃まで連続的に
制御することができる。
Further, SrO: MgO: WO 3 = 2: 1:
A porcelain composition consisting of 1 (molar ratio) shows a high relative permittivity of 20 and a Q value of 6000 at a measurement frequency of 10 GHz, but the temperature coefficient (τf) of the resonance frequency is -60 ppm / ° C.
And big on the minus side. By solid-dissolving Ba and Sr according to the present invention, the temperature coefficient (τf) of the resonance frequency is
Can be continuously controlled from −60 ppm / ° C. to +35 ppm / ° C.

【0018】[0018]

【発明の実施の形態】本発明の高周波用誘電体磁器組成
物は、金属元素酸化物のモル比による組成式を、x
{(1−a)BaO・aSrO}・y{(1−b)Mg
O・bAO}・zWO3 と表した時、前記a、b、x、
y、zが、0<a<1、0.01≦b≦0.7、0.4
0≦x≦0.55、0.15≦y≦0.30、0.20
≦z≦0.30、x+y+z=1を満足するものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The dielectric ceramic composition for high frequencies of the present invention has a compositional formula based on the molar ratio of the metal element oxide, x
{(1-a) BaO.aSrO} .y {(1-b) Mg
O · bAO} · zWO 3 , the above a, b, x,
y and z are 0 <a <1, 0.01 ≦ b ≦ 0.7, 0.4
0 ≦ x ≦ 0.55, 0.15 ≦ y ≦ 0.30, 0.20
≦ z ≦ 0.30, x + y + z = 1.

【0019】ここで、BaOのSrOによる置換量aを
0<a<1としたのは、a=0及び1ではBa、Srの
固溶体が得られず、共振周波数の温度係数(τf)の制
御効果が得られないからである。また、MgOの鉄族金
属およびZnによる置換量bを0.01≦b≦0.7と
したのは、bが0.01未満では焼成温度の低下や磁器
密度の向上の効果が殆ど得られず、0.7より多いとき
はQ値の低下が著しいからである。このbは、より高い
磁器密度かつ高いQ値を得るという点から、0.01≦
b≦0.65であることが望ましい。鉄族金属として
は、Fe,Ni,Coがあるが、これらのうちでもN
i,Coが望ましい。
Here, the substitution amount a of BaO with SrO is set to 0 <a <1 because the solid solution of Ba and Sr is not obtained at a = 0 and 1, and the temperature coefficient (τf) of the resonance frequency is controlled. This is because the effect cannot be obtained. Further, the substitution amount b of MgO by the iron group metal and Zn is set to 0.01 ≤ b ≤ 0.7, because when b is less than 0.01, the effect of lowering the firing temperature and improving the porcelain density is almost obtained. However, when it is more than 0.7, the Q value is remarkably reduced. This b is 0.01 ≦ from the viewpoint of obtaining a higher porcelain density and a high Q value.
It is desirable that b ≦ 0.65. The iron group metals include Fe, Ni, and Co, but among these, N
i and Co are desirable.

【0020】さらに各a、bに対して組成比を上記の範
囲に限定したのは、上記範囲外では固溶の効果が不十分
であるか、または焼結性の低下やQ値の低下という問題
が生じるからである。
Further, the reason why the composition ratio for each of a and b is limited to the above range is that the effect of solid solution is insufficient outside the above range, or the sinterability and Q value decrease. This is because problems will occur.

【0021】即ち、モル比xを0.40≦x≦0.55
としたのは、0.40よりも小さい場合や0.55より
も大きい場合には、Q値が低下するからである。xは、
Q値向上という理由から0.49≦x≦0.52が望ま
しい。
That is, the molar ratio x is 0.40≤x≤0.55
This is because the Q value decreases when the value is smaller than 0.40 or larger than 0.55. x is
For improving the Q value, 0.49 ≦ x ≦ 0.52 is desirable.

【0022】また、MgOのモル比を0.15≦y≦
0.30としたのは、yが0.15よりも小さい場合に
はQ値が低下し、0.30よりも大きい場合にはQ値が
低下したり、焼結不良となるからである。MgOのモル
比yは、Q値の向上と焼結性という理由から0.20≦
y≦0.27であることが望ましい。
Further, the molar ratio of MgO is 0.15 ≦ y ≦
The reason for setting 0.30 is that when y is smaller than 0.15, the Q value is lowered, and when y is larger than 0.30, the Q value is lowered and sintering becomes defective. The molar ratio y of MgO is 0.20 ≦ because of the improvement of the Q value and the sinterability.
It is desirable that y ≦ 0.27.

【0023】また、WO3 のモル比を0.20≦z≦
0.30としたのは、zが0.20よりも小さい場合に
は焼結不良となり、0.30よりも大きい場合にはQ値
が低下するからである。WO3 のモル比zは、Q値の向
上と焼結性という理由から0.22≦z≦0.28が望
ましい。
Further, the molar ratio of WO 3 is 0.20 ≦ z ≦.
The reason for setting it to 0.30 is that if z is smaller than 0.20, the sintering becomes defective, and if it is larger than 0.30, the Q value decreases. The molar ratio z of WO 3 is preferably 0.22 ≦ z ≦ 0.28 in order to improve the Q value and sinterability.

【0024】本発明の高周波誘電体磁器組成物では、組
成式を、x{(1−a)BaO・aSrO}・y{(1
−b)MgO・bAO}・zWO3 と表した時、a、
b、x、y、zが、0<a<1、0.01≦b≦0.6
5、0.49≦x≦0.52、0.20≦y≦0.2
7、0.22≦z≦0.28、x+y+z=1を満足す
ることが望ましい。
In the high frequency dielectric ceramic composition of the present invention, the composition formula is x {(1-a) BaO.aSrO} .y {(1
-B) When expressed as MgO · bAO} · zWO 3 , a,
b, x, y, z are 0 <a <1, 0.01 ≦ b ≦ 0.6
5, 0.49 ≦ x ≦ 0.52, 0.20 ≦ y ≦ 0.2
7, it is desirable that 0.22 ≦ z ≦ 0.28 and x + y + z = 1 be satisfied.

【0025】本発明に基づき磁器を作製する方法として
は、例えばBa、Sr、Mg、Wの酸化物あるいは焼成
により酸化物を生成する炭酸塩、硝酸塩等の金属塩を主
原料として準備し、これらを前述の範囲になるように秤
量した後、充分に混合する。
As a method for producing a porcelain based on the present invention, for example, an oxide of Ba, Sr, Mg, W or a metal salt such as a carbonate or a nitrate which produces an oxide by firing is prepared as a main raw material. Is weighed so as to fall within the above range, and then thoroughly mixed.

【0026】その後、大気中において900〜1200
℃で1〜4時間仮焼処理する。
Then, in the atmosphere, 900 to 1200
Calcination is performed at ℃ for 1 to 4 hours.

【0027】得られた仮焼物に、例えば、CoOのよう
なコバルト化合物、NiOのようなニッケル化合物、Z
nOのような亜鉛化合物の各化合物を所定量となるよう
に秤量し添加して、混合粉砕する。そして、これをプレ
ス成形やドクターブレード法等の成形方法により所定の
形状に成形する。次に成形体を大気中等の酸化性雰囲気
中で1300℃〜1450℃で1〜8時間焼成すること
により誘電体磁器を得ることができる。
The obtained calcined product is added to, for example, a cobalt compound such as CoO, a nickel compound such as NiO, Z
Each zinc compound such as nO is weighed and added to a predetermined amount, and mixed and ground. Then, this is molded into a predetermined shape by a molding method such as press molding or a doctor blade method. Next, the molded body is fired in an oxidizing atmosphere such as the air at 1300 ° C. to 1450 ° C. for 1 to 8 hours to obtain a dielectric ceramic.

【0028】本発明においては、不可避不純物としてC
l,Ca,Zr等が混入する場合があり、またCl,C
a,Zr等が酸化物換算で0.1重量%程度混入しても
特性上問題ない。特に、前記誘電体組成物に対してAl
およびYの各元素の存在は、焼成温度を上昇させる傾向
があるため、本発明によれば、これらの金属元素量は、
不純物も含め、酸化物換算で全量中5重量%以下となる
ように制御することが望ましい。
In the present invention, C is an unavoidable impurity.
l, Ca, Zr, etc. may be mixed, and Cl, C
Even if a, Zr, etc. are mixed in an amount of about 0.1% by weight in terms of oxide, there is no problem in characteristics. In particular, for the dielectric composition, Al
Since the presence of each element of Y and Y tends to increase the firing temperature, according to the present invention, the amounts of these metal elements are:
It is desirable to control the total amount of oxides including impurities to be 5% by weight or less.

【0029】また、本発明においては、一般式(Ba
1-a Sra ){(Mg1-b b 1/21/2 }O3 で表
されるペロブスカイト型結晶(0<a<1、0.01≦
b≦0.7)を主結晶とすることが望ましいが、その他
に、BaWO4 ,SrWO4 等の結晶が微量存在してい
ても、特性上殆ど問題ない。。
In the present invention, the general formula (Ba
1-a Sr a ) {(Mg 1-b A b ) 1/2 W 1/2 } O 3 perovskite type crystal (0 <a <1, 0.01 ≦
It is desirable that b ≦ 0.7) be the main crystal, but in addition, even if a small amount of crystals such as BaWO 4 and SrWO 4 exist, there is almost no problem in terms of characteristics. .

【0030】[0030]

【実施例】原料として純度99%以上のBaCO3 、S
rCO3 、MgCO3 、CoO(あるいはNiO、ある
いはZnO)及び、WO3 の各粉末を用いて、これらを
表1〜表4に示す割合に秤量し、これをゴムで内張りし
たボールミルにIPAとともに入れ、ZrO2 ボールを
用いて8時間湿式混合した。次いで、この混合物を脱溶
媒、乾燥した後、大気中において1000℃で2時間仮
焼した。当該仮焼物をボールミルにIPAを入れ、Zr
2 ボールを用いて8時間湿式粉砕した。
EXAMPLES As raw materials, BaCO 3 and S having a purity of 99% or more were used.
rCO 3, MgCO 3, CoO (or NiO or ZnO,) and, using the powder of WO 3, it was weighed to a ratio shown in Table 1 to Table 4, which were placed with IPA in a ball mill lined with rubber , ZrO 2 balls were used for wet mixing for 8 hours. Next, the mixture was desolvated and dried, and then calcined in the air at 1000 ° C. for 2 hours. Put the calcined product in a ball mill with IPA,
Wet milling was carried out for 8 hours using O 2 balls.

【0031】その後、この粉砕物を乾燥、有機バインダ
ーを添加した後、50番メッシュの網を通して造粒し、
得られた粉末を3000kg/cm2 の圧力で直径10
mm厚み5mmの寸法の円柱に成形した。更に、この円
柱を大気中において1300〜1600℃で2〜6時間
の条件で焼成し、磁器を得た。この磁器を研磨して直径
8mm、厚み4〜5mmの寸法の試料を得た。
Thereafter, the pulverized product was dried, an organic binder was added, and then the mixture was granulated through a mesh of No. 50 mesh,
The obtained powder was crushed at a pressure of 3000 kg / cm 2 to a diameter of 10
It was formed into a cylinder having a thickness of 5 mm and a thickness of 5 mm. Further, the column was fired in the atmosphere at 1300 to 1600 ° C. for 2 to 6 hours to obtain a porcelain. The porcelain was polished to obtain a sample having a diameter of 8 mm and a thickness of 4 to 5 mm.

【0032】得られた試料について、アルキメデス法に
て磁器密度を測定した。また周波数約10〜11GHz
における比誘電率(εr )、Q値を誘電体共振器法にて
測定し、Q値については一般式Qf=一定がなりたつと
みなして10GHzにおけるQ値に換算した。また25
℃から85℃までの各温度におけるTE011モード共
振周波数の温度係数(τf)を、τf=〔(f85
25)/f25〕/60×106 〔ppm/℃〕に基づい
て計算した。ここで、f85は85℃における共振周波数
であり、f25は25℃における共振周波数である。それ
らの結果を表1,2,3,4に示す。
The porcelain density of the obtained sample was measured by the Archimedes method. Frequency of about 10-11 GHz
The relative permittivity (εr) and the Q value in (1) were measured by the dielectric resonator method, and the Q value was converted into the Q value at 10 GHz, assuming that the general formula Qf = constant. Also 25
The temperature coefficient (τf) of the TE011 mode resonance frequency at each temperature from ℃ to 85 ℃, τf = [(f 85
It was calculated based on f 25 ) / f 25 ] / 60 × 10 6 [ppm / ° C.]. Here, f 85 is the resonance frequency at 85 ° C., and f 25 is the resonance frequency at 25 ° C. The results are shown in Tables 1, 2, 3, and 4.

【0033】尚、得られた磁器について、X線回折測定
を行った結果、本発明の試料では、一般式(Ba1-a
a ){(Mg1-b b 1/2 1/2 }O3 で表される
ペロブスカイト型結晶(0<a<1、0.01≦b≦
0.7)を主結晶相とすることを確認した。
The obtained porcelain was subjected to X-ray diffraction measurement. As a result, in the sample of the present invention, the general formula (Ba 1-a S
r a ) {(Mg 1-b A b ) 1/2 W 1/2 } O 3 perovskite type crystal (0 <a <1, 0.01 ≦ b ≦
It was confirmed that 0.7) was the main crystal phase.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】これらの表から、本発明の高周波誘電体磁
器組成物は、aの値を変化させることにより、共振周波
数の温度係数(τf)の制御を容易に行うことができる
とともに、鉄族金属およびZnのうち少なくとも一種を
含有せしめることにより、従来よりも焼結温度を150
℃程度低下させることができ、このように低温で焼成し
た場合でも組成物の磁器密度が向上し、高強度とするこ
とができ、さらに10GHzでのQ値を2500以上と
高くすることができる。
From these tables, in the high frequency dielectric ceramic composition of the present invention, the temperature coefficient (τf) of the resonance frequency can be easily controlled and the iron group metal by changing the value of a. By including at least one of Zn and Zn, the sintering temperature can be set to 150
It is possible to lower the temperature by about 0 ° C., and even when the composition is fired at a low temperature, the porcelain density of the composition is improved, the strength can be increased, and the Q value at 10 GHz can be increased to 2500 or more.

【0039】[0039]

【発明の効果】本発明の高周波用誘電体磁器組成物で
は、BaO、SrO、MgO及びWO3からなる主成分
に対して、鉄族金属および亜鉛を所定量含有することに
より、共振周波数の温度係数(τf)の制御を容易に行
うことができるとともに、焼結温度を従来よりも150
℃程度低下させることができ、この場合でも、組成物の
磁器密度が向上し、高強度とすることができ、10GH
zでのQ値を2500以上と高くすることができる。こ
れにより得られた磁器はマイクロ波やミリ波領域におい
て使用される共振器材料、MIC用誘電体基板材料、コ
ンデンサー用材料、誘電体アンテナ用材料、誘電体導波
路用材料等に充分適用することができる。
In the high frequency dielectric ceramic composition of the present invention, the iron group metal and zinc are contained in the predetermined amounts with respect to the main components of BaO, SrO, MgO and WO 3, so that the resonance frequency temperature The coefficient (τf) can be controlled easily, and the sintering temperature is set to 150 compared with the conventional one.
C., and even in this case, the porcelain density of the composition can be improved and the strength can be increased to 10 GH.
The Q value at z can be as high as 2500 or more. The porcelain obtained in this way should be sufficiently applied to resonator materials used in microwave and millimeter wave regions, MIC dielectric substrate materials, capacitor materials, dielectric antenna materials, dielectric waveguide materials, etc. Can be.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01G 4/12 415 H01G 4/12 415 H01P 7/10 H01P 7/10 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01G 4/12 415 H01G 4/12 415 H01P 7/10 H01P 7/10

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】金属元素として少なくともBa、Sr、M
gおよびWを含有し、これらの金属元素酸化物のモル比
による組成式を x{(1−a)BaO・aSrO}・y{(1−b)M
gO・bAO}・zWO3 (Aは鉄族金属およびZnのうち少なくとも一種)と表
した時、前記a、b、x、yおよびzが 0<a<1 0.01≦b≦0.7 0.40≦x≦0.55 0.15≦y≦0.30 0.20≦z≦0.30 x+y+z=1 を満足することを特徴とする高周波用誘電体磁器組成
物。
1. A metal element containing at least Ba, Sr, and M.
g and W, and the composition formula based on the molar ratio of these metal element oxides is x {(1-a) BaO.aSrO} .y {(1-b) M
gO · bAO} · zWO 3 (A is at least one of an iron group metal and Zn), a, b, x, y and z are 0 <a <1 0.01 ≦ b ≦ 0.7. 0.40 ≦ x ≦ 0.55 0.15 ≦ y ≦ 0.30 0.20 ≦ z ≦ 0.30 x + y + z = 1 The high frequency dielectric ceramic composition.
【請求項2】一般式(Ba1-a Sra ){(Mg1-b
b 1/2 1/2 }O3で表されるペロブスカイト型結晶
(0<a<1、0.01≦b≦0.7)を主結晶相とす
る請求項1記載の高周波用誘電体磁器組成物。
2. The general formula (Ba 1-a Sr a ) {(Mg 1-b A
2. The high frequency dielectric according to claim 1, wherein a perovskite type crystal (0 <a <1, 0.01 ≦ b ≦ 0.7) represented by b ) 1/2 W 1/2 } O 3 is used as a main crystal phase. Body porcelain composition.
JP07785196A 1996-03-29 1996-03-29 High frequency dielectric ceramic composition Expired - Fee Related JP3336190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07785196A JP3336190B2 (en) 1996-03-29 1996-03-29 High frequency dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07785196A JP3336190B2 (en) 1996-03-29 1996-03-29 High frequency dielectric ceramic composition

Publications (2)

Publication Number Publication Date
JPH09268058A true JPH09268058A (en) 1997-10-14
JP3336190B2 JP3336190B2 (en) 2002-10-21

Family

ID=13645571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07785196A Expired - Fee Related JP3336190B2 (en) 1996-03-29 1996-03-29 High frequency dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JP3336190B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0881199A1 (en) * 1997-05-30 1998-12-02 Kyocera Corporation Dielectric ceramics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0881199A1 (en) * 1997-05-30 1998-12-02 Kyocera Corporation Dielectric ceramics
US6051515A (en) * 1997-05-30 2000-04-18 Kyocera Corporation Dielectric ceramics

Also Published As

Publication number Publication date
JP3336190B2 (en) 2002-10-21

Similar Documents

Publication Publication Date Title
JP2902923B2 (en) High frequency dielectric ceramic composition
JP3336190B2 (en) High frequency dielectric ceramic composition
JP3605295B2 (en) Dielectric ceramic composition and dielectric resonator using the same
JPH10330165A (en) Dielectric substance ceramic for high frequency
JPH06338221A (en) Dielectric ceramic composition for high frequency
JP3469986B2 (en) High frequency dielectric ceramic composition
JP3340019B2 (en) High frequency dielectric ceramic composition
JP3006188B2 (en) High frequency dielectric ceramic composition
JP3359427B2 (en) High frequency dielectric ceramic composition
JP2842756B2 (en) High frequency dielectric ceramic composition
JPH10101425A (en) Piezoelectric porcelain composition
JP3340008B2 (en) High frequency dielectric ceramic composition
JP3330024B2 (en) High frequency dielectric ceramic composition
JPH10162649A (en) Dielectric ceramic composition
JP3350379B2 (en) Dielectric porcelain composition
JP2835253B2 (en) High frequency dielectric ceramic composition and dielectric material
JP3261023B2 (en) Dielectric porcelain composition
JP3347613B2 (en) Dielectric porcelain composition
JP3411170B2 (en) High frequency dielectric ceramic composition
JPH09169567A (en) Dielectric porcelain composition for high frequency
JP2887244B2 (en) High frequency dielectric ceramic composition
JPH0850813A (en) Dielectric ceramic composition
JP2002187771A (en) Dielectric porcelain and dielectric resonator using the same
JPH09227230A (en) Dielectric porcelain composition for high-frequency
JPH10101423A (en) Piezoelectric porcelain composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120802

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees