JPH09263830A - Production of alloy steel tube - Google Patents

Production of alloy steel tube

Info

Publication number
JPH09263830A
JPH09263830A JP8096018A JP9601896A JPH09263830A JP H09263830 A JPH09263830 A JP H09263830A JP 8096018 A JP8096018 A JP 8096018A JP 9601896 A JP9601896 A JP 9601896A JP H09263830 A JPH09263830 A JP H09263830A
Authority
JP
Japan
Prior art keywords
temperature
strength
steel
steel pipe
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8096018A
Other languages
Japanese (ja)
Other versions
JP3214348B2 (en
Inventor
Seiji Tanimoto
征司 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP09601896A priority Critical patent/JP3214348B2/en
Publication of JPH09263830A publication Critical patent/JPH09263830A/en
Application granted granted Critical
Publication of JP3214348B2 publication Critical patent/JP3214348B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To complete the isothermal transformation treatment, which is operated so far by off-line, instead by in-line by means of heating and cooling directly after hot working. SOLUTION: A steel billet, having a composition consisting of 0.05-0.35% C, 0.02-0.60% Si, 0.3-1.8% Mn, 0.2-10.0% Cr, 0.2-1.5% Mo, and the balance Fe with inevitable impurities, is used. This steel billet is heated to 1050-1280 deg.C, subjected, by the use of a piercer, a mandrel, and a sizer, to piercing and to hot rolling at >=750 deg.C finishing temp., reheated to 800-1050 deg.C, cooled down to an isothermal temp. at <=5 deg.C/sec cooling rate, subjected to isothermal treatment at 650-780 deg.C for 0.25-2.0hr, and air-cooled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、Cr−Mo鋼を
基本成分とするボイラー用鋼材を、熱間加工と熱処理を
組合せることによって、従来の調質鋼と同等の強度およ
び延性を有する鋼管とする合金鋼鋼管の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel pipe for a boiler having Cr-Mo steel as a basic component, which has a strength and ductility equivalent to those of conventional heat-treated steel by combining hot working and heat treatment. The present invention relates to a method for manufacturing an alloy steel pipe.

【0002】[0002]

【従来の技術】火力発電用のボイラには、水壁管、過熱
器管、再熱器管、節炭器管、給水加熱器管、主蒸気管な
どとして多種類の耐熱鋼管が使用されているが、いずれ
も高温強度や耐酸化性、耐腐食性といった性能が要求さ
れる。これらの性能を満足させるためには、Crで耐熱
性を確保し、Mo、N、Nbによる固溶強化と各元素の
炭化物による分散強化を利用して性能確保を図ってい
る。
2. Description of the Related Art Boilers for thermal power generation use various types of heat-resistant steel pipes such as water wall pipes, superheater pipes, reheater pipes, economizer pipes, feed water heater pipes, and main steam pipes. However, all of them require performance such as high temperature strength, oxidation resistance, and corrosion resistance. In order to satisfy these performances, the heat resistance is secured by Cr, and the performance is secured by utilizing solid solution strengthening by Mo, N, Nb and dispersion strengthening by carbide of each element.

【0003】従来の耐熱鋼管の製造方法としては、熱間
または冷間加工で所定の形状に仕上げたのち、調質熱処
理を施して強度とミクロ組織の調整を行っている。調質
熱処理方法としては、前記Cr、Mo、N、Nbなどを
添加したボイラ鋼管についてはAc3点以上に加熱して
オーステナイト化した後、Ae1点以下のある温度に冷
却し、その温度に保持したままで変態させる恒温変態処
理が適用されている。一般的に、恒温変態処理後の室温
強度は、耐力250〜350N/mm2、引張強さ45
0〜550N/mm2であることが要求される。
As a conventional method for producing a heat-resistant steel pipe, after finishing to a predetermined shape by hot or cold working, heat treatment is performed to adjust the strength and the microstructure. As a heat treatment method for tempering, the boiler steel pipe added with Cr, Mo, N, Nb, etc. is heated to Ac 3 point or higher to austenite, and then cooled to a certain temperature of Ae 1 point or lower, and brought to that temperature. A constant temperature transformation process is applied to transform while keeping it. Generally, the room temperature strength after the isothermal transformation treatment is proof stress 250 to 350 N / mm 2 , tensile strength 45.
It is required to be 0 to 550 N / mm 2 .

【0004】上記ボイラ用鋼管の製造においては、鋼管
の仕上げ加工タイミングと調質熱処理タイミングが合わ
ないことが多く、待ち時間が長くなること、調質熱処理
の際に室温からの加熱が必要で、加熱後の恒温変態処理
と相まって処理時間が長く低能率であること、高温での
長時間加熱となるためスケールの生成量が著しく多く、
調質熱処理後に酸洗やグラインダー等によるデスケール
処理が必要になるといった問題点を有している。特に、
調質熱処理でのスケール生成は、冷間仕上加工材につい
ては雰囲気ガスを制御した焼鈍炉で調質熱処理すること
により解決できるが、熱間仕上加工材は、熱間仕上で生
成したスケールが存在するため、雰囲気ガスを制御した
焼鈍炉で調質熱処理しても、表面組織の改善までには至
らないといった問題を有している。
In the production of the above boiler steel pipe, the finish processing timing of the steel pipe and the heat treatment for heat treatment are often inconsistent, the waiting time becomes long, and heating from room temperature is required during the heat treatment for heat treatment. Combined with the isothermal transformation treatment after heating, the treatment time is long and the efficiency is low.
There is a problem in that after the heat treatment for heat treatment, descaling treatment such as pickling or grinder is required. Especially,
The scale generation in the heat treatment can be solved by performing the heat treatment in the annealing furnace with controlled atmosphere gas for the cold finish processed material, but in the hot finish processed material, the scale generated by the hot finish exists. Therefore, there is a problem that even if the heat treatment is performed in an annealing furnace in which the atmosphere gas is controlled, the surface texture cannot be improved.

【0005】上記オフライン調質熱処理を省略して強度
とミクロ組織の調整を行う方法としては、C:0.08
〜0.13%、Si:0.05〜0.50%、Mn:
1.10〜1.50%、Ni:0.70%以下および/
またはCu:0.45%以下、ならびにCr:0.20
%以下、Mo:0.05%以下、V:0.02%以下お
よびB:0.0005%以下からなる群から選んだ少な
くとも1種、Al:0.005〜0.080%、Nb:
0.005〜0.050%、N:0.0010〜0.0
090%、Ti:0.005〜0.035%、残部Fe
および不可避的不純物からなる鋼組成を有する鋼片を1
000℃以上の温度に加熱後、熱間加工を行って、さら
に、880〜950℃の温度で焼準を行う方法(特開平
2−305919号公報)が提案されている。
As a method for adjusting the strength and the microstructure by omitting the above-mentioned off-line heat treatment, C: 0.08
~ 0.13%, Si: 0.05-0.50%, Mn:
1.10 to 1.50%, Ni: 0.70% or less and /
Or Cu: 0.45% or less, and Cr: 0.20
% Or less, Mo: 0.05% or less, V: 0.02% or less and B: 0.0005% or less, at least one selected from the group: Al: 0.005 to 0.080%, Nb:
0.005-0.050%, N: 0.0010-0.0
090%, Ti: 0.005-0.035%, balance Fe
And a slab having a steel composition consisting of unavoidable impurities 1
A method (Japanese Patent Laid-Open No. 2-305919) in which hot working is performed after heating to a temperature of 000 ° C. or higher and normalization is further performed at a temperature of 880 to 950 ° C. has been proposed.

【0006】[0006]

【発明が解決しようとする課題】上記特開平2−305
919号公報に開示の方法は、寒冷地において使用され
る溶接構造用鋼材またはラインパイプ用鋼管等として使
用される、低炭素当量で、優れた溶接性を具備し、かつ
低温衝撃特性に優れた焼準型高靭性高強度鋼材を得るも
のであって、高温強度や耐酸化性、耐腐食性が要求され
るボイラ用鋼材ではない。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The method disclosed in Japanese Patent No. 919 is used as a steel material for welded structures or a steel pipe for line pipes used in cold regions, has a low carbon equivalent, has excellent weldability, and has excellent low-temperature impact characteristics. It is intended to obtain a normalizing type high toughness and high strength steel material, and is not a steel material for a boiler which requires high temperature strength, oxidation resistance and corrosion resistance.

【0007】この発明の目的は、前記従来のオフライン
処理していた恒温変態処理を、熱間加工直後の加熱冷却
によりインラインで完結させる合金鋼鋼管の製造方法を
提供することにある。
An object of the present invention is to provide a method for manufacturing an alloy steel pipe which completes the above-described conventional isothermal transformation process, which has been performed offline, in-line by heating and cooling immediately after hot working.

【0008】[0008]

【課題を解決するための手段】この発明の請求項1の合
金鋼鋼管の製造方法は、C:0.05〜0.35%、S
i:0.02〜0.60%、Mn:0.3〜1.8%、
Cr:0.2〜10.0%、Mo:0.2〜1.5%を
含有し、残部がFeと不可避的不純物からなる組成を有
する鋼片を、1050〜1280℃の温度範囲に加熱
し、ピアサー、マンドレルおよびサイザーを用いて穿孔
と750℃以上の仕上げ温度で熱間圧延を行ったのち、
800〜1050℃の温度範囲に再加熱して恒温温度ま
で5℃/秒以下の冷却速度で冷却し、650〜780℃
の温度範囲で0.25〜2.0時間恒温変態処理したの
ち空冷することとしている。このように、上記組成を有
する鋼片を、熱間圧延加工したのち、直ちにインライン
で恒温変態処理することによって、オフライン熱処理を
省略してオフラインで恒温変態処理した鋼管と同等の強
度、延性を確保できると共に、表面性状を改善すること
ができる。
A method for manufacturing an alloy steel pipe according to claim 1 of the present invention is C: 0.05 to 0.35%, S:
i: 0.02 to 0.60%, Mn: 0.3 to 1.8%,
A steel slab containing Cr: 0.2 to 10.0%, Mo: 0.2 to 1.5% and the balance being Fe and inevitable impurities is heated to a temperature range of 1050 to 1280 ° C. After performing piercing and hot rolling at a finishing temperature of 750 ° C or higher using a piercer, mandrel and sizer,
Reheat to a temperature range of 800 to 1050 ° C and cool to a constant temperature at a cooling rate of 5 ° C / sec or less, 650 to 780 ° C.
After the isothermal transformation treatment in the temperature range of 0.25 to 2.0 hours, air cooling is performed. In this way, the steel strip having the above composition is hot-rolled, and immediately subjected to the isothermal transformation treatment in-line immediately, so that the strength and ductility equal to those of the steel pipe subjected to the isothermal transformation treatment in the off-line state can be secured by omitting the offline heat treatment. At the same time, the surface quality can be improved.

【0009】また、この発明の請求項2の合金鋼鋼管の
製造方法は、C:0.05〜0.35%、Si:0.0
2〜0.60%、Mn:0.3〜1.8%、Cr:0.
2〜10.0%、Mo:0.2〜1.5%を含み、さら
に、V:0.01〜0.15%、Nb:0.01〜0.
10%、Ti:0.01〜0.10%のうちの1種また
は2種以上を含有し、残部がFeと不可避的不純物から
なる組成を有する鋼片を、1050〜1280℃の温度
範囲に加熱し、ピアサー、マンドレルおよびサイザーを
用いて穿孔と750℃以上の仕上げ温度での熱間圧延を
行ったのち、800〜1050℃の温度範囲に再加熱し
て恒温温度まで5℃/秒以下の冷却速度で冷却し、65
0〜780℃の温度範囲で0.25〜2.0時間恒温処
理したのち空冷することとしている。このように、上記
組成を有する鋼片を、熱間圧延加工したのち、直ちにイ
ンラインで恒温変態処理することによって、オフライン
熱処理を省略してオフラインで恒温変態処理した鋼管と
同等の強度、延性を確保できると共に、表面性状を改善
することができる。
Further, according to a second aspect of the present invention, there is provided a method for producing an alloy steel tube, which comprises C: 0.05 to 0.35% and Si: 0.0
2 to 0.60%, Mn: 0.3 to 1.8%, Cr: 0.
2 to 10.0%, Mo: 0.2 to 1.5%, V: 0.01 to 0.15%, Nb: 0.01 to 0.
10%, Ti: A steel slab containing one or more of 0.01 to 0.10% and a balance of Fe and unavoidable impurities in a temperature range of 1050 to 1280 ° C. After heating, piercing and hot rolling at a finishing temperature of 750 ° C or higher using a piercer, mandrel and sizer, then reheating to a temperature range of 800 to 1050 ° C to a constant temperature of 5 ° C / sec or less. Cool at a cooling rate of 65
After constant temperature treatment in the temperature range of 0 to 780 ° C. for 0.25 to 2.0 hours, it is cooled by air. In this way, the steel strip having the above composition is hot-rolled, and immediately subjected to the isothermal transformation treatment in-line immediately, so that the strength and ductility equal to those of the steel pipe subjected to the isothermal transformation treatment in the off-line state can be secured by omitting the offline heat treatment. At the same time, the surface quality can be improved.

【0010】[0010]

【発明の実施の形態】この発明において、鋼片の化学組
成、熱間圧延条件ならびに調質熱処理条件を限定した理
由を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The reason why the chemical composition of the steel slab, the conditions of hot rolling and the conditions of heat treatment for tempering are limited in the present invention will be explained.

【0011】Cは鋼材の強度を向上させる作用を有する
元素であるが、0.05%未満では引張強さ450N/
mm2以上の強度を確保することができず、また、0.
35%を超えると引張強さが上昇し過ぎるので、0.0
5〜0.35%とした。
C is an element having the function of improving the strength of steel, but if it is less than 0.05%, the tensile strength is 450 N /
It is not possible to secure the strength of 2 mm2 or more, and the strength of 0.
If it exceeds 35%, the tensile strength will rise too much, so 0.0
It was set to 5 to 0.35%.

【0012】Siは脱酸作用の他に、鋼材の強度を向上
させる作用を有する元素であるが、0.02%未満では
その効果が十分でなく、また、0.60%を超えると微
細均一に分散していた炭化物が粗大化するようになっ
て、強度の向上効果が見られなくなるので、0.02〜
0.60%とした。
Si is an element which has an effect of improving the strength of the steel material in addition to the deoxidizing effect, but if it is less than 0.02%, its effect is not sufficient, and if it exceeds 0.60%, it becomes fine and uniform. Since the carbides dispersed in the steel become coarser and the effect of improving the strength cannot be seen, 0.02 to 0.02
It was set to 0.60%.

【0013】MnはCと同様鋼材の強度を向上させる作
用を有する元素であるが、0.3%未満ではその効果が
不十分で所望の強度をえることができず、また、1.8
%を超えると、降伏点が低減されないので、0.3〜
1.8%とした。
Mn is an element having the action of improving the strength of the steel material like C, but if it is less than 0.3%, the effect is insufficient and the desired strength cannot be obtained.
%, The yield point is not reduced, so 0.3-
It was set to 1.8%.

【0014】Crは鋼材の耐酸化性および強度を向上さ
せる作用を有する元素であるが、0.2%未満ではその
効果が十分でなく、また、10.0%を超えると恒温変
態処理によるミクロ組織および降伏点と引張強さとのバ
ランス調整の向上効果が少なくなるので、0.2〜1
0.0%とした。
Cr is an element having an effect of improving the oxidation resistance and strength of the steel material, but if it is less than 0.2%, its effect is not sufficient, and if it exceeds 10.0%, it is microscopic by the isothermal transformation treatment. Since the effect of improving the balance adjustment between the structure and the yield point and the tensile strength is reduced, 0.2 to 1
0.0%.

【0015】Moは鋼材の高温強度を向上させる作用を
有する元素であるが、0.2%未満ではその効果が十分
でなく、また、1.5%を超えると鋼材の高温強度が向
上するものの、延性が低下するようになるので、0.2
〜1.5%とした。
Mo is an element having the effect of improving the high-temperature strength of steel, but if it is less than 0.2%, its effect is not sufficient, and if it exceeds 1.5%, the high-temperature strength of steel is improved. , The ductility decreases, so 0.2
To 1.5%.

【0016】V、Nb、Tiは共に強度を向上させる元
素であり、その中でVは、鋼材の高温強度を向上させる
作用を有する元素であるが、0.01%未満ではその効
果が十分でなく、また、0.15%を超えると鋼材の高
温強度が向上するものの、延性が低下するようになるの
で、0.01〜0.15%とした。
V, Nb, and Ti are all elements that improve the strength. Among them, V is an element that has the effect of improving the high temperature strength of the steel material, but if it is less than 0.01%, its effect is sufficient. Further, if it exceeds 0.15%, the high temperature strength of the steel material improves, but the ductility decreases, so it was made 0.01 to 0.15%.

【0017】Nbはサイザー圧延後の鋼材のオーステナ
イト粒径を微細化して強度、靭性および延性を向上させ
る作用を有する元素で、必要に応じて添加されるが、
0.01%未満ではその効果が十分でなく、また、0.
10%を超えるとその作用が飽和するので、0.01〜
0.10%とした。
Nb is an element having a function of refining the austenite grain size of the steel material after sizer rolling to improve strength, toughness and ductility, and is added as necessary,
If it is less than 0.01%, the effect is not sufficient, and if it is 0.
If it exceeds 10%, the action will be saturated, so 0.01-
0.10%.

【0018】TiはNbと同様サイザー圧延後の鋼材の
オーステナイト粒径を微細化して強度、靭性および延性
を向上させる作用を有する元素で、必要に応じて添加さ
れるが、0.01%未満ではその効果が十分でなく、ま
た、0.10%を超えると延性が低下するようになるの
で、0.01〜0.10%とした。
Like Nb, Ti is an element having a function of refining the austenite grain size of the steel material after sizer rolling to improve strength, toughness and ductility, and is added as necessary, but if less than 0.01%. The effect is not sufficient, and if it exceeds 0.10%, the ductility decreases, so the content was made 0.01 to 0.10%.

【0019】不可避的不純物としてN、PおよびSの含
有は避けられないが、Nは鋼塊の割れ防止のために0.
06%以下とするのが望ましく、また、Pは偏析バンド
の防止および靭性向上の観点から0.025%以下、望
ましくは0.015%以下とするのがよく、さらに、S
は圧延方向の靭性向上の観点から0.01%以下、望ま
しくは0.005%以下とするのがよい。
Inclusion of N, P and S as unavoidable impurities is unavoidable, but N is added to prevent cracking of the steel ingot.
The content of P is preferably 0.06% or less, and P is preferably 0.025% or less, more preferably 0.015% or less, from the viewpoint of preventing segregation bands and improving toughness.
Is 0.01% or less, preferably 0.005% or less from the viewpoint of improving the toughness in the rolling direction.

【0020】鋼片の加熱は、鋼片を中心部まで均一に加
熱し、ミクロ組織の偏析などを除去した状態で、次工程
の穿孔および圧延を行うために施されるものであり、そ
の温度が1050℃未満でも結晶粒の微細化による靭性
向上には有効であるが、変形抵抗が著しく上昇し、熱間
加工に支障を来たし、また、1280℃を超えると、穿
孔時の加工発熱によってゼロ延性域に到達するようにな
るので、加熱温度を1050〜1280℃とした。
The heating of the steel slab is performed in order to carry out the piercing and rolling in the next step in a state where the steel slab is uniformly heated to the center and the segregation of the microstructure is removed. Is less than 1050 ° C, it is effective for improving toughness by refining the crystal grains, but deformation resistance remarkably increases, which hinders hot working. On the other hand, when it exceeds 1280 ° C, it is zero due to processing heat during drilling. Since it reaches the ductility zone, the heating temperature was set to 1050 to 1280 ° C.

【0021】加熱された鋼片は、ピアサーで穿孔され、
次いでマンドレルミルおよびサイザーで熱間圧延される
が、熱間圧延における仕上温度が750℃未満ではフェ
ライトが生成するようになって所望の恒温変態処理がで
きなくなる。また、仕上温度に上限値はないが、110
0℃を超えると極端な粗粒となることから、850〜1
050℃とするのが望ましい。さらに、マンドレルミル
およびサイザーでの圧延率は、小さくても結晶粒は微細
になるが、鋼管としての表面肌を考慮すれば、断面減少
率で30%以上とするのが望ましい。
The heated billet is perforated with a piercer,
Next, hot rolling is performed with a mandrel mill and sizer, but if the finishing temperature in hot rolling is less than 750 ° C., ferrite will be generated and the desired isothermal transformation treatment cannot be performed. Also, there is no upper limit for the finishing temperature, but 110
If the temperature exceeds 0 ° C, the particles will become extremely coarse.
The temperature is preferably 050 ° C. Further, the rolling rate in the mandrel mill and sizer is fine even if the rolling rate is small, but considering the surface texture of the steel pipe, it is desirable that the cross-section reduction rate be 30% or more.

【0022】熱間圧延後の再加熱は、オーステナイト化
するために行うものであり、800℃未満では熱間圧延
後に生成したフェライトをオーステナイト化できず、ま
た、1050℃を超えるとオーステナイト粒径が粗大化
すると共に、炭化物を固溶してしまい、所望の強度が得
られないので、再加熱温度を800〜1050℃とし
た。また、再加熱時間に制限はないが、オーステナイト
化は短時間で終了するので、いたずらに再加熱時間を長
くすると、エネルギー原単位の悪化によるコスト増を招
くこととなるので、30分以下とするのが望ましい。
Reheating after hot rolling is performed for austenite formation. If the temperature is less than 800 ° C., the ferrite produced after hot rolling cannot be austenitized, and if it exceeds 1050 ° C., the austenite grain size is increased. Since it coarsened and solid-solved carbides and desired strength could not be obtained, the reheating temperature was set to 800 to 1050 ° C. The reheating time is not limited, but since the austenitization is completed in a short time, if the reheating time is unnecessarily lengthened, the cost per unit energy will deteriorate and the cost will increase. Is desirable.

【0023】鋼管の冷却に際しては、必ず肉厚方向に温
度分布が生じ、表面ほど冷却速度が大きくなる。冷却速
度は、大きくなるとベイナイトが生成し、本来の恒温変
態処理ができなくなるばかりでなく、最も冷却されない
部分との速度差が大きくなり、肉厚方向で恒温変態条件
(温度、時間)に差が生じてミクロ的な強度バラツキを
生じる。冷却速度が5℃/秒を超えると上記現象が生じ
るため、冷却速度は5℃/秒以下とした。
When cooling the steel pipe, a temperature distribution is always generated in the wall thickness direction, and the cooling rate increases toward the surface. If the cooling rate increases, bainite is generated, and the original isothermal transformation process cannot be performed.In addition, the speed difference with the most uncooled portion increases, and the isothermal transformation conditions (temperature, time) differ in the thickness direction. This causes microscopic strength variations. When the cooling rate exceeds 5 ° C / sec, the above phenomenon occurs, so the cooling rate was set to 5 ° C / sec or less.

【0024】恒温変態処理は、Ae1点以下の温度で施
すこととしている。この発明の鋼材のAe1点は、78
0℃が最大であるので、これを上限値とした。また、6
50℃未満の温度では、所望の強度を得るのに著しく長
時間の保持が必要となるが、その効果は小さい。恒温変
態処理の保持時間は、0.25時間未満では、空冷後に
未変態オーステナイトからマルテンサイトやベイナイト
が生成し強度が向上しない。また、2.0時間を超える
と強度低下が生じることとなる。このため、恒温温度は
650〜780℃、恒温時間は0.25〜2.0時間と
した。
The constant temperature transformation treatment is performed at a temperature of Ae 1 point or lower. Ae 1 point of the steel material of this invention is 78
Since 0 ° C is the maximum, this was set as the upper limit. Also, 6
At a temperature of less than 50 ° C., it is necessary to retain the material for a considerably long time to obtain the desired strength, but the effect is small. If the holding time of the isothermal transformation treatment is less than 0.25 hours, martensite and bainite are generated from untransformed austenite after air cooling, and the strength is not improved. Further, if it exceeds 2.0 hours, the strength will decrease. Therefore, the constant temperature is 650 to 780 ° C., and the constant temperature time is 0.25 to 2.0 hours.

【0025】この発明の合金鋼鋼管の製造方法は、前記
所定の成分組成の鋼片を、図1に示すとおり、1050
〜1280℃の温度範囲に加熱してピアサー、マンドレ
ルミルおよびサイザーを用い、仕上温度750℃以上で
熱間圧延したのち、直ちに800〜1050℃の温度範
囲に再加熱し、次いで5℃/秒以下の冷却速度で恒温温
度の650〜780℃となし、0.25〜2.0時間保
持して恒温変態処理することによって、調質熱処理材と
同等の引張特性を付与できると共に、スケール生成量を
調質熱処理に比較して極めて大幅に低減できる。
In the method for producing an alloy steel pipe according to the present invention, a steel slab having the above-mentioned predetermined composition is treated with 1050 as shown in FIG.
~ 1280 ℃ temperature range, using a piercer, mandrel mill and sizer, hot rolling at a finishing temperature of 750 ℃ or more, then immediately reheated to 800 ~ 1050 ℃ temperature range, then 5 ℃ / sec or less By maintaining a constant temperature of 650 to 780 ° C. at a cooling rate of 1, and performing a constant temperature transformation treatment by holding for 0.25 to 2.0 hours, tensile properties equivalent to those of the heat-treated tempered material can be imparted, and the amount of scale formation can be increased. It can be significantly reduced compared to heat treatment.

【0026】[0026]

【実施例】通常の溶解法および鋳造法により表1に示す
成分組成を有する外径225mm、長さ2mの本発明鋼
片A〜Lと、構成成分のうち表1に*印で示す成分含有
率がこの発明鋼片の範囲から外れた成分組成を有する比
較鋼片M〜Rを調整し、これらの鋼片A〜Lを素材とし
て用い、ピアサー、マンドレルミルおよびサイザーから
なる熱間継目無鋼管製造設備を使用し、表2に示す各製
造条件で外径177.8mm、肉厚16mmの本発明法
の継目無鋼管を製造した。また、比較鋼片M〜Rおよび
本発明鋼片A、Iを素材として用い、ピアサー、マンド
レルミルおよびサイザーからなる熱間継目無鋼管製造設
備を使用し、表3に示す各製造条件で外径177.8m
m、肉厚16mmの比較法の継目無鋼管を製造した。そ
して、得られた各継目無鋼管からそれぞれ試験片を採取
して引張特性を測定すると共に、スケール付着厚さを測
定した。その結果をそれぞれ表4および表5に示す。な
お、表3中の*印は、この発明の範囲外を示し、また、
オフライン熱処理は、熱間加工した継目無鋼管を、室温
から920℃に加熱して0.17時間保持したのち、5
℃/秒の冷却速度で725℃まで冷却し、725℃で
0.75時間保持して恒温変態処理した。
EXAMPLES Steel pieces A to L of the present invention having an outer diameter of 225 mm and a length of 2 m and having the composition of components shown in Table 1 by a conventional melting method and casting method, and containing the components indicated by * in Table 1 among the constituent components. Comparative steel billets M to R having a composition outside the range of the steel billets of the present invention were prepared, and these steel billets A to L were used as raw materials, and a hot seamless steel pipe consisting of a piercer, a mandrel mill and a sizer. Using the manufacturing equipment, under the respective manufacturing conditions shown in Table 2, a seamless steel pipe of the present invention method having an outer diameter of 177.8 mm and a wall thickness of 16 mm was manufactured. Further, the comparative steel slabs M to R and the steel slabs A and I of the present invention were used as raw materials, and a hot seamless steel pipe manufacturing facility consisting of a piercer, a mandrel mill and a sizer was used, and the outer diameter was obtained under the respective manufacturing conditions shown in Table 3. 177.8m
A seamless steel pipe having a thickness of 16 mm and a thickness of 16 mm was manufactured by a comparative method. Then, a test piece was taken from each of the obtained seamless steel pipes to measure the tensile properties and the scale adhesion thickness. The results are shown in Table 4 and Table 5, respectively. In addition, * mark in Table 3 indicates outside the scope of the present invention, and
The off-line heat treatment was performed by heating the hot-worked seamless steel pipe from room temperature to 920 ° C. and holding it for 0.17 hours, then
The sample was cooled to 725 ° C. at a cooling rate of ° C./sec, and kept at 725 ° C. for 0.75 hours for a constant temperature transformation treatment.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【表4】 [Table 4]

【0031】[0031]

【表5】 [Table 5]

【0032】表4、表5に示すとおり、この発明方法に
よって製造した試験No.1〜23の継目無鋼管は、従
来の調質熱処理を必要とすることなく、熱間圧延後イン
ラインで直ちに再加熱して恒温温度まで冷却して恒温変
態処理することによって、従来の調質熱処理した試験N
o.40、41の継目無鋼管と同等の強度、延性を有し
ており、しかも、表面の付着スケールを極めて大幅に低
減することができる。これに対し試験No.24〜29
の比較鋼片から製造した継目無鋼管および試験No.3
0〜39の本発明方法で規定の製造条件を満足させない
継目無鋼管は、耐力250〜350N/mm2、引張強
さ450〜550N/mm2といった強度要求に対して
低めまたは高めとなっており、例え、耐力、引張強さを
満足しても、スケール厚さが3倍以上厚く付着してい
る。
As shown in Tables 4 and 5, the test Nos. Manufactured by the method of the present invention. The seamless steel pipes 1 to 23 do not require the conventional heat treatment for refining, but are immediately reheated in-line after hot rolling, cooled to a constant temperature and subjected to a constant temperature transformation treatment. Test N
o. It has the same strength and ductility as the seamless steel pipes of 40 and 41, and can significantly reduce the scale of adhesion on the surface. In contrast, Test No. 24-29
Of the comparative steel slab and the test No. 3
The seamless steel pipe that does not satisfy the specified manufacturing conditions of the method of the present invention of 0 to 39 is lower or higher than the strength requirement such as yield strength 250 to 350 N / mm 2 and tensile strength 450 to 550 N / mm 2. Even if the yield strength and tensile strength are satisfied, the scale thickness is three times thicker or more.

【0033】[0033]

【発明の効果】この発明の合金鋼鋼管の製造方法は、調
質熱処理を必要とすることなく、調質熱処理材と同等の
引張特性を有し、しかも、スケール生成量の極めて少な
い鋼管を製造することができ、デスケール処理を軽減す
ることができる。
INDUSTRIAL APPLICABILITY The method for producing an alloy steel pipe according to the present invention produces a steel pipe which does not require heat treatment for heat treatment, has the same tensile properties as a heat-treated heat treatment material, and has an extremely small amount of scale formation. Therefore, the descaling process can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の合金鋼鋼管の製造方法の温度条件の
推移を示す模式図である。
FIG. 1 is a schematic diagram showing changes in temperature conditions in a method for manufacturing an alloy steel pipe according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/38 C22C 38/38 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location C22C 38/38 C22C 38/38

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 C:0.05〜0.35%、Si:0.
02〜0.60%、Mn:0.3〜1.8%、Cr:
0.2〜10.0%、Mo:0.2〜1.5%を含有
し、残部がFeと不可避的不純物からなる組成を有する
鋼片を、1050〜1280℃の温度範囲に加熱し、ピ
アサー、マンドレルおよびサイザーを用いて穿孔と75
0℃以上の仕上げ温度での熱間圧延を行ったのち、80
0〜1050℃の温度範囲に再加熱して恒温温度まで5
℃/秒以下の冷却速度で冷却し、650〜780℃の温
度範囲で0.25〜2.0時間恒温処理したのち空冷す
ることを特徴とする合金鋼鋼管の製造方法。
1. C: 0.05 to 0.35%, Si: 0.
02-0.60%, Mn: 0.3-1.8%, Cr:
A steel slab containing 0.2 to 10.0% and Mo: 0.2 to 1.5% and the balance being Fe and unavoidable impurities is heated to a temperature range of 1050 to 1280 ° C, Drill and 75 with piercer, mandrel and sizer
After hot rolling at a finishing temperature of 0 ° C or higher, 80
Reheat to a temperature range of 0 to 1050 ° C to reach a constant temperature of 5
A method for producing an alloy steel pipe, which comprises cooling at a cooling rate of not more than C / sec, subjecting to constant temperature treatment in a temperature range of 650 to 780 ° C. for 0.25 to 2.0 hours, and then air cooling.
【請求項2】 C:0.05〜0.35%、Si:0.
02〜0.60%、Mn:0.3〜1.8%、Cr:
0.2〜10.0%、Mo:0.2〜1.5%を含み、
さらに、V:0.01〜0.15%、Nb:0.01〜
0.10%、Ti:0.01〜0.10%のうちの1種
または2種以上を含有し、残部がFeと不可避的不純物
からなる組成を有する鋼片を、1050〜1280℃の
温度範囲に加熱し、ピアサー、マンドレルおよびサイザ
ーを用いて穿孔と750℃以上の仕上げ温度での熱間圧
延を行ったのち、800〜1050℃の温度範囲に再加
熱して恒温温度まで5℃/秒以下の冷却速度で冷却し、
650〜780℃の温度範囲で0.25〜2.0時間恒
温処理したのち空冷することを特徴とする合金鋼鋼管の
製造方法。
2. C: 0.05 to 0.35%, Si: 0.
02-0.60%, Mn: 0.3-1.8%, Cr:
0.2 to 10.0%, including Mo: 0.2 to 1.5%,
Further, V: 0.01 to 0.15%, Nb: 0.01 to
0.10%, Ti: 0.01 to 0.10% of 1 type or 2 types or more, and the balance has the composition which consists of Fe and unavoidable impurities. After heating to the range, piercing using a piercer, mandrel and sizer and hot rolling at a finishing temperature of 750 ° C or higher, reheating to a temperature range of 800 to 1050 ° C to a constant temperature of 5 ° C / sec. Cool at the following cooling rate,
A method for producing an alloy steel pipe, which comprises subjecting to constant temperature treatment in a temperature range of 650 to 780 ° C. for 0.25 to 2.0 hours and then performing air cooling.
JP09601896A 1996-03-25 1996-03-25 Manufacturing method of alloy steel pipe Expired - Lifetime JP3214348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09601896A JP3214348B2 (en) 1996-03-25 1996-03-25 Manufacturing method of alloy steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09601896A JP3214348B2 (en) 1996-03-25 1996-03-25 Manufacturing method of alloy steel pipe

Publications (2)

Publication Number Publication Date
JPH09263830A true JPH09263830A (en) 1997-10-07
JP3214348B2 JP3214348B2 (en) 2001-10-02

Family

ID=14153533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09601896A Expired - Lifetime JP3214348B2 (en) 1996-03-25 1996-03-25 Manufacturing method of alloy steel pipe

Country Status (1)

Country Link
JP (1) JP3214348B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146487A (en) * 2000-09-01 2002-05-22 Daido Steel Co Ltd Steel for shaft
CN102952994A (en) * 2011-08-25 2013-03-06 宝山钢铁股份有限公司 Fire-resistant and earthquake-resistant steel for construction and production method thereof
WO2015005119A1 (en) * 2013-07-09 2015-01-15 新日鐵住金株式会社 METHOD FOR PRODUCING HIGH-Cr STEEL PIPE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102716910B (en) * 2012-06-29 2015-03-25 衡阳华菱钢管有限公司 Steel tube for die-casting die and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110617A (en) * 1980-12-29 1982-07-09 Kawasaki Steel Corp Heat treatment of cr-mo steel
JPH02138417A (en) * 1988-04-22 1990-05-28 Kawasaki Steel Corp Production of high-chromium seamless steel pipe having excellent high-temperature strength
JPH046218A (en) * 1990-04-24 1992-01-10 Nkk Corp Production of seamless cr-mo steel tube
JPH07278656A (en) * 1994-04-04 1995-10-24 Nippon Steel Corp Production of low yield ratio high tensile strength steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110617A (en) * 1980-12-29 1982-07-09 Kawasaki Steel Corp Heat treatment of cr-mo steel
JPH02138417A (en) * 1988-04-22 1990-05-28 Kawasaki Steel Corp Production of high-chromium seamless steel pipe having excellent high-temperature strength
JPH046218A (en) * 1990-04-24 1992-01-10 Nkk Corp Production of seamless cr-mo steel tube
JPH07278656A (en) * 1994-04-04 1995-10-24 Nippon Steel Corp Production of low yield ratio high tensile strength steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146487A (en) * 2000-09-01 2002-05-22 Daido Steel Co Ltd Steel for shaft
CN102952994A (en) * 2011-08-25 2013-03-06 宝山钢铁股份有限公司 Fire-resistant and earthquake-resistant steel for construction and production method thereof
WO2015005119A1 (en) * 2013-07-09 2015-01-15 新日鐵住金株式会社 METHOD FOR PRODUCING HIGH-Cr STEEL PIPE
JPWO2015005119A1 (en) * 2013-07-09 2017-03-02 新日鐵住金株式会社 Manufacturing method of high Cr steel pipe

Also Published As

Publication number Publication date
JP3214348B2 (en) 2001-10-02

Similar Documents

Publication Publication Date Title
US8617462B2 (en) Steel for oil well pipe excellent in sulfide stress cracking resistance
JP6574307B2 (en) High toughness seamless steel pipe and manufacturing method thereof
US20030066580A1 (en) Method for making high-strength high-toughness martensitic stainless steel seamless pipe
GB1562104A (en) Production of seamless steel pipe
JPH02175816A (en) Manufacture of hot rolled steel or thick plate
JP2567150B2 (en) Manufacturing method of high strength low yield ratio line pipe material for low temperature
JP4123672B2 (en) Manufacturing method of high strength seamless steel pipe with excellent toughness
JP3506033B2 (en) Method of manufacturing hot-rolled steel bars or wires
JP3598868B2 (en) Manufacturing method of hot rolled wire rod
JPS61104022A (en) Production of structural steel for high temperature use
JP3214348B2 (en) Manufacturing method of alloy steel pipe
JP2008013812A (en) High toughness and high tensile strength thick steel plate and its production method
JP3965708B2 (en) Manufacturing method of high strength seamless steel pipe with excellent toughness
JPH09310121A (en) Production of martensitic seamless heat resistant steel tube
JP3694967B2 (en) Method for producing martensitic stainless steel seamless steel pipe
JPH08199309A (en) Stainless steel excellent in workability and its production
JP6028759B2 (en) High tensile steel plate with high Young&#39;s modulus in the rolling direction on the surface of the steel plate and method for producing the same
JPH11302785A (en) Steel for seamless steel pipe
JP3503211B2 (en) Manufacturing method of high strength seamless steel pipe
JP2682335B2 (en) Manufacturing method of ferritic stainless steel hot rolled strip
JPH09287027A (en) Production of high strength, high toughness and seamless steel pipe
JP3326783B2 (en) Manufacturing method of low alloy seamless steel pipe with excellent high temperature strength
JP2001293504A (en) Mandrel bar and its producing method
JP2533250B2 (en) Method for manufacturing thin web H-section steel with low yield ratio and excellent workability
JP2756533B2 (en) Manufacturing method of high strength, high toughness steel bars

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070727

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 12

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term