JPH09266011A - Nonaqueous solvent secondary battery - Google Patents

Nonaqueous solvent secondary battery

Info

Publication number
JPH09266011A
JPH09266011A JP8074621A JP7462196A JPH09266011A JP H09266011 A JPH09266011 A JP H09266011A JP 8074621 A JP8074621 A JP 8074621A JP 7462196 A JP7462196 A JP 7462196A JP H09266011 A JPH09266011 A JP H09266011A
Authority
JP
Japan
Prior art keywords
secondary battery
capacity
positive
aqueous solvent
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8074621A
Other languages
Japanese (ja)
Inventor
Keijiro Takanishi
慶次郎 高西
Masaya Adachi
眞哉 足立
Takeji Nakae
武次 中江
Yoshio Matsuda
良夫 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP8074621A priority Critical patent/JPH09266011A/en
Publication of JPH09266011A publication Critical patent/JPH09266011A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous solvent secondary battery excellent in charge and discharge cycle characteristic with high capacity by setting the capacity ratio of positive electrode constant current charging capacity to negative electrode constant current charging capacity within a specified range. SOLUTION: In a nonaqueous solvent secondary battery, when a positive constant current charging capacity is Cc , and negative electrode constant current charging capacity is CA, the capacity ratio of positive electrode to negative electrode is set so as to have 0.85<=Cc /CA<=1.15. As the method of regulating Cc /CA within this range, regulation of thickness of positive and negative electrodes, regulation of conductivity of positive and negative electrodes or the like is given. In such a secondary battery, a carbon material containing amorphous carbon fiber and crystalline carbon fiber is preferably used as negative electrode active material. A lithium composite oxide is preferably used as positive electrode active material. The lithium composite oxide is selected from Lix CoO2 (0<=x<=1.0), Lix NiO2 , and those obtained by partially substituting these metal elements by an alkali earth metal element and a transition metal element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高容量かつサイク
ル特性に優れた非水溶媒系二次電池に関するものであ
る。
The present invention relates to a non-aqueous solvent secondary battery having a high capacity and excellent cycle characteristics.

【0002】[0002]

【従来の技術】近年、ビデオカメラやノート型パソコン
等のポータブル機器の普及に伴い、小型高容量の二次電
池に対する需要が高まっている。現在使用されている二
次電池のほとんどはアルカリ電解液を用いたニッケル−
カドミウム電池であるが、電池電圧が約1.2Vと低
く、エネルギー密度の向上は困難である。そのため、比
重が0.534と固体の単体中最も軽いうえ、電位が極
めて卑であり、単位重量当たりの電流容量も金属負極材
料中最大であるリチウム金属を使用するリチウム二次電
池が検討された。
2. Description of the Related Art In recent years, with the widespread use of portable devices such as video cameras and notebook computers, demand for small and high capacity secondary batteries has increased. Most of the secondary batteries currently used are nickel-based using alkaline electrolyte.
The cadmium battery has a low battery voltage of about 1.2 V, and it is difficult to improve the energy density. Therefore, a lithium secondary battery using lithium metal, which has a specific gravity of 0.534, which is the lightest among solid solids, has a very low potential, and has the largest current capacity per unit weight among metal negative electrode materials, has been studied. .

【0003】しかし、リチウム金属を負極に使用する二
次電池では、放電時に負極の表面に樹枝状のリチウム
(デンドライト)が再結晶し、充放電サイクルによって
これが成長する。このデンドライトの成長は、二次電池
のサイクル特性を劣化させるばかりではなく、最悪の場
合には正極と負極が接触しないように配置された隔膜
(セパレータ)を突き破って、正極と電気的に短絡、発
火して電池を破壊してしまう。そこで、例えば、特開昭
62−90863号公報に示されているように、コーク
ス等の炭素質材料を負極とし、アルカリ金属イオンをド
ーピング、脱ドーピングすることにより充放電を繰り返
す二次電池が提案された。これによって、上述したよう
な充放電の繰り返しにおける負極の劣化問題を回避でき
ることが分かった。また、このような各種炭素質材料
は、アニオンをドーピングして正極として用いることも
可能である。上記の炭素質材料へのリチウムイオンある
いはアニオンのドーピングを基本原理とする電極を利用
した二次電池としては、特開昭57−208079号公
報、特開昭58−93176号公報、特開昭58−19
2266号公報、特開昭62−90863号公報、特開
昭62−122066号公報、特開平3−66856号
公報等が公知である。
However, in a secondary battery using lithium metal for the negative electrode, dendritic lithium (dendrites) is recrystallized on the surface of the negative electrode at the time of discharging, and grows by a charge / discharge cycle. This dendrite growth not only degrades the cycle characteristics of the secondary battery, but in the worst case, breaks through a separator (separator) arranged so that the positive electrode and the negative electrode do not come into contact with each other, and electrically short-circuits with the positive electrode. Ignite and destroy battery. Therefore, for example, as disclosed in JP-A-62-90863, a secondary battery is proposed in which a carbonaceous material such as coke is used as a negative electrode and alkali metal ions are doped and dedoped to repeat charging and discharging. Was done. As a result, it was found that the problem of deterioration of the negative electrode due to the repetition of charge and discharge as described above can be avoided. Further, such various carbonaceous materials can be used as a positive electrode by doping with an anion. As secondary batteries using electrodes based on the above-described principle of doping lithium ions or anions into carbonaceous materials, JP-A-57-20807, JP-A-58-93176, JP-A-58-93176, and -19
No. 2,266, Japanese Patent Application Laid-Open No. 62-90863, Japanese Patent Application Laid-Open No. 62-122066, Japanese Patent Application Laid-Open No. 3-66656, and the like are known.

【0004】このような炭素質材料としては、粉末の形
状のもの、炭素繊維(長繊維状、短繊維状)あるいは炭
素繊維構造体など、いずれの形態で用いてもよい。
The carbonaceous material may be used in any form such as powder, carbon fiber (long fiber or short fiber) or carbon fiber structure.

【0005】さらに、最近では、高エネルギー密度化の
要求に応えるべく、電池電圧が4V前後を示すものが現
れ、注目を浴びている。電池電圧の高電圧化は、正極に
高電位を示す活物質の探索、開発によって進められ、ア
ルカリ金属を含む遷移金属酸化物や遷移金属カルコゲン
などの無機化合物が知られている。なかでも、LiX
oO2 (0<x≦1.0)、LiX NiO2 (0<x≦
1.0)などが、高電位、安定性、長寿命という点から
最も有望であると考えている。このなかでも、LiNi
2 は、LiCoO2 に比べて、原料がコスト安であ
り、かつ、供給が安定していること、さらには、4V級
の活物質ではあるが、充電電位が幾分低いことから電解
液の分解が抑制される、などという利点から、特に精力
的に研究が進められている。
Further, recently, in order to meet the demand for higher energy density, a battery voltage of around 4V has appeared and has attracted attention. Increasing the battery voltage has been promoted by searching for and developing an active material exhibiting a high potential at the positive electrode, and inorganic compounds such as transition metal oxides and transition metal chalcogens containing alkali metals are known. Above all, Li X C
oO 2 (0 <x ≦ 1.0), Li x NiO 2 (0 <x ≦
1.0) are considered most promising in terms of high potential, stability, and long life. Among them, LiNi
Compared with LiCoO 2 , the raw material of O 2 is cheaper in cost, the supply is stable, and, although it is an active material of 4V class, the charging potential is somewhat lower, so that Research has been particularly vigorously pursued because of the advantage that decomposition is suppressed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、これら
の負極および正極活物質を組み合わせた非水溶媒系二次
電池は、初期は高い放電容量を示していても、充放電を
繰り返した場合に放電容量の低下を起こし、サイクル寿
命特性に問題があるという課題があった。
However, the non-aqueous solvent-based secondary battery in which these negative electrode and positive electrode active materials are combined has a high discharge capacity at the initial stage, but the discharge capacity after repeated charging and discharging. However, there is a problem in that the cycle life characteristic is deteriorated.

【0007】本発明は、上記従来技術の欠点を解消しよ
うとするものであり、高容量で充放電サイクルに優れた
高性能の二次電池を提供することを目的とする。
The present invention is intended to solve the above-mentioned drawbacks of the prior art, and an object thereof is to provide a high-performance secondary battery having a high capacity and an excellent charge / discharge cycle.

【0008】[0008]

【課題を解決するための手段】本発明は、上記課題を解
決するために以下の構成を有するものである。「正極定
電流充電容量をCC 、負極定電流充電容量をCA とした
とき、0.85≦CC/CA ≦1.15となるように正
・負極の容量比が設定されてなることを特徴とする非水
溶媒系二次電池。」 ここで、この充放電サイクルによる放電容量の劣化の原
因について検討した結果、本発明を見出すに至ったので
ある。すなわち、一般的に、これらの二次電池は定電流
で充電した後、一定の電圧(負極と正極の電位差)に達
したら、その電圧のまま電流値を減少させながら電流す
るという定電流・定電圧充電方式を取る。一般に、電池
の正・負極容量を合わせる方法としては、定電流充電容
量と定電圧充電容量を合わせたトータル容量CC t およ
びCA t を調製することが行われているが、本発明は、
定電流充電容量CC およびCA を調整するものである。
ここで、電池特性からCC =CA は自明であるが、本発
明でいうところの定電流充電容量CC およびCA は、単
極の定電流充電容量を意味する。CC およびCA は、電
極材の目付や内部抵抗などによって、影響されると考え
られるので、CC /CA を本発明の範囲内に調整する方
法としては、正・負極厚みの調整、正・負極の導電
性の調整、などが挙げられる。に関しては、さらに、
電極活物質の導電性を変える方法と、導電剤などを工夫
して導電性を変える方法が考えられる。前者に関して
は、種々の添加剤を合成時に加える方法が挙げられる。
後者に関しては、導電剤の種類、配合量などが挙げられ
る。
The present invention has the following constitution in order to solve the above problems. “When the positive electrode constant current charging capacity is C C and the negative electrode constant current charging capacity is C A , the positive and negative electrode capacity ratios are set so that 0.85 ≦ C C / C A ≦ 1.15. A non-aqueous solvent-based secondary battery characterized by the above. ”Here, as a result of examining the cause of the deterioration of the discharge capacity due to this charging / discharging cycle, the present invention has been found. That is, in general, these secondary batteries are charged with a constant current and then, when a certain voltage (potential difference between the negative electrode and the positive electrode) is reached, a constant current / constant current is maintained while decreasing the current value at that voltage. Take the voltage charging method. Generally, as a method of matching the positive and negative electrode capacities of batteries, a total capacity C C t and C A t, which is a combination of a constant current charging capacity and a constant voltage charging capacity, is prepared.
The constant current charge capacities C C and C A are adjusted.
Here, although C C = C A is obvious from the battery characteristics, the constant current charging capacities C C and C A in the present invention mean a unipolar constant current charging capacity. Since it is considered that C C and C A are affected by the areal weight of the electrode material, the internal resistance, etc., the method of adjusting C C / C A within the scope of the present invention is to adjust the thickness of the positive and negative electrodes, Adjustment of the conductivity of the positive and negative electrodes can be mentioned. As for
A method of changing the conductivity of the electrode active material and a method of changing the conductivity by devising a conductive agent or the like can be considered. Regarding the former, a method of adding various additives at the time of synthesis can be mentioned.
Regarding the latter, the kind and amount of the conductive agent may be mentioned.

【0009】本発明を模式的に説明したのが図2であ
る。図2は、定電流・定電圧充電方式で充電した場合に
正・負極で起きることを例示している。簡単のために、
定電圧に達した後の正・負極の電流減衰曲線が同じであ
ると仮定した。CC /CA が1.0よりも多い場合(C
C >CA )、負極にインターカレート可能な速度(単位
時間当たりのイオンの量)以上で正極からリチウムイオ
ンが負極に移動してくるため、この余剰のリチウムイオ
ンが負極表面に金属リチウムとしてが析出(デンドライ
ト生成)してしまい、その結果、充放電サイクルによる
放電容量の劣化が生じてしまう。CC /CA がちょうど
1.0の場合(CC =CA )、充電時、正極から負極に
移動してくるリチウムイオンが、負極表面に析出するこ
となく負極にインターカレートできるので、その結果、
充放電サイクルによる放電容量の劣化が生じない。CC
/CA が1.0よりも小さい場合(CC <CA )、負極
活物質の利用率が小さすぎて電池としての容量が小さく
なってしまう。ところが、鋭意検討を行った結果、実際
は、0.85≦CC /CA ≦1.15となるように正・
負極の容量比を設定することによって、充放電サイクル
による放電容量の劣化が抑制されることを見出した。C
C /CA がこのような範囲を持つ理由は明らかではない
が、定電圧に達した後の正・負極の電流減衰曲線が実際
は異なっていたり、または、負極表面にデンドライト生
成なしに許容可能なリチウムイオンの量に範囲があった
りすること、などが原因ではないかと考えられる。さら
に好ましくは、0.90≦CC /CA ≦1.05であ
る。
FIG. 2 schematically illustrates the present invention. FIG. 2 exemplifies what occurs in the positive and negative electrodes when charged by the constant current / constant voltage charging method. For simplicity,
It was assumed that the positive and negative current decay curves after reaching a constant voltage were the same. When C C / C A is more than 1.0 (C
C > C A ), lithium ions move from the positive electrode to the negative electrode at a speed (amount of ions per unit time) at which the negative electrode can be intercalated, and the surplus lithium ions are converted to metallic lithium on the negative electrode surface. Are deposited (dendrites are generated), and as a result, the discharge capacity is deteriorated due to charge / discharge cycles. When C C / C A is exactly 1.0 (C C = C A ), during charging, lithium ions moving from the positive electrode to the negative electrode can be intercalated into the negative electrode without being deposited on the negative electrode surface. as a result,
The discharge capacity does not deteriorate due to charge / discharge cycles. C C
When / C A is smaller than 1.0 (C C <C A ), the utilization rate of the negative electrode active material is too small and the capacity of the battery becomes small. However, extensive studies were carried out the results, in fact, positive and such that 0.85 ≦ C C / C A ≦ 1.15
It has been found that by setting the capacity ratio of the negative electrode, deterioration of the discharge capacity due to charge / discharge cycles is suppressed. C
Although C / C A reason is not clear with such a range, the actual current decay curves of the positive and negative electrode after reaching the constant voltage or different, or, can be tolerated without dendrite on the negative electrode surface It is thought that the cause may be that the amount of lithium ion has a range. More preferably, 0.90 ≦ C C / C A ≦ 1.05.

【0010】次に、CC およびCA の求め方について述
べる。負極の場合は、初期容量ロスが存在する場合は、
まず低電流密度での予備充放電などで初期容量ロスを無
くしたあと、一定の電流密度で、所定の充電電位VA
で、定電流/定電圧充電方式で充電する。この時の定電
位VA に達するまでの充電容量を負極定電流充電容量C
A とする。正極の場合も同様に、初期容量ロスが存在す
る場合は、まず低電流密度での予備充放電などで初期容
量ロスを無くしたあと、所定の充電電位VC まで、定電
流/定電圧充電方式で充電する。この時の定電位VC
達するまでの充電容量を正極定電流充電容量CC とし
た。本発明に用いられる正極活物質としては、特に限定
されるものではなく、アルカリ金属を含む遷移金属酸化
物や遷移金属カルコゲンなどの無機化合物が用いられ
る。なかでも、LiX CoO2 (0<x≦1.0)、L
X NiO2 (0<x≦1.0)などが、高電位、安定
性、長寿命という点から最も有望であると考えている。
このなかでも、LiNiO2 は、LiCoO2 に比べ
て、原料がコスト安であり、かつ、供給が安定している
こと、さらには、4V級の活物質ではあるが、充電電位
が幾分低いことから電解液の分解が抑制される、などと
いう利点から、本発明において、好ましく用いられる。
さらに、例えば、特願平6―275432に示されるよ
うな、LiNiO2の金属元素の一部をアルカリ土類金
属元素および/または遷移金属元素で置換したものも、
好ましく用いられる。
Next, a method of obtaining C C and C A will be described. For the negative electrode, if there is an initial capacity loss,
First, the initial capacity loss is eliminated by preliminary charging / discharging at a low current density, and then the battery is charged by a constant current / constant voltage charging method at a constant current density up to a predetermined charging potential V A. The charge capacity until reaching the constant potential V A at this time is the negative electrode constant current charge capacity C
A. Similarly, in the case of the positive electrode, when there is an initial capacity loss, first the initial capacity loss is eliminated by preliminary charging / discharging at a low current density, and then a constant current / constant voltage charging method up to a predetermined charging potential V C. Charge with. The charge capacity until reaching the constant potential V C at this time was defined as the positive electrode constant current charge capacity C C. The positive electrode active material used in the present invention is not particularly limited, and an inorganic compound such as a transition metal oxide containing an alkali metal or a transition metal chalcogen is used. Among them, Li X CoO 2 (0 <x ≦ 1.0), L
i X NiO 2 (0 <x ≦ 1.0) is considered to be the most promising in terms of high potential, stability, and long life.
Among them, LiNiO 2 is cheaper in raw material and stable in supply than LiCoO 2 , and it is a 4V class active material, but its charge potential is somewhat low. Therefore, it is preferably used in the present invention because of the advantage that the decomposition of the electrolytic solution is suppressed.
Furthermore, for example, as shown in Japanese Patent Application No. 6-275432, LiNiO 2 in which a part of the metal elements is replaced with an alkaline earth metal element and / or a transition metal element,
It is preferably used.

【0011】本発明に用いられる負極活物質としては、
特に限定されるものではなく、例えば、炭素質材料、金
属硫化物、金属酸化物等が用いられる。炭素質材料とし
ては、特に限定されるものではなく、一般に有機物を焼
成したものが用いられる。負極活物質に非晶性炭素材を
用いた場合、一般的に、結晶性炭素材よりも導電性が低
いといわれている。導電性を向上するために、結晶性炭
素材を添加すると有効であるが、本発明者らが検討した
結果、特に、非晶性炭素繊維に粒状およびフレーク状が
混合した結晶性炭素粉末を添加すると非常に有効である
ことを見出した。炭素材中の結晶性炭素粉末の割合は、
5〜60wt%が好ましく、さらに好ましくは20〜45
wt%である。理由は明らかではないが、非晶性炭素繊維
の隙間に結晶性炭素粉末が入り込み、非晶性炭素繊維間
の導電性を向上していると考えられる。粒状結晶性炭素
粉末だけでは結着性が不十分となり、フレーク状結晶性
炭素粉末だけでは均一に分散しなにくく、導電性向上が
不十分である。さらに、これらの結晶性炭素粉末が負極
活物質として機能する場合、非晶性炭素繊維との混合で
あると、これらの結晶性炭素粉末のLiイオンのドーピ
ング/脱ドーピングに伴う膨張・収縮を、その隙間で緩
和してくれる(非晶性炭素繊維自身のLiイオンのドー
ピング/脱ドーピングに伴う膨張・収縮は小さい)。
As the negative electrode active material used in the present invention,
The material is not particularly limited, and for example, carbonaceous materials, metal sulfides, metal oxides, etc. are used. The carbonaceous material is not particularly limited, and generally, a material obtained by firing an organic substance is used. When an amorphous carbon material is used as the negative electrode active material, it is generally said that it has lower conductivity than the crystalline carbon material. In order to improve conductivity, it is effective to add a crystalline carbon material, but as a result of studies by the present inventors, in particular, a crystalline carbon powder in which granular and flake-like particles are mixed with amorphous carbon fiber is added. Then, it was found to be very effective. The ratio of crystalline carbon powder in the carbon material is
5 to 60 wt% is preferable, more preferably 20 to 45
wt%. Although the reason is not clear, it is considered that the crystalline carbon powder enters the gaps between the amorphous carbon fibers to improve the conductivity between the amorphous carbon fibers. The granular crystalline carbon powder alone is insufficient in binding property, and the flake crystalline carbon powder alone is difficult to uniformly disperse, and improvement in conductivity is insufficient. Further, when these crystalline carbon powders function as a negative electrode active material, when the crystalline carbon powders are mixed with the amorphous carbon fibers, the expansion / contraction of the crystalline carbon powders due to doping / dedoping of Li ions, It relaxes in the gap (the expansion / contraction of the amorphous carbon fiber itself due to the doping / de-doping of Li ions is small).

【0012】また、炭素質材料が炭素繊維の場合、用い
られる炭素繊維としては、特に限定されるものではな
く、一般に有機物を焼成したものが用いられる。具体的
には、ポリアクリロニトリル(PAN)から得られるP
AN系炭素繊維、石炭もしくは石油などのピッチから得
られるピッチ系炭素繊維、セルロースから得られるセル
ロース系炭素繊維、低分子量有機物の気体から得られる
気相成長炭素繊維などが挙げられるが、そのほかに、ポ
リビニルアルコール、リグニン、ポリ塩化ビニル、ポリ
アミド、ポリイミド、フェノール樹脂、フルフリルアル
コールなどを焼成して得られる炭素繊維でも構わない。
これらの炭素繊維の中で、炭素繊維が用いられる電極お
よび電池の特性に応じて、その特性を満たす炭素繊維が
適宜選択される。上記炭素繊維の中で、アルカリ金属塩
を含む非水電解液を用いた二次電池の負極に使用する場
合には、PAN系炭素繊維、ピッチ系炭素繊維、気相成
長炭素繊維が好ましい。特に、アルカリ金属イオン、特
にリチウムイオンのドーピングが良好であるという点
で、PAN系炭素繊維やピッチ系炭素繊維が好ましく、
この中でも、東レ(株)製の”トレカ”Tシリーズ、ま
たは、”トレカ”MシリーズなどのPAN系炭素繊維、
メゾフェーズピッチコークスを焼成して得られるピッチ
系炭素繊維がさらに好ましく用いられる。
When the carbonaceous material is carbon fiber, the carbon fiber to be used is not particularly limited, and generally fired organic material is used. Specifically, P obtained from polyacrylonitrile (PAN)
AN-based carbon fiber, pitch-based carbon fiber obtained from pitch such as coal or petroleum, cellulose-based carbon fiber obtained from cellulose, vapor-grown carbon fiber obtained from gas of low-molecular-weight organic substances, and the like, Carbon fibers obtained by firing polyvinyl alcohol, lignin, polyvinyl chloride, polyamide, polyimide, phenolic resin, furfuryl alcohol, and the like may be used.
Among these carbon fibers, carbon fibers satisfying the characteristics are appropriately selected according to the characteristics of the electrode and the battery in which the carbon fibers are used. When the carbon fiber is used for a negative electrode of a secondary battery using a non-aqueous electrolyte containing an alkali metal salt, a PAN-based carbon fiber, a pitch-based carbon fiber, and a vapor-grown carbon fiber are preferable. In particular, PAN-based carbon fibers and pitch-based carbon fibers are preferable in that doping of alkali metal ions, particularly lithium ions, is favorable,
Among them, PAN-based carbon fibers such as “Torayca” T series or “Torayca” M series manufactured by Toray Industries,
Pitch-based carbon fibers obtained by firing mesophase pitch coke are more preferably used.

【0013】炭素繊維を電極にする際には、どのような
形態をとっても構わないが、一軸方向に配置したり、も
しくは布帛状やフェルト状の構造体にするなどが、好ま
しい形態となる。布帛状あるいはフェルト状などの構造
体としては、織物、編物、組物、レース、網、フェル
ト、紙、不織布、マットなどが挙げられるが、炭素繊維
の性質や電極特性などの点から、織物やフェルトなどが
好ましい。また、炭素繊維を銅箔などの集電体に結着剤
などで貼り付けて使用してもよく、さらに炭素粉末など
の導電剤を添加してもよい。操作性、生産性を考慮する
と、さらに好ましくは短繊維状の炭素繊維である。通常
の炭素粉末同様、導電剤、結着剤とともに電極化して用
いることができ、さらに炭素繊維特有の構造特性も有し
ている。平均長100μm 以下が取り扱いやすく、高嵩
密度化が可能なのでより好ましい。本発明の電極を用い
た二次電池の電解液としては、特に限定されることなく
従来の非水溶媒系電解液が用いられる。この中で、上述
のアルカリ金属塩を含む非水電解液からなる二次電池の
電解液としては、プロピレンカーボネート、エチレンカ
ーボネート、γ- ブチロラクトン、N- メチルピロリド
ン、アセトニトリル、N,N−ジメチルホルムアミド、
ジメチルスルフォキシド、テトラヒドロフラン、1,3
−ジオキソラン、ギ酸メチル、スルホラン、オキサゾリ
ドン、塩化チオニル、1,2−ジメトキシエタン、ジエ
チレンカーボネートや、これらの誘導体や混合物などが
好ましく用いられる。電解液に含まれる電解質として
は、アルカリ金属、特にリチウムのハロゲン化物、過塩
素酸塩、チオシアン塩、ホウフッ化塩、リンフッ化塩、
砒素フッ化塩、アルミニウムフッ化塩、トリフルオロメ
チル硫酸塩などが好ましく用いられる。
When the carbon fiber is used as an electrode, it may have any form, but a preferred form is to arrange it in a uniaxial direction, or to form a fabric-like or felt-like structure. Examples of the structure such as a fabric or a felt include a woven fabric, a knitted fabric, a braid, a lace, a net, a felt, a paper, a nonwoven fabric, a mat, and the like. Felt and the like are preferred. Further, the carbon fiber may be used by attaching it to a current collector such as a copper foil with a binder or the like, and a conductive agent such as carbon powder may be added. In view of operability and productivity, short fiber carbon fibers are more preferable. Like ordinary carbon powder, it can be used in the form of an electrode together with a conductive agent and a binder, and has structural characteristics unique to carbon fibers. An average length of 100 μm or less is more preferable because it is easy to handle and high bulk density can be achieved. The electrolytic solution of the secondary battery using the electrode of the present invention is not particularly limited, and a conventional non-aqueous solvent-based electrolytic solution is used. Among them, as the electrolytic solution of the secondary battery composed of the above-mentioned non-aqueous electrolytic solution containing an alkali metal salt, propylene carbonate, ethylene carbonate, γ-butyrolactone, N-methylpyrrolidone, acetonitrile, N, N-dimethylformamide,
Dimethyl sulfoxide, tetrahydrofuran, 1,3
-Dioxolane, methyl formate, sulfolane, oxazolidone, thionyl chloride, 1,2-dimethoxyethane, diethylene carbonate and derivatives and mixtures thereof are preferably used. The electrolyte contained in the electrolytic solution is an alkali metal, particularly a lithium halide, perchlorate, thiocyanate, borofluoride, phosphorofluoride,
Arsenic fluoride, aluminum fluoride, trifluoromethyl sulfate, etc. are preferably used.

【0014】本発明の電極を用いた二次電池の用途とし
ては、軽量かつ高容量で高エネルギー密度の特徴を利用
して、ビデオカメラ、ノートパソコン、ワープロ、ラジ
カセ、携帯電話などの携帯用小型電子機器に広く利用可
能である。
The secondary battery using the electrode of the present invention is lightweight, has a high capacity and high energy density, and can be used in a portable small size such as a video camera, a laptop computer, a word processor, a radio-cassette or a mobile phone. It can be widely used for electronic devices.

【0015】[0015]

【実施例】本発明の具体的実施態様を以下に実施例をも
って述べるが、本発明はこれに限定されるものではな
い。
EXAMPLES Specific embodiments of the present invention will be described below with reference to examples, but the present invention is not limited thereto.

【0016】実施例1 市販の高純度試薬の水酸化リチウム(Li(OH))、
水酸化コバルト(Co(OH)2 )、を酸化物換算でL
0.98CoO2 となるように秤量し、自動乳鉢で十分に
混合した後、アルミナ製るつぼ内に充填して、雰囲気焼
成炉を用いて空気気流中(流量1リットル/分)、65
0℃で6時間保持し予備焼成した。室温まで冷却した
後、再び自動乳鉢で30分間粉砕し、二次粒子の凝集を
解砕した。そして、予備焼成と同様の雰囲気下で、85
0℃で12時間保持して本焼成し、室温まで冷却した
後、再び自動乳鉢で1時間粉砕して本発明の正極活物質
粉末とした。正極合剤は、結着剤であるポリフッ化ビニ
リデン活物質を10wt%になるように調合したN−メチ
ルピロリドン(NMP)溶液に、上記活物質:導電剤
(アセチレンブラック):結着剤が89重量部:4重量
部:7重量部となるように混合し、窒素気流中自動乳鉢
で30分間混合して作製した。これを厚さ20μmのア
ルミ箔上に塗布し、乾燥器内90℃で乾燥後、裏面にも
塗布、200℃で乾燥して両面に正極を形成した後、プ
レスして4種類の正極シートを作製した。
Example 1 Commercially available high-purity reagent lithium hydroxide (Li (OH)),
Cobalt hydroxide (Co (OH) 2 ), L in terms of oxide
i 0.98 CoO 2 and weighed well in an automatic mortar, filled into an alumina crucible, and air-flowed (flow rate 1 liter / min) using an atmosphere firing furnace.
It was kept at 0 ° C. for 6 hours and prebaked. After cooling to room temperature, the mixture was pulverized again in an automatic mortar for 30 minutes to break up aggregation of secondary particles. Then, under the same atmosphere as the preliminary firing, 85
After maintaining at 0 ° C. for 12 hours for main calcination, cooling to room temperature, crushing again in an automatic mortar for 1 hour to obtain a positive electrode active material powder of the present invention. The positive electrode mixture was prepared by adding N-methylpyrrolidone (NMP) solution prepared by mixing polyvinylidene fluoride active material, which is a binder, in an amount of 10 wt% to the above active material: conductive agent (acetylene black): binder. Parts by weight: 4 parts by weight: 7 parts by weight, and the mixture was prepared in an automatic mortar for 30 minutes in a nitrogen stream. This is applied on an aluminum foil having a thickness of 20 μm, dried in a dryer at 90 ° C., then applied on the back side, dried at 200 ° C. to form positive electrodes on both sides, and then pressed to obtain four types of positive electrode sheets. It was made.

【0017】次に、市販の短繊維状のPAN系炭素繊維
(“MLD−30”、東レ(株)製;平均繊維長約30
μm;d(002) :0.35nm、LC :1.4nm))を含
む負極を、活物質:導電剤(アセチレンブラック):結
着剤が89重量部:4重量部:7重量部となるように混
合した以外は正極と同様にして負極シートを作製した。
このとき、正・負極の容量比CC /CA は、厚さの異な
った正・負極シートを組み合わせることによって、0.
85、1.00、1.15に設定した。正極、負極の厚
みは表2に示したとおりである。ここで、正極定電流充
電容量CC および負極定電流充電容量CA は、各正・負
極シートから短冊状に切り出した試料を用い、対極およ
び参照極に金属リチウムを用いた三極式ガラスセルを用
いて測定した。電解液は、1MLiPF6 を含むプロピ
レンカーボネート、ジメチルカーボネート(各々体積比
で1:1)を用いた。負極の場合は、本実施例に用いた
炭素材に初期容量ロスが存在するので、まず初期容量ロ
スを無くすために、電流密度0.02A/g(負極活物
質重量あたり)で、充電電位0V(VSLi+ /Li)の定電
流/定電圧充電方式で48時間充電した。充電後0.0
2A/g(負極活物質重量あたり)の定電流で1.5V
(VSLi+ /Li)まで放電させた。次に、電流密度0.2
A/g(負極活物質重量あたり)で、充電電位0V(VS
Li+ /Li)の定電流/定電圧充電方式で2時間充電し
た。充電後0.14A/g(負極活物質重量あたり)の
定電流で1.5V(VSLi+ /Li)まで放電させた。この
時の定電位(0V)に達するまでの充電容量を負極定電
流充電容量CA とした。正極の場合も同様に、まず、電
流密度0.02A/g(正極活物質重量あたり)で、充
電電位4.3V(VSLi+ /Li)の定電流/定電圧充電方
式で10時間充電した。充電後0.02A/g(正極活
物質重量あたり)の定電流で3.0V(VSLi+ /Li)ま
で放電させた。次に、電流密度0.1A/g(正極活物
質重量あたり)で、充電電位4.3V(VSLi+ /Li)の
定電流/定電圧充電方式で2時間充電した。充電後0.
07A/g(負極活物質重量あたり)の定電流で3.0
V(VSLi+ /Li)まで放電させた。この時の定電位
(4.3V)に達するまでの充電容量を正極定電流充電
容量CC とした。
Next, a commercially available short fibrous PAN-based carbon fiber ("MLD-30", manufactured by Toray Industries, Inc .; average fiber length of about 30).
μm; d (002) : 0.35 nm, L C : 1.4 nm)), and the active material: conductive agent (acetylene black): binder was 89 parts by weight: 4 parts by weight: 7 parts by weight. A negative electrode sheet was prepared in the same manner as the positive electrode except that it was mixed as described above.
At this time, the capacity ratio C C / C A of the positive and negative electrodes is set to 0 by combining positive and negative electrode sheets having different thicknesses.
It was set to 85, 1.00 and 1.15. The thicknesses of the positive electrode and the negative electrode are as shown in Table 2. Here, as the positive electrode constant current charging capacity C C and the negative electrode constant current charging capacity C A , a sample cut out in strips from each of the positive and negative electrode sheets was used, and a triode glass cell using metallic lithium for the counter electrode and the reference electrode. Was measured using. As an electrolyte, propylene carbonate and dimethyl carbonate (each at a volume ratio of 1: 1) containing 1M LiPF 6 were used. In the case of the negative electrode, since the carbon material used in this example has an initial capacity loss, first, in order to eliminate the initial capacity loss, at a current density of 0.02 A / g (per weight of the negative electrode active material), the charging potential was 0 V. It was charged for 48 hours by the constant current / constant voltage charging method of (VSLi + / Li). 0.0 after charging
1.5 V at constant current of 2 A / g (per weight of negative electrode active material)
It was discharged to (VSLi + / Li). Next, the current density 0.2
A / g (per weight of negative electrode active material), charging potential 0 V (VS
It was charged for 2 hours by the constant current / constant voltage charging method of Li + / Li). After charging, the battery was discharged to 1.5 V (VSLi + / Li) at a constant current of 0.14 A / g (per weight of negative electrode active material). The charge capacity until reaching the constant potential (0 V) at this time was defined as the negative electrode constant current charge capacity C A. Similarly, in the case of the positive electrode, first, the battery was charged at a current density of 0.02 A / g (per weight of the positive electrode active material) for 10 hours by a constant current / constant voltage charging method with a charging potential of 4.3 V (VSLi + / Li). After charging, the battery was discharged to 3.0 V (VSLi + / Li) at a constant current of 0.02 A / g (per weight of positive electrode active material). Next, the battery was charged at a current density of 0.1 A / g (per weight of the positive electrode active material) for 2 hours by a constant current / constant voltage charging method with a charging potential of 4.3 V (VSLi + / Li). After charging 0.
3.0 at a constant current of 07 A / g (per weight of negative electrode active material)
It was discharged to V (VSLi + / Li). The charge capacity until reaching the constant potential (4.3 V) at this time was defined as the positive electrode constant current charge capacity C C.

【0018】これらの正・負極シートと微孔質ポリエチ
レンフィルム(三菱化学(株)製)のセパレータを用い
て、18650サイズの金属缶二次電池を作製した。電
解液は、1MLiPF6 を含むプロピレンカーボネー
ト、ジメチルカーボネート(各々体積比で1:1)を用
いた。このようにして作製した二次電池を用いて、電流
密度1A、充電電位4.2Vの定電流/定電圧充電方式
で充電した。充電後0.7Aの定電流で2.75Vまで
放電させた。この充放電を500回繰り返し、5回目の
放電容量(電池容量)、5回目の放電容量と500回目
の放電容量の比率(容量保持率:次式で示す)の結果を
正・負極の容量比CC /CA と合わせて表1に示した。
A metal can secondary battery of 18650 size was produced by using these positive and negative electrode sheets and a separator of microporous polyethylene film (manufactured by Mitsubishi Chemical Corporation). As an electrolyte, propylene carbonate and dimethyl carbonate (each at a volume ratio of 1: 1) containing 1M LiPF 6 were used. Using the secondary battery produced in this manner, charging was performed by a constant current / constant voltage charging method with a current density of 1 A and a charging potential of 4.2 V. After charging, the battery was discharged to 2.75 V with a constant current of 0.7 A. This charging / discharging is repeated 500 times, and the result of the ratio of the 5th discharge capacity (battery capacity), the 5th discharge capacity and the 500th discharge capacity (capacity retention rate: shown by the following formula) is the positive / negative capacity ratio. It is shown in Table 1 together with C C / C A.

【0019】容量保持率(%)={(500回目の放電
容量)/(5回目の放電容量)}×100 比較例1 正・負極の容量比CC /CA を0.7および1.3とな
るように設定した以外は、実施例1と同様にして二次電
池を作製した。電池容量、容量保持率の結果を正・負極
の容量比CC /CA と合わせて表1に示した。
Capacity retention rate (%) = {(500th discharge capacity) / (5th discharge capacity)} × 100 Comparative Example 1 Positive and negative electrode capacity ratios C C / C A of 0.7 and 1. A secondary battery was made in the same manner as in Example 1 except that the setting was 3. Battery capacity, together with the capacitance ratio C C / C A of the results of capacity retention positive and negative electrodes shown in Table 1.

【0020】実施例2 水酸化コバルト(Co(OH)2 )の代わりに水酸化ニ
ッケル(Ni(OH)2 )を用い、酸化物換算でLi
0.98NiCoO2 となるように秤量し、予備焼成条件6
00℃で10時間、本焼成条件750℃で6時間とし、
乾燥空気中で焼成した以外は実施例1と同様にして正極
シートを作製した。正極定電流充電容量CC を求める際
に、充電電位を4.2Vにした以外は実施例1と同様に
して、正・負極の容量比CC /CA を1.0となるよう
に設定した二次電池を作製した。電池容量、容量保持率
の結果を正・負極の容量比CC /CA と合わせて表1に
示した。
Example 2 Nickel hydroxide (Ni (OH) 2 ) was used instead of cobalt hydroxide (Co (OH) 2 ), and Li was calculated as oxide.
Weighed so as to be 0.98 NiCoO 2, and prebaked conditions 6
00 ° C. for 10 hours, main firing conditions of 750 ° C. for 6 hours,
A positive electrode sheet was prepared in the same manner as in Example 1 except that it was baked in dry air. When determining the positive electrode constant current charging capacity C C , the positive / negative electrode capacity ratio C C / C A is set to 1.0 in the same manner as in Example 1 except that the charging potential is set to 4.2V. Was produced. Battery capacity, together with the capacitance ratio C C / C A of the results of capacity retention positive and negative electrodes shown in Table 1.

【0021】比較例2 正・負極の容量比CC /CA を1.3となるように秤量
した以外は実施例2と同様にして二次電池を作製した。
電池容量、容量保持率の結果を正・負極の容量比CC
A と合わせて表1に示した。
Comparative Example 2 A secondary battery was made in the same manner as in Example 2 except that the positive and negative electrode capacity ratio C C / C A was weighed to be 1.3.
The results of battery capacity and capacity retention ratio are the positive / negative capacity ratio C C /
It is shown in Table 1 together with C A.

【0022】実施例3 水酸化リチウム(Li(OH))、水酸化ニッケル(N
i(OH)2 )、水酸化ストロンチウム・8水塩(Sr
(OH)2 ・8H2 O)、水酸化コバルト(Co(O
H)2 )を酸化物換算でLi0.98Sr0.002 Ni0.90
0.102 となるように秤量した以外は、実施例1と同
様にして正極シートを作製した。そして、実施例2と同
様にして正・負極の容量比CC /CA を1.0となるよ
うに設定した二次電池を作製した。電池容量、容量保持
率の結果を正・負極の容量比CC /CA と合わせて表1
に示した。
Example 3 Lithium hydroxide (Li (OH)), nickel hydroxide (N
i (OH) 2 ), strontium hydroxide octahydrate (Sr
(OH) 2 · 8H 2 O ), cobalt hydroxide (Co (O
H) 2 ) in terms of oxide, Li 0.98 Sr 0.002 Ni 0.90 C
A positive electrode sheet was produced in the same manner as in Example 1 except that the weight was adjusted to 0.10 O 2 . Then, to prepare a secondary battery to set the volume ratio C C / C A positive and negative electrodes in the same manner as in Example 2 as 1.0. Battery capacity, Table 1 together with the capacitance ratio C C / C A positive and negative results of capacity retention rate
It was shown to.

【0023】比較例3 正・負極の容量比CC /CA を1.3となるように秤量
した以外は実施例3と同様にして二次電池を作製した。
電池容量、容量保持率の結果を正・負極の容量比CC
A と合わせて表1に示した。
Comparative Example 3 A secondary battery was manufactured in the same manner as in Example 3 except that the positive and negative electrode capacity ratio C C / C A was weighed to be 1.3.
The results of battery capacity and capacity retention ratio are the positive / negative capacity ratio C C /
It is shown in Table 1 together with C A.

【0024】実施例4 負極MLD−30に30wt% 人造黒鉛(d(002):
0.37nm、LC :80nm)を添加し、正・負極の容量
比CC /CA を1.0となるように設定した以外は実施
例3と同様にして二次電池を作製した。ここで、走査型
電子顕微鏡を用いて、該人造黒鉛の形態観察を行ったと
ころ、粒状およびフレーク状が混合していることを確認
した。電池容量、容量保持率の結果を正・負極の容量比
C /CA と合わせて表1に示した。
Example 4 Negative electrode MLD-30 had 30 wt% artificial graphite (d (002):
0.37 nm, L C : 80 nm) was added, and a secondary battery was prepared in the same manner as in Example 3 except that the positive / negative electrode capacity ratio C C / C A was set to 1.0. Here, when the morphology of the artificial graphite was observed using a scanning electron microscope, it was confirmed that a mixture of particles and flakes was mixed. Battery capacity, together with the capacitance ratio C C / C A of the results of capacity retention positive and negative electrodes shown in Table 1.

【0025】比較例4 正・負極の容量比CC /CA を1.3となるように秤量
した以外は実施例4と同様にして二次電池を作製した。
電池容量、容量保持率の結果を正・負極の容量比CC
A と合わせて表1に示した。
Comparative Example 4 A secondary battery was prepared in the same manner as in Example 4 except that the positive and negative electrode capacity ratios C C / C A were weighed to be 1.3.
The results of battery capacity and capacity retention ratio are the positive / negative capacity ratio C C /
It is shown in Table 1 together with C A.

【0026】実施例1〜4および比較例1〜4の結果を
示した表1、実施例1および比較例1の結果を示した図
1から、正・負極の容量比CC /CA が0.85≦CC
/CA ≦1.15であるとき高容量二次電池のサイクル
寿命特性が良好であることが分かる。
From Table 1 showing the results of Examples 1 to 4 and Comparative Examples 1 to 4 and FIG. 1 showing the results of Example 1 and Comparative Example 1, the capacity ratio C C / C A of the positive and negative electrodes is shown. 0.85 ≦ C C
It can be seen that when / C A ≦ 1.15, the cycle life characteristics of the high capacity secondary battery are good.

【0027】[0027]

【表1】 [Table 1]

【表2】 [Table 2]

【0028】[0028]

【発明の効果】本発明により、高容量で充放電サイクル
に優れた正極活物質およびそれを用いた高性能の二次電
池を提供することができる。
According to the present invention, it is possible to provide a positive electrode active material having a high capacity and an excellent charge / discharge cycle and a high-performance secondary battery using the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1、比較例1における容量保持率(%)
とCC /CA の関係を示した図である。
FIG. 1 is a capacity retention ratio (%) in Example 1 and Comparative Example 1.
And is a diagram showing the relationship of C C / C A.

【図2】定電流・定電圧充電方式で充電した場合に正・
負極で起きることを例示した図面である。
[Fig. 2] Positive when charging by constant current / constant voltage charging method
It is the drawing which illustrated what happens at the negative electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松田 良夫 滋賀県大津市園山1丁目1番1号 東レ株 式会社滋賀事業場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshio Matsuda 1-1-1, Sonoyama, Otsu City, Shiga Toray Co., Ltd. Shiga Plant

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】正極定電流充電容量をCC 、負極定電流充
電容量をCA としたとき、0.85≦CC /CA ≦1.
15となるように正・負極の容量比が設定されてなるこ
とを特徴とする非水溶媒系二次電池。
1. When the positive electrode constant current charging capacity is C C and the negative electrode constant current charging capacity is C A , 0.85 ≦ C C / C A ≦ 1.
A non-aqueous solvent-based secondary battery, wherein the capacity ratio of the positive and negative electrodes is set to be 15.
【請求項2】0.90≦CC /CA ≦1.05であるこ
とを特徴とする請求項1記載の非水溶媒系二次電池。
2. The non-aqueous solvent secondary battery according to claim 1, wherein 0.90 ≦ C C / C A ≦ 1.05.
【請求項3】負極活物質に炭素質材料を用いることを特
徴とする請求項1または請求項2記載の非水溶媒系二次
電池。
3. The non-aqueous solvent secondary battery according to claim 1, wherein a carbonaceous material is used as the negative electrode active material.
【請求項4】該炭素質材料が、炭素繊維を含むことを特
徴とする請求項3記載の非水溶媒系二次電池。
4. The non-aqueous solvent secondary battery according to claim 3, wherein the carbonaceous material contains carbon fibers.
【請求項5】該炭素繊維が平均長100μm 以下の短繊
維状であることを特徴とする請求項4記載の非水溶媒系
二次電池。
5. The non-aqueous solvent secondary battery according to claim 4, wherein the carbon fibers are short fibers having an average length of 100 μm or less.
【請求項6】該炭素質材料が、非晶性炭素繊維と結晶性
炭素粉末を含むことを特徴とする請求項3記載の非水溶
媒系二次電池。
6. The non-aqueous solvent-based secondary battery according to claim 3, wherein the carbonaceous material contains amorphous carbon fiber and crystalline carbon powder.
【請求項7】該非晶性炭素繊維の(002)面の面間距
離d(002) が0.35nm以上、0.38nm以下で、c軸
方向の結晶子の大きさLC が1.0nm以上、2.0nm以
下であり、かつ、該結晶性炭素粉末の面間距離d(00
2)が0.34nm以下で、c軸方向の結晶子の大きさL
C が0.40nm以上、1.0nm以下であることを特徴と
する請求項6記載の非水溶媒系二次電池。
7. The amorphous carbon fiber has an interplanar distance d (002) of (002) plane of 0.35 nm or more and 0.38 nm or less and a crystallite size L C in the c-axis direction of 1.0 nm. Or more and 2.0 nm or less, and the inter-plane distance d (00
2) 0.34 nm or less, the crystallite size L in the c-axis direction
The non-aqueous solvent secondary battery according to claim 6, wherein C is 0.40 nm or more and 1.0 nm or less.
【請求項8】該結晶性炭素粉末の形態が、粒状およびフ
レーク状を含むことを特徴とする請求項6または7記載
の非水溶媒系二次電池。
8. The non-aqueous solvent secondary battery according to claim 6 or 7, wherein the crystalline carbon powder has a granular or flake shape.
【請求項9】該結晶性炭素粉末の炭素質材料中における
割合が、5wt%以上、60wt%以下であることを特徴と
する請求項6〜8のいずれかに記載の非水溶媒系二次電
池。
9. The non-aqueous solvent secondary system according to claim 6, wherein the ratio of the crystalline carbon powder in the carbonaceous material is 5 wt% or more and 60 wt% or less. battery.
【請求項10】該結晶性炭素粉末の炭素質材料中におけ
る割合が、20wt%以上、45wt%以下であることを
特徴とする請求項9記載の非水溶媒系二次電池。
10. The non-aqueous solvent secondary battery according to claim 9, wherein the ratio of the crystalline carbon powder in the carbonaceous material is 20 wt% or more and 45 wt% or less.
【請求項11】正極活物質にリチウム複合酸化物を用い
ることを特徴とする請求項1〜10のいずれかに記載の非
水溶媒系二次電池。
11. The non-aqueous solvent secondary battery according to claim 1, wherein a lithium composite oxide is used as the positive electrode active material.
【請求項12】該リチウム複合酸化物が、LiX CoO
2 (0<x≦1.0)、LiX NiO2 (0<x≦1.
0)、および、これらの金属元素の一部をアルカリ土類
金属元素および/または遷移金属元素で置換したものか
ら選ばれることを特徴とする請求項11記載の非水溶媒系
二次電池。
12. The lithium composite oxide is Li X CoO.
2 (0 <x ≦ 1.0), Li X NiO 2 (0 <x ≦ 1.
12. The non-aqueous solvent-based secondary battery according to claim 11, which is selected from 0) and those obtained by substituting a part of these metal elements with an alkaline earth metal element and / or a transition metal element.
JP8074621A 1996-03-28 1996-03-28 Nonaqueous solvent secondary battery Pending JPH09266011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8074621A JPH09266011A (en) 1996-03-28 1996-03-28 Nonaqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8074621A JPH09266011A (en) 1996-03-28 1996-03-28 Nonaqueous solvent secondary battery

Publications (1)

Publication Number Publication Date
JPH09266011A true JPH09266011A (en) 1997-10-07

Family

ID=13552448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8074621A Pending JPH09266011A (en) 1996-03-28 1996-03-28 Nonaqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JPH09266011A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110250A (en) * 2000-09-27 2002-04-12 At Battery:Kk Non-aqueous electrolyte secondary battery
JP2002203606A (en) * 2000-12-28 2002-07-19 Sony Corp Nonaqueous electrolyte solution battery
JP2006222072A (en) * 2005-01-14 2006-08-24 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US7811706B2 (en) 2004-11-08 2010-10-12 Sony Corporation Battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110250A (en) * 2000-09-27 2002-04-12 At Battery:Kk Non-aqueous electrolyte secondary battery
JP2002203606A (en) * 2000-12-28 2002-07-19 Sony Corp Nonaqueous electrolyte solution battery
US7811706B2 (en) 2004-11-08 2010-10-12 Sony Corporation Battery
JP2006222072A (en) * 2005-01-14 2006-08-24 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US8343666B2 (en) 2005-01-14 2013-01-01 Panasonic Corporation Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
EP0712172B1 (en) Cathode material, method of preparing it and non-aqueous solvent type secondary battery having a cathode comprising it
KR102183171B1 (en) Negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
KR101073223B1 (en) anode mixture for lithium secondary battery and Lithium secondary battery using the same
JPH08138669A (en) Cathode active material, manufacture thereof, and non-aqueous solvent secondary battery using the same
KR20190028244A (en) Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
CN111183538B (en) Negative active material for lithium secondary battery and lithium secondary battery including the same
JP2020518960A (en) Positive electrode active material, method for producing the same, and lithium secondary battery including the same
JP3460413B2 (en) Positive electrode active material, method for producing the same, and non-aqueous solvent-based secondary battery using the same
JP7451728B2 (en) Positive electrode active material precursor for secondary batteries, positive electrode active material, and lithium secondary batteries containing the same
JP2000294240A (en) Lithium composite oxide for lithium secondary battery positive electrode active material and lithium secondary battery using this
JP2022159384A (en) Method for manufacturing positive electrode active material for lithium secondary battery
JP2023513027A (en) Positive electrode active material precursor for secondary battery, positive electrode active material, and lithium secondary battery containing the same
JP2022548846A (en) Cathode material for secondary battery and lithium secondary battery containing the same
JP4650774B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JPH1079250A (en) Positive electrode active material, its manufacture, and nonaqueous solvent secondary battery using it
JP2003197192A (en) Nonaqueous secondary battery
KR102149169B1 (en) Positive active material for potassium secondary battery having excellent cyclic stability and hihg rate performance and potassium secondary battery
JP2001283845A (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP5978024B2 (en) Non-aqueous secondary battery
JP2000268878A (en) Lithium ion secondary battery
JPH09266011A (en) Nonaqueous solvent secondary battery
JP3769052B2 (en) Method for producing tin-added lithium nickelate for active material of lithium secondary battery positive electrode
JP3855310B2 (en) Lithium / transition metal composite oxide, method for producing the same, and nonaqueous solvent secondary battery using the same
JP7471738B2 (en) Negative electrode active material, negative electrode containing the same, and secondary battery
JP3855309B2 (en) Metal composite oxide and nonaqueous solvent secondary battery using the same