JPH09265321A - Analog-to-digital converter for servo controller - Google Patents

Analog-to-digital converter for servo controller

Info

Publication number
JPH09265321A
JPH09265321A JP8074871A JP7487196A JPH09265321A JP H09265321 A JPH09265321 A JP H09265321A JP 8074871 A JP8074871 A JP 8074871A JP 7487196 A JP7487196 A JP 7487196A JP H09265321 A JPH09265321 A JP H09265321A
Authority
JP
Japan
Prior art keywords
physical quantity
output
sensor
converter
map
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8074871A
Other languages
Japanese (ja)
Other versions
JP3699772B2 (en
Inventor
Noboru Shimizu
昇 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP07487196A priority Critical patent/JP3699772B2/en
Publication of JPH09265321A publication Critical patent/JPH09265321A/en
Application granted granted Critical
Publication of JP3699772B2 publication Critical patent/JP3699772B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the servo control precision by correcting the output that undergone the A/D (analog/digital) conversion based on a map where the correction coefficients are previously set in each of areas that are divided according to the nonlinear characteristic. SOLUTION: A sensor 1 outputs an electric variable according to the physical value, and the analog signal outputted from the sensor 1 is converted into a digital signal by an A/D conversion means 50. An error correction means 51 corrects the converted digital signal and outputs it. If the sensor 1 has the nonlinear characteristic, the means 51 divides a measurement range into plural areas according to the nonlinear characteristic and decides the specific one of those divided areas to which the output of the means 50 is corresponding via a decision means 53 as well as a map 52 where the correction coefficients are previously set in every divided area. The correction coefficient of the area corresponding to the decision result of the means 51 is read by an arithmetic means 54. At the same time, the output that undergone the A/D conversion is corrected based on the correction coefficient and a corrected signal is outputted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、デジタル式のサー
ボコントローラに採用されるA/D変換器の改良に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of an A / D converter used in a digital servo controller.

【0002】[0002]

【従来の技術】従来からデジタル式のサーボコントロー
ラでは、物理量に応じた電気量へ変換するセンサからの
信号に応じて目標物理量へアクチュエータ等を駆動して
おり、センサから出力されたアナログ信号は増幅器で増
幅された後、A/D変換器によってデジタル信号へ変換
される。さらに、このデジタル信号に含まれる誤差を補
正し、この補正後のデジタル信号に基づいて物理量の目
標値を演算している。
2. Description of the Related Art Conventionally, in a digital servo controller, an actuator or the like is driven to a target physical quantity according to a signal from a sensor which converts it into an electric quantity according to a physical quantity, and an analog signal output from the sensor is amplified. After being amplified by, it is converted into a digital signal by the A / D converter. Further, the error contained in this digital signal is corrected, and the target value of the physical quantity is calculated based on this corrected digital signal.

【0003】このような、誤差の補正を行うサーボコン
トローラのA/D変換器では、図6に示すように、A/
D変換後のデジタル信号の補正処理を行っている。
In the A / D converter of the servo controller for correcting the error as described above, as shown in FIG.
The digital signal after D conversion is corrected.

【0004】これについて説明すると、まず、センサの
測定範囲の最大値近傍の所定の測定点Xにおける物理量
Lxと、同じくセンサの測定範囲の最小値近傍の所定の
測定点Yにおける物理量Lyを予め設定し、これら物理
量の最大値Lx、最小値Lyに応じたA/D変換後の電
気量Vx、Vyを測定する。
Explaining this, first, a physical quantity Lx at a predetermined measurement point X near the maximum value of the sensor measurement range and a physical quantity Ly at a predetermined measurement point Y near the minimum value of the sensor measurement range are preset. Then, the electric quantities Vx and Vy after A / D conversion according to the maximum value Lx and the minimum value Ly of these physical quantities are measured.

【0005】そして、この2点(Lx,Vx)、(L
y、Vy)を結ぶ直線をセンサの出力特性直線f(L)
として求める。
Then, these two points (Lx, Vx), (L
y, Vy) is the straight line connecting the sensor output characteristic lines f (L)
Ask as.

【0006】このセンサの出力特性直線f(L)は、そ
の傾きa(dV/dL)と、オフセットbから次式のよ
うに表すことができる。
The output characteristic line f (L) of this sensor can be expressed by the following equation from its inclination a (dV / dL) and offset b.

【0007】f(L)=aL+b …(1) いま、A/D変換された出力Vが与えられたとき、実際
の物理量Lは上記(1)式から、次のように求められ
る。
F (L) = aL + b (1) Now, when the A / D converted output V is given, the actual physical quantity L is obtained from the above equation (1) as follows.

【0008】L=(V−b)/a …(2) したがって、サーボコントローラのA/D変換器では、
2点の物理量と、これら2点における出力値を結んだ直
線を、出力特性直線とすることにより、A/D変換出力
信号の補正処理を行っている。
L = (V-b) / a (2) Therefore, in the A / D converter of the servo controller,
The correction process of the A / D converted output signal is performed by setting the straight line connecting the physical quantities at the two points and the output values at these two points as the output characteristic straight line.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記従
来のサーボコントローラのA/D変換器では、最大値L
x、最小値Lyに於ける電気量Lx、Lyを結ぶ直線を
出力特性直線とするため、全測定範囲について一律の傾
きa及びオフセットbでしか誤差の補正を行えず、出力
特性が非直線のセンサを用いた場合には、誤差の補正を
正確に行うことができない領域が発生し、この領域では
サーボ制御の精度が低下するという問題点があった。
However, in the conventional A / D converter of the servo controller, the maximum value L
Since the straight line connecting x and the electric quantities Lx and Ly at the minimum value Ly is the output characteristic straight line, the error can be corrected only with the uniform inclination a and the offset b over the entire measurement range, and the output characteristic is non-linear. When the sensor is used, there is a problem in that an area where the error cannot be accurately corrected occurs, and the accuracy of servo control deteriorates in this area.

【0010】そこで本発明は、上記問題点に鑑みてなさ
れたもので、出力特性が非直線のセンサを用いた場合に
も、すべての測定範囲について誤差を正確に補正可能な
サーボコントローラのA/D変換器を提供することを目
的とする。
Therefore, the present invention has been made in view of the above problems. Even when a sensor having a non-linear output characteristic is used, the A / A of the servo controller capable of accurately correcting the error over the entire measurement range. It is an object to provide a D converter.

【0011】[0011]

【課題を解決するための手段】第1の発明は、図7に示
すように、物理量に応じた電気量を出力するセンサ1
と、このセンサが出力したアナログ信号をデジタル信号
に変換するA/D変換手段50と、このA/D変換手段
50の出力を補正する誤差補正手段51とを備えたサー
ボコントローラのA/D変換器において、前記センサ1
は非直線特性を備え、前記誤差補正手段51は、この非
直線特性に応じて計測範囲を複数の領域に分割するとと
もに、各領域毎に補正係数を予め設定したマップ52
と、前記A/D変換手段50の出力が上記複数の領域の
うちのいずれに該当するかを判定する手段53と、前記
判定結果に応じた領域の補正係数を前記マップ52から
読み込むとともに、前記A/D変換手段50の出力を補
正係数に応じて補正する演算手段54とを備える。
As shown in FIG. 7, a first invention is a sensor 1 for outputting an electric quantity according to a physical quantity.
And an A / D conversion of a servo controller including an A / D conversion means 50 for converting an analog signal output from this sensor into a digital signal, and an error correction means 51 for correcting the output of the A / D conversion means 50. In the vessel, the sensor 1
Has a non-linear characteristic, and the error correction means 51 divides the measurement range into a plurality of regions according to the non-linear characteristic, and a map 52 in which a correction coefficient is preset for each region.
A means 53 for determining which of the plurality of areas the output of the A / D conversion means 50 corresponds to, a correction coefficient for the area according to the determination result is read from the map 52, and The calculation unit 54 corrects the output of the A / D conversion unit 50 according to the correction coefficient.

【0012】また、第2の発明は、前記第1の発明にお
いて、前記マップは、計測範囲内の物理量を複数の領域
に分割する一方、各物理量領域の境界点に対応する電気
量を予め設定し、前記演算手段は、前記A/D変換手段
の出力から物理量を補間演算により求める。
In a second aspect based on the first aspect, the map divides a physical quantity within a measurement range into a plurality of areas, and presets an electric quantity corresponding to a boundary point of each physical quantity area. Then, the calculation means obtains a physical quantity from the output of the A / D conversion means by interpolation calculation.

【0013】また、第3の発明は、前記第1の発明にお
いて、前記演算手段は、物理量の原点を変更すべく物理
量の演算結果に所定のシフト量を加える原点変更手段を
備える。
In a third aspect based on the first aspect, the calculating means includes an origin changing means for adding a predetermined shift amount to the calculation result of the physical quantity to change the origin of the physical quantity.

【0014】また、第4の発明は、前記第1の発明にお
いて、前記マップは、前記計測範囲内の物理量をセンサ
の非直線特性の傾きの変化に応じて複数の領域に分割す
る一方、各物理量領域の境界点に対応する電気量を予め
設定し、前記演算手段は、前記A/D変換手段の出力か
ら所定の分解能で物理量を補間演算する演算手段と、前
記境界点の選択数を変更することで前記分解能を変更す
る分解能変更手段とを備える。
In a fourth aspect based on the first aspect, the map divides the physical quantity within the measurement range into a plurality of areas according to changes in the inclination of the non-linear characteristic of the sensor. The electric quantity corresponding to the boundary point of the physical quantity region is set in advance, and the arithmetic means changes the arithmetic means for interpolating the physical quantity with a predetermined resolution from the output of the A / D conversion means, and the selection number of the boundary points. And a resolution changing means for changing the resolution.

【0015】[0015]

【作用】したがって、第1の発明は、センサからのアナ
ログ信号は、A/D変換手段によってデジタル信号に変
換された後、このデジタル信号出力は誤差補正手段によ
って補正されてからサーボコントローラの制御部へ送出
される。センサの出力特性は非直線性を備えるため、誤
差補正手段は、この非直線特性に応じて計測範囲を複数
の領域に分割するとともに、各領域毎に補正係数を予め
設定したマップに基づいて、A/D変換手段の出力が複
数の領域のうちのいずれに該当するかを判定し、この判
定結果に応じた領域の補正係数をマップから読み込むと
ともに、A/D変換手段の出力を補正係数に応じて補正
するため、非直線性を有するセンサの計測範囲の全領域
において確実に誤差の補正を行って、サーボ制御の精度
を確保することができる。
Therefore, according to the first aspect of the present invention, the analog signal from the sensor is converted into a digital signal by the A / D conversion means, and then the digital signal output is corrected by the error correction means before the control section of the servo controller. Sent to. Since the output characteristics of the sensor have non-linearity, the error correction means divides the measurement range into a plurality of areas according to the non-linear characteristics, and based on a map in which the correction coefficient is preset for each area, It is determined which of the plurality of areas the output of the A / D conversion means corresponds to, the correction coefficient of the area corresponding to the determination result is read from the map, and the output of the A / D conversion means is used as the correction coefficient. Since the correction is performed accordingly, it is possible to surely correct the error in the entire area of the measurement range of the sensor having nonlinearity and to ensure the accuracy of servo control.

【0016】また、第2の発明は、マップは、計測範囲
内の物理量を複数の領域に分割し、これら各物理量領域
の境界点に対応する電気量を予め設定して、演算手段
は、A/D変換手段の出力から各境界点間で補間演算を
行うことで、センサの非直線特性に応じて補正された物
理量を求めるため、センサの非直線性を、折れ線近似に
より計測範囲の全領域について補正することができる。
According to a second aspect of the invention, the map divides the physical quantity within the measurement range into a plurality of areas, presets the electric quantities corresponding to the boundary points of these respective physical quantity areas, and the calculating means sets A Since the physical quantity corrected according to the non-linear characteristic of the sensor is obtained by performing the interpolating operation between the boundary points from the output of the / D conversion means, the non-linearity of the sensor is calculated by the polygonal line approximation in the whole area of the measurement range. Can be corrected.

【0017】また、第3の発明は、物理量の演算結果に
所定のシフト量を加えることにより、原点を容易に移動
することができる。
In the third invention, the origin can be easily moved by adding a predetermined shift amount to the calculation result of the physical quantity.

【0018】また、第4の発明は、マップは、センサの
非直線特性の傾きの変化に応じて複数の物理量領域に分
割するため、各物理量領域はセンサの特性に応じた幅に
設定される。A/D変換器の出力から各境界点間で補間
演算を行うことで、センサの非直線特性に応じて補正さ
れた物理量が演算され、この物理量の補正は分解能切換
手段が選択した境界の数に応じた精度となり、境界点の
選択数を増大することで、高精度の補正を行うことがで
きる一方、境界点の選択数を提言することにより、演算
速度を向上させて高速度の補正を行うことができる。
According to the fourth aspect of the invention, the map is divided into a plurality of physical quantity regions according to changes in the inclination of the non-linear characteristic of the sensor, so that each physical quantity region is set to have a width corresponding to the characteristic of the sensor. . By performing interpolation calculation between the boundary points from the output of the A / D converter, a physical quantity corrected according to the non-linear characteristic of the sensor is calculated, and the physical quantity is corrected by the number of boundaries selected by the resolution switching means. However, by increasing the number of selection of boundary points, it is possible to perform high-precision correction, while by proposing the number of selection of boundary points, the calculation speed is improved and high-speed correction is performed. It can be carried out.

【0019】[0019]

【発明の実施の形態】図1〜図3に本発明の一実施形態
を示す。
1 to 3 show one embodiment of the present invention.

【0020】図1はデジタル式サーボコントローラのA
/D変換器のブロック図を示し、1は物理量を電気量に
変化するセンサで、このセンサ1からのアナログ信号
は、A/D変換器2によってデジタル信号に変換された
後、このデジタル信号出力の誤差を補正したものを、セ
ンサ1の出力値として図示ないサーボコントローラの制
御部へ送出する。
FIG. 1 shows a digital servo controller A.
The block diagram of the / D converter is shown, and 1 is a sensor that changes a physical quantity into an electric quantity. An analog signal from this sensor 1 is converted into a digital signal by an A / D converter 2 and then this digital signal output The corrected value of 1 is sent to the controller of the servo controller (not shown) as the output value of the sensor 1.

【0021】このA/D変換器2は、センサ1からのア
ナログ信号をデジタル信号に変換するA/D変換部3
と、変換されたデジタル信号Vを格納するとともに、後
述するように、予め設定した多数の物理量領域毎に補正
係数を格納する記憶手段としてのメモリ5と、A/D変
換部3からのデジタル信号を後述するように補正するC
PU4と、CPU4の演算結果あるいはメモリ5のデー
タを図示しないサーボコントローラの制御部へ送出する
インターフェース(I/O)6から構成される。
The A / D converter 2 includes an A / D converter 3 for converting an analog signal from the sensor 1 into a digital signal.
And a digital signal from the A / D conversion unit 3, and a memory 5 as a storage unit that stores the converted digital signal V and also stores a correction coefficient for each of a number of preset physical quantity regions, as described later. C to correct as described below
It is composed of a PU 4 and an interface (I / O) 6 for sending the calculation result of the CPU 4 or the data of the memory 5 to a control unit of a servo controller (not shown).

【0022】ここで、CPU4で行われる制御の一例に
ついて、図2のフローチャート及び図3の誤差補正マッ
プを参照しながら詳述する。
Here, an example of the control performed by the CPU 4 will be described in detail with reference to the flowchart of FIG. 2 and the error correction map of FIG.

【0023】まず、A/D変換部3の出力信号Vを補正
するための図3に示すマップについて説明する。
First, the map shown in FIG. 3 for correcting the output signal V of the A / D converter 3 will be described.

【0024】いま、図3において、センサ1の計測範囲
をn個の領域に分割しておき、物理量の計測範囲はL1
〜Ln+1とし、これらL1〜Ln+1のn+1個の点は各領
域の境界点における物理量を示す。
In FIG. 3, the measurement range of the sensor 1 is divided into n areas, and the measurement range of the physical quantity is L 1
˜L n + 1, and n + 1 points of L 1 to L n + 1 indicate physical quantities at the boundary points of each area.

【0025】そして、これら物理量の各境界点L1〜L
n+1に対応したA/D変換部3の出力値をV1〜Vn+1
する。なお、物理量の最小値をL1、最大値をLn+1とす
る。
Boundary points L 1 to L of these physical quantities
The output values of the A / D conversion unit 3 corresponding to n + 1 are V 1 to V n + 1 . The minimum value of the physical quantity is L 1 and the maximum value thereof is L n + 1 .

【0026】そして、各境界点を結んだ折れ線をセンサ
1の出力特性線とする。この出力特性線は、各領域にお
いて、異なる傾きa及びオフセットbを持つ。
The polygonal line connecting the boundary points is used as the output characteristic line of the sensor 1. This output characteristic line has a different slope a and offset b in each area.

【0027】すなわち、任意の領域iに於けるセンサ1
の出力特性直線f(L)は、領域iに設定された傾きa
iと、オフセットbiから、次式のように表される。
That is, the sensor 1 in an arbitrary area i
Of the output characteristic line f (L) is the slope a set in the region i.
From i and the offset b i , it is expressed by the following equation.

【0028】 f(L)=aiL+bi ただし、(Li≦L≦Li+1) …(3) ここで、A/D変換部3から任意の出力Vが与えられた
とき、この出力値Vが計測範囲Vi≦V≦Vi+1を満たす
とき、実際の物理量Lは、上記(3)式より次のように
求められる。
F (L) = a i L + b i However, (L i ≦ L ≦ L i + 1 ) (3) Here, when an arbitrary output V is given from the A / D converter 3, When the output value V satisfies the measurement range V i ≦ V ≦ V i + 1 , the actual physical quantity L is obtained from the equation (3) as follows.

【0029】 L=(V−bi)/ai (Vi≦V≦Vi+1) …(4) こうして、A/D変換部3の出力値Vに対して、該当す
る領域に応じた補正係数ai、biにより誤差の補正を行
った物理量Lを得ることができる。
L = (V−b i ) / a i (V i ≦ V ≦ V i + 1 ) (4) Thus, the output value V of the A / D conversion unit 3 is determined according to the corresponding area. It is possible to obtain the physical quantity L in which the error is corrected by the correction coefficients a i and b i .

【0030】次に、上記のような誤差補正マップに基づ
くCPU4の制御動作を図2のフローチャートに基づい
て説明する。
Next, the control operation of the CPU 4 based on the above error correction map will be described with reference to the flowchart of FIG.

【0031】まず、ステップS1では、A/D変換部3
でセンサ1のアナログ信号を変換した出力値Vを読み込
む。
First, in step S1, the A / D converter 3
The output value V obtained by converting the analog signal of the sensor 1 is read by.

【0032】次に、ステップS2では、読み込んだ出力
値Vが、上記図3に示したに、予め設定した多数の領域
i〜Vi+1のうち、どの領域iに該当するかを判定す
る。
Next, in step S2, the read output value V, the shown in Figure 3, a number of regions V i ~V i + 1 set in advance, determine appropriate which region i To do.

【0033】そして、ステップS3では、出力値Vを含
む領域iの補正係数(傾きai、オフセットbi)をメモ
リ5から読み込む。
Then, in step S3, the correction coefficient (slope a i , offset b i ) of the area i including the output value V is read from the memory 5.

【0034】次にステップS4では、上記(4)式よ
り、出力値Vとその領域iに応じた補正係数ai、bi
ら出力値Vを補正した物理量Lの演算を行う。
Next, in step S4, the physical quantity L obtained by correcting the output value V from the correction coefficients a i and b i corresponding to the output value V and the area i thereof is calculated from the equation (4).

【0035】こうして求めた、物理量LをステップS5
でインターフェース6を介して、図示しないサーボコン
トローラの制御部へ送出する。
The physical quantity L thus obtained is calculated in step S5.
Then, it is sent to the control unit of the servo controller (not shown) via the interface 6.

【0036】上記ステップS1〜S5を所定のサンプリ
ング間隔等で実行することにより、センサ1の出力特性
が非直線であっても、センサ1の出力特性を多数の領域
に分割した折れ線によって近似することができ、計測範
囲の全領域において正確に誤差を補正することが可能と
なり、前記従来例に比して制御精度を大幅に向上させる
ことが可能となる。
Even if the output characteristic of the sensor 1 is non-linear, the output characteristic of the sensor 1 can be approximated by a polygonal line divided into a number of regions by executing the above steps S1 to S5 at a predetermined sampling interval or the like. Therefore, the error can be accurately corrected in the entire measurement range, and the control accuracy can be significantly improved as compared with the conventional example.

【0037】図4は第2の実施形態を示すマップで、物
理量Lの原点(0点)を任意の位置へ移動可能としたも
ので、その他の構成は、前記第1実施形態と同様であ
る。
FIG. 4 is a map showing the second embodiment, in which the origin (0 point) of the physical quantity L can be moved to an arbitrary position, and other configurations are the same as those in the first embodiment. .

【0038】サーボコントローラの制御対象が、例えば
直線往復運動を行うアクチュエータである場合、任意の
ストローク位置を原点として駆動したい場合には、図4
に示すように、各領域iに設定されたオフセットbi
所定のシフト量sをそれぞれ加えるだけで、容易に物理
量Lの原点を移動することができる。なお、このシフト
量sを予めメモリ5等に格納しておき、適宜読み込んで
オフセットbiに加えることで、物理量Lの原点の移動
を随時行うことができ、また、シフト量sを多数設定し
ておき、図示しない選択手段によって所望のシフト量s
を選択すれば、原点を任意の位置へ移動させることがで
き、一つのA/D変換器2を幅広い制御対象に適応させ
ることができる。
When the control target of the servo controller is, for example, an actuator that makes a linear reciprocating motion, and when it is desired to drive with an arbitrary stroke position as the origin, FIG.
As shown in, the origin of the physical quantity L can be easily moved only by adding a predetermined shift amount s to the offset b i set in each area i. It should be noted that the shift amount s is stored in the memory 5 or the like in advance, and is appropriately read and added to the offset b i so that the origin of the physical amount L can be moved at any time, and a large number of shift amounts s are set. A desired shift amount s is selected by a selection unit (not shown).
By selecting, the origin can be moved to an arbitrary position, and one A / D converter 2 can be adapted to a wide range of control targets.

【0039】図5は第3の実施形態を示し、A/D変換
器2の分解能を可変としたもので、前記第1実施形態の
領域の幅をセンサ1の非直線特性の傾きに応じて可変と
し、さらに、分解能の切換を境界点の選択数に応じて変
更するようにしたものであり、センサ1の非直線特性が
顕著な領域では領域の幅を狭く、ほぼ直線的な領域では
幅を広く設定したものである。
FIG. 5 shows a third embodiment in which the resolution of the A / D converter 2 is variable, and the width of the region of the first embodiment is set according to the inclination of the non-linear characteristic of the sensor 1. The width of the sensor 1 is variable and the switching of the resolution is changed according to the number of selected boundary points. Is set widely.

【0040】いま、物理量Lのすべての境界点L1〜L
n+1を選択した場合には高分解能となり、A/D変換部
3の出力Vをセンサ1の非直線特性にほぼ一致させた物
理量Lに補正することができ、高精度のサーボ制御を実
現することができる。
Now, all the boundary points L 1 to L of the physical quantity L
When n + 1 is selected, the resolution is high, and the output V of the A / D converter 3 can be corrected to a physical quantity L that substantially matches the non-linear characteristic of the sensor 1, thus realizing highly accurate servo control. can do.

【0041】一方、選択する境界点の数を低減すると、
得られる物理量Lの分解能も低下する。例えば、物理量
Lの境界点をL1、L3、L5、Ln-3、Ln-1、Ln+1のよ
うにひとつおきに設定すると、出力Vとの比較を行う境
界点V1〜Vn+1の数も半減するため、補正演算を高速で
行うことができ、分解能の優先と制御速度の優先を選択
することが可能となって、一つのA/D変換器2を幅広
い制御対象に適応させることができ、汎用性をさらに向
上させることができる。
On the other hand, if the number of boundary points to be selected is reduced,
The resolution of the obtained physical quantity L also decreases. For example, if every other boundary point of the physical quantity L is set as L 1 , L 3 , L 5 , L n-3 , L n-1 , L n + 1 , the boundary point V for comparison with the output V is set. Since the number of 1 to V n + 1 is also halved, the correction calculation can be performed at high speed, and it becomes possible to select the priority of resolution and the priority of control speed, so that one A / D converter 2 can be used. It can be applied to a wide range of controlled objects, and versatility can be further improved.

【0042】さらに、センサ1の非直線特性が顕著な領
域では領域の幅を狭く設定する一方、ほぼ直線的な領域
では幅を広く設定することにより、境界点の増大を抑制
しながらも、A/D変換部3の出力Vに基づく物量の補
正を高精度かつ高速度で行うことが可能となる。
Further, the width of the region is set narrow in the region where the non-linear characteristic of the sensor 1 is remarkable, while the width is set wide in the region where the sensor is substantially linear, so that the increase of the boundary points can be suppressed. It is possible to correct the physical quantity based on the output V of the / D conversion unit 3 with high accuracy and high speed.

【0043】[0043]

【発明の効果】以上のように第1の発明によれば、セン
サの出力特性は非直線性を備えるため、誤差補正手段
は、この非直線特性に応じて計測範囲を複数の領域に分
割するとともに、各領域毎に補正係数を予め設定したマ
ップに基づいて、A/D変換手段の出力が複数の領域の
うちのいずれに該当するかを判定し、この判定結果に応
じた領域の補正係数をマップから読み込むとともに、A
/D変換手段の出力を補正係数に応じて補正するため、
非直線性を有するセンサの計測範囲の全領域において確
実に誤差の補正を行って、前記従来例に比して制御精度
を大幅に向上させ、サーボ制御の精度を向上させること
が可能となる。
As described above, according to the first aspect of the present invention, since the output characteristic of the sensor has a non-linear characteristic, the error correction means divides the measurement range into a plurality of regions according to the non-linear characteristic. At the same time, it is determined which of the plurality of areas the output of the A / D conversion means corresponds to, based on a map in which the correction coefficient is preset for each area, and the correction coefficient of the area according to the determination result. While reading from the map
Since the output of the / D conversion means is corrected according to the correction coefficient,
It is possible to surely correct the error in the entire area of the measurement range of the sensor having nonlinearity, to significantly improve the control accuracy as compared with the conventional example, and to improve the servo control accuracy.

【0044】また、第2の発明は、マップは、計測範囲
内の物理量を複数の領域に分割し、これら各物理量領域
の境界点に対応する電気量を予め設定して、演算手段
は、A/D変換手段の出力から物理量を補間演算により
求めるため、センサの非直線性を、折れ線近似により計
測範囲の全領域について補正することができ、前記従来
例に比して制御精度を大幅に向上させ、サーボ制御の精
度を向上させることが可能となる。
According to a second aspect of the invention, the map divides the physical quantity within the measurement range into a plurality of areas, presets the electric quantities corresponding to the boundary points of these respective physical quantity areas, and the calculating means sets A Since the physical quantity is obtained from the output of the D / D conversion means by interpolation calculation, the non-linearity of the sensor can be corrected for the entire area of the measurement range by the polygonal line approximation, and the control accuracy is greatly improved compared to the conventional example. As a result, the accuracy of servo control can be improved.

【0045】また、第3の発明は、物理量の演算結果に
所定のシフト量を加えることにより、原点を容易に移動
することができ、A/D変換器の汎用性を向上させるこ
とができる。
In the third invention, the origin can be easily moved by adding a predetermined shift amount to the calculation result of the physical quantity, and the versatility of the A / D converter can be improved.

【0046】また、第4の発明は、マップは、センサの
非直線特性の傾きの変化に応じて複数の物理量領域に分
割するため、各物理量領域はセンサの特性に応じた幅に
設定され、A/D変換器の出力から各境界点間で補間演
算を行うことで、センサの非直線特性に応じて補正され
た物理量が演算され、この物理量の補正は分解能切換手
段が選択した境界の数に応じた精度となり、境界点の選
択数を増大することで、高精度の補正を行うことができ
る一方、境界点の選択数を低減することにより、演算速
度を向上させて高速度の補正を行うことができ、分解能
の優先と制御速度の優先を選択することが可能となっ
て、一つのA/D変換器を幅広い制御対象に適応させる
ことができ、汎用性をさらに向上させることができる。
According to the fourth aspect of the invention, the map is divided into a plurality of physical quantity regions according to changes in the inclination of the non-linear characteristic of the sensor, so that each physical quantity region is set to have a width corresponding to the characteristic of the sensor. By performing interpolation calculation between the boundary points from the output of the A / D converter, a physical quantity corrected according to the non-linear characteristic of the sensor is calculated, and the physical quantity is corrected by the number of boundaries selected by the resolution switching means. According to the above, the accuracy becomes higher, and by increasing the number of boundary points selected, it is possible to perform high-precision correction, while by reducing the number of boundary points selected, the calculation speed is improved and high-speed correction is performed. It is possible to select the priority of resolution and the priority of control speed, one A / D converter can be adapted to a wide range of control targets, and versatility can be further improved. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態を示すA/D変換器のブロッ
ク図。
FIG. 1 is a block diagram of an A / D converter showing an embodiment of the present invention.

【図2】CPUで行われる処理の一例を示すフローチャ
ート。
FIG. 2 is a flowchart showing an example of processing performed by a CPU.

【図3】誤差補正計算の一例を示し、各領域iに応じた
物理量LとA/D変換器出力値Vの関係を示すマップ。
FIG. 3 is a map showing an example of an error correction calculation and showing a relationship between a physical quantity L and an A / D converter output value V according to each region i.

【図4】第2実施形態を示す誤差補正計算のマップで、
物理量Lの原点を移動したときの物理量LとA/D変換
器出力値Vの関係を示す。
FIG. 4 is a map of an error correction calculation showing the second embodiment,
The relationship between the physical quantity L and the A / D converter output value V when the origin of the physical quantity L is moved is shown.

【図5】第3実施形態を示す誤差補正計算のマップで、
分解能を向上させたときの物理量LとA/D変換器出力
値Vの関係を示す。
FIG. 5 is a map of an error correction calculation showing the third embodiment,
The relationship between the physical quantity L and the A / D converter output value V when the resolution is improved is shown.

【図6】従来の誤差補正計算を示し、物理量とA/D変
換器出力の関係を示すマップである。
FIG. 6 is a map showing a conventional error correction calculation and showing a relationship between a physical quantity and an A / D converter output.

【図7】第1ないし第4の発明のいずれかひとつに対応
するクレーム対応図。
FIG. 7 is a claim correspondence diagram corresponding to any one of the first to fourth inventions.

【符号の説明】[Explanation of symbols]

1 センサ 2 A/D変換器 3 A/D変換部 4 CPU 5 メモリ 6 I/O 50 A/D変換手段 51 誤差補正手段 52 マップ 53 判定手段 54 演算手段 1 Sensor 2 A / D Converter 3 A / D Converter 4 CPU 5 Memory 6 I / O 50 A / D Conversion Means 51 Error Correction Means 52 Maps 53 Judgment Means 54 Arithmetic Means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 物理量に応じた電気量を出力するセンサ
と、このセンサが出力したアナログ信号をデジタル信号
に変換するA/D変換手段と、このA/D変換手段の出
力を補正する誤差補正手段とを備えたサーボコントロー
ラのA/D変換器において、前記センサは非直線特性を
備え、前記誤差補正手段は、この非直線特性に応じて計
測範囲を複数の領域に分割するとともに、各領域毎に補
正係数を予め設定したマップと、前記A/D変換手段の
出力が上記複数の領域のうちのいずれに該当するかを判
定する手段と、前記判定結果に応じた領域の補正係数を
前記マップから読み込むとともに、前記A/D変換手段
の出力を補正係数に応じて補正する演算手段とを備えた
ことを特徴とするサーボコントローラのA/D変換器。
1. A sensor for outputting an electric quantity according to a physical quantity, an A / D conversion means for converting an analog signal output by the sensor into a digital signal, and an error correction for correcting an output of the A / D conversion means. In the A / D converter of the servo controller including means, the sensor has a non-linear characteristic, and the error correction means divides the measurement range into a plurality of areas according to the non-linear characteristic and A map in which a correction coefficient is preset for each, a means for determining which of the plurality of areas the output of the A / D conversion means corresponds to, and a correction coefficient for the area according to the determination result An A / D converter for a servo controller, comprising: an arithmetic unit that reads from a map and corrects the output of the A / D converter according to a correction coefficient.
【請求項2】 前記マップは、前記計測範囲内の物理量
を複数の領域に分割する一方、各物理量領域の境界点に
対応する電気量を予め設定し、前記演算手段は、前記A
/D変換手段の出力から物理量を補間演算により求める
ことを特徴とする請求項1に記載のサーボコントローラ
のA/D変換器。
2. The map divides the physical quantity within the measurement range into a plurality of areas, while presetting the electric quantity corresponding to the boundary point of each physical quantity area, and the computing means sets the A
The A / D converter of the servo controller according to claim 1, wherein the physical quantity is obtained from the output of the / D conversion means by interpolation calculation.
【請求項3】 前記演算手段は、物理量の原点を変更す
べく物理量の演算結果に所定のシフト量を加える原点変
更手段を備えたことを特徴とする請求項1に記載のサー
ボコントローラの変換器。
3. The converter of the servo controller according to claim 1, wherein the arithmetic means includes an origin changing means for adding a predetermined shift amount to the calculation result of the physical quantity to change the origin of the physical quantity. .
【請求項4】 前記マップは、前記計測範囲内の物理量
をセンサの非直線特性の傾きの変化に応じて複数の領域
に分割する一方、各物理量領域の境界点に対応する電気
量を予め設定し、前記演算手段は、前記A/D変換手段
の出力から所定の分解能で物理量を補間演算する演算手
段と、前記境界点の選択数を変更することで前記分解能
を変更する分解能変更手段とを備えたことを特徴とする
請求項1に記載のサーボコントローラのA/D変換器。
4. The map divides the physical quantity within the measurement range into a plurality of areas according to the change in the slope of the non-linear characteristic of the sensor, and presets the electric quantity corresponding to the boundary point of each physical quantity area. However, the arithmetic means includes arithmetic means for interpolating a physical quantity with a predetermined resolution from the output of the A / D conversion means, and resolution changing means for changing the resolution by changing the selection number of the boundary points. The A / D converter of the servo controller according to claim 1, further comprising:
JP07487196A 1996-03-28 1996-03-28 Servo controller A / D converter Expired - Lifetime JP3699772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07487196A JP3699772B2 (en) 1996-03-28 1996-03-28 Servo controller A / D converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07487196A JP3699772B2 (en) 1996-03-28 1996-03-28 Servo controller A / D converter

Publications (2)

Publication Number Publication Date
JPH09265321A true JPH09265321A (en) 1997-10-07
JP3699772B2 JP3699772B2 (en) 2005-09-28

Family

ID=13559839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07487196A Expired - Lifetime JP3699772B2 (en) 1996-03-28 1996-03-28 Servo controller A / D converter

Country Status (1)

Country Link
JP (1) JP3699772B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2136573A1 (en) * 1996-12-16 1999-11-16 Bosch Gmbh Robert Indicating physical measuring value on measuring unit with analogue indicator
JP2007071889A (en) * 2006-11-27 2007-03-22 Hitachi Ltd Thermal air flowmeter
WO2013046981A1 (en) * 2011-09-30 2013-04-04 日立オートモティブシステムズ株式会社 Gas flow rate measuring apparatus
WO2019003401A1 (en) * 2017-06-29 2019-01-03 株式会社ソニー・インタラクティブエンタテインメント Robot control apparatus, control method and control program

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2136573A1 (en) * 1996-12-16 1999-11-16 Bosch Gmbh Robert Indicating physical measuring value on measuring unit with analogue indicator
JP2007071889A (en) * 2006-11-27 2007-03-22 Hitachi Ltd Thermal air flowmeter
WO2013046981A1 (en) * 2011-09-30 2013-04-04 日立オートモティブシステムズ株式会社 Gas flow rate measuring apparatus
JP2013076601A (en) * 2011-09-30 2013-04-25 Hitachi Automotive Systems Ltd Gas flow rate measuring apparatus
US9297677B2 (en) 2011-09-30 2016-03-29 Hitachi Automotive Systems, Ltd. Gas flow rate measuring apparatus for minimizing temperature dependent errors
DE112012004068B4 (en) * 2011-09-30 2021-01-21 Hitachi Automotive Systems, Ltd. Gas flow rate measuring device
WO2019003401A1 (en) * 2017-06-29 2019-01-03 株式会社ソニー・インタラクティブエンタテインメント Robot control apparatus, control method and control program
JPWO2019003401A1 (en) * 2017-06-29 2020-04-16 株式会社ソニー・インタラクティブエンタテインメント Robot control device, control method, and control program
US11453128B2 (en) 2017-06-29 2022-09-27 Sony Interactive Entertainment Inc. Robot control apparatus, control method and control program

Also Published As

Publication number Publication date
JP3699772B2 (en) 2005-09-28

Similar Documents

Publication Publication Date Title
US4903023A (en) Subranging analog-to-digital converter with digital error correction
JP2795765B2 (en) Analog-to-digital converter and method for linearizing analog-to-digital conversion
US20030160160A1 (en) Signal processing apparatus for encoder
US7642875B2 (en) Temperature correcting apparatus and voltage-controlled oscillation apparatus
EP0369031A1 (en) Absolute position encoder
Flammini et al. Application of an optimal look-up table to sensor data processing
JPS5873231A (en) Analog-to-digital converter
US5581247A (en) Fast technique for converting sampled analog measurements of a physical quantity to values expressed in engineering unit format
JP3979358B2 (en) Nonlinearity correction device for A / D conversion output data
EP0932027B1 (en) Offset correcting circuit for encoder
US4721944A (en) Analog-to-digital conversion method and an analog-to-digital converter utilizing the same
KR101209987B1 (en) analog unit
JPH09265321A (en) Analog-to-digital converter for servo controller
US7460979B2 (en) Method and system for enhanced resolution, automatically-calibrated position sensor
JP2003032108A (en) Linearity compensation device and linearity compensation method
US5635622A (en) Method of compensating for gauge hysteresis
JPS6178227A (en) High-resolution digitizing method and device for signal
WO2002001850A1 (en) Gamma correction device
JPH03179919A (en) Analog/digital converter
US4916646A (en) System for signal to noise separation for electrochemical instruments
JPH0682267A (en) Sensor with temperature drift compensation function
US10666388B2 (en) Encoder signal processing device and encoder
JPH04370769A (en) Correction method of voltage and current signal by using a/d converter
JPH0762620B2 (en) Method of changing output characteristics of sensor signal
JP2002048595A (en) Calibration method for sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term